ROHM's 4th Generation SiC MOSFET Bare Chips Adopted in Three EV Models of ZEEKR from Geely
  ROHM has announced the adoption of power modules equipped with 4th generation SiC MOSFET bare chips for the traction inverters in three models of ZEEKR EV brand from Zhejiang Geely Holding Group (Geely), a top 10 global automaker. Since 2023, these power modules have been mass produced and shipped from HAIMOSIC (SHANGHAI) Co., Ltd. - a joint venture between ROHM and Zhenghai Group Co., Ltd. to Viridi E-Mobility Technology (Ningbo) Co., Ltd, a Tier 1 manufacturer under Geely.  Geely and ROHM have been collaborating since 2018, beginning with technical exchanges, then later forming a strategic partnership focused on SiC power devices in 2021. This led to the integration of ROHM’s SiC MOSFETs into the traction inverters of three models: the ZEEKR X, 009, and 001. In each of these EVs, ROHM’s power solutions centered on SiC MOSFETs play a key role in extending the cruising range and enhancing overall performance.  ROHM is committed to advancing SiC technology, with plans to launch 5th generation SiC MOSFETs in 2025 while accelerating market introduction of 6th and 7th generation devices. What’s more, by offering SiC in various forms, including bare chips, discrete components, and modules, ROHM is able to promote the widespread adoption of SiC technology, contributing to the creation of a sustainable society.  ZEEKR Models Equipped with ROHM’s EcoSiC™The ZEEKR X, which features a maximum output exceeding 300kW and cruising range of more than 400km despite being a compact SUV, is attracting attention even outside of China due to its exceptional cost performance. The 009 minivan features an intelligent cockpit and large 140kWh battery, achieving an outstanding maximum cruising range of 822km. And for those looking for superior performance, the flagship model, 001, offers a maximum output of over 400kW from dual motors with a range of over 580km along with a four-wheel independent control system.  About ZEEKRZEEKR was launched in 2021 as the dedicated EV brand of Geely, a leading Chinese automaker that also owns well-established premium brands such as Volvo Cars and Lotus Cars. The name ZEEKR combines ZE, representing ZERO, the starting point of infinite possibilities, E for innovation in the electric era, and KR, the chemical symbol for krypton, a rare gas that emits light when energized. ZEEKR’s philosophy centers on harmonizing humanity, technology, and nature, aiming to redefine the perception of electric vehicles through innovative designs and technologies. The brand has garnered praise in markets outside of China, including in the US and Europe, for its impressive driving performance and range, with plans to expand sales to Western and Northern Europe.  Please visit ZEEKR's website for more information: https://zeekrglobal.com/  Market Background and ROHM’s EcoSiC™In recent years, there has been a push to develop more compact, efficient, lightweight electric systems to expand the adoption of next-generation electric vehicles (xEVs) and achieve environmental goals such as carbon neutrality. For electric vehicles in particular, improving the efficiency of the traction inverter, a key element of the drive system, is crucial for extending the cruising range and reducing the size of the onboard battery, heightening expectations for SiC power devices.  As the world’s first supplier to begin mass production of SiC MOSFETs in 2010, ROHM continues to lead the industry in SiC device technology development. These devices are now marketed under the EcoSiC™ brand, encompassing a comprehensive lineup that includes bare chips, discrete components, and modules. For more information, please visit the SiC page on ROHM’s website: https://www.rohm.com/products/sic-power-devices   EcoSiC™ BrandEcoSiC™ is a brand of devices that utilize silicon carbide (SiC), which is attracting attention in the power device field for performance that surpasses silicon (Si). ROHM independently develops technologies essential for the evolution of SiC, from wafer fabrication and production processes to packaging, and quality control methods. At the same time, we have established an integrated production system throughout the manufacturing process, solidifying our position as a leading SiC supplier.  EcoSiC™ is a trademark or registered trademark of ROHM Co., Ltd.  Supporting InformationROHM is committed to providing application-level support, including the use of in-house motor testing equipment Additionally, by clicking on the URL below, users can access various supporting contents on ROHM’s website that facilitate the evaluation and introduction of 4th generation SiC MOSFETs, such as SPICE and other design models, simulation circuits for common applications (ROHM Solution Simulator), and evaluation board information.  https://www.rohm.com/products/sic-power-devices/sic-mosfet#supportInfo
Key word:
Release time:2024-09-03 10:42 reading:305 Continue reading>>
AMEYA360 invites you to attend Electronica Munich, Germany!
  The 2024 Munich International Electronic Fair (Electronica) will be held from November 12 to 15 at the Munich Trade Fair Center.Our booth location : B5-520.  Germany Munich Electronics Fair (Electronica), since its inception in 1964, has developed into Europe and even the world's largest and far-reaching electronic components professional exhibition. Every year, the elites of the global electronics industry gather in Munich to review the brilliant achievements of the electronics industry in the past two years and look forward to the future development of the electronics market.  As an excellent stage for industry elites to understand the market news and catch the latest information, the Munich Electronics Fair in Germany brings together the latest innovations of the world's leading electronics companies. Many professional visitors were not only attracted by the release of new products and technologies, but also gained a lot from finding partners and signing cooperation agreements.  The 2022 electronica was an even bigger success, with 14 specialized halls and 2,140 companies from 51 countries and regions, more than 60% of which came from outside Germany. At the same time, 69,783 visitors from 102 countries and regions attended the fair, making it a great success.  AMEYA360, as the industry's leading global one-stop procurement platform for electronic components, will be participated this exhibition. We sincerely invite you to visit Booth 520 in Hall B5 to discuss the development of the industry and participate in the industry big event, and sincerely cooperate with all sectors of society to create a brilliant future blueprint and write a new chapter in development!  Exhibition Overview  Time: November 12 - November 15, 2024  industry: Electronic components  Organizer:Messe Munchen International, Germany  Location: Munich Trade Fair Center, Germany  Holding cycle: every two years  Hall plan:  Range of exhibits  Cars; Display; Electromechanical and system peripherals; Electronic Design (ED/EDA); Embedded system; Electronic Manufacturing Services (EMS); Semiconductor; PCB and other circuit carriers; Test and measurement; Micro-nano system; Passive component; Sensor technology; The service industry; Power supply; System components/assemblies and subsystems; The radio.  About AMEYA360  AMEYA360 Mall (www.ameya360.com)is a one-stop procurement platform for electronic components, independently developed and designed by Shanghai Huanghua Information Technology Co.Ltd. The platform has secured cooperation and authorization from numerous renowned domestic and international brand manufacturers. With diverse range of material categories abundant inventory, and a commitment to quality,AMEYA360 ensures a reliable source for electronic component procurement.  In addition to the online platform, AMEYA360 has also introduced the user-friendly [AMEYA Store] app, which combines various function such as searching, ordering, price quote, making payments, tracking logistics, accessing resources, finding component references, and exploring material replcements.  With its comprehensive features, AMEYA360 caters to the varied demands of the electronic information-related industries. These include small-scale component procurement, ordering for future needs, applying for product samples, and receiving technical support to meet the diverse needs of businesses in the electronics sector.  AMEYA360 will participated in the 2024 Munich Electronica,Germany, hope to discuss industry trends and future development with all business partners & customers in the industry, and explore a new model of innovative cooperation in the supply chain that currently facing many challenges.  AMEYA team is looking forward to see you in Munich this November!  If you are sourcing for any electronics components, you can scan the QR code below for inquiry. For more information, please email dukelee@ameya360.com or call +86 13916138705.
Key word:
Release time:2024-09-02 17:17 reading:357 Continue reading>>
Murata:Mass production begins for 0603M size copper electrode NTC thermistors, ideal for automotive applications
  Murata Manufacturing Co., Ltd. (hereinafter “Murata”) has developed 0603M size (0.6 x 0.3 x 0.3 mm) copper electrode NTC thermistors “NCU03XH103F6SRL” and “NCU03XH103F60RL” (hereinafter “this product”) for markets such as the automotive market where there is a demand for high reliability electronic components. This product is an expansion of the NCU series size lineup. Mass production has already begun, and samples can also be provided.  As advances are being made towards automated driving and IoT integration in the automotive market, circuit boards are being made with an increasingly larger number of electronic components, and in turn, higher component densities. With the increasing sophistication of ADAS*1/telematics technologies*2, there are higher loads on electronic components, amplifying the issue of component overheating. As a result, there is a heightened demand for overheating detection and temperature monitoring technologies.  We have taken advantage of Murata’s years of processing technology development experience to create a 0603M size (0.6 x 0.3 x 0.3 mm) product that can be used for high reliability applications. Compared to Murata’s existing products (1005M size), this product has an approximately 80% lower volume and approximately 70% smaller mounting area.  Murata will continue to expand our product lineup to meet market demand. By responding quickly to market demand, we also contribute to further improvements in circuit board component densities and downsizing of devices for high reliability applications.  *1ADAS: Advanced Driver Assistance System  *2Telematics technology: Devices that use communications technology installed in vehicles to collect and transmit driver and vehicle data and share information in real time. Main applications of this technology include navigation systems that collect traffic information to help drivers avoid traffic jams and voice recognition services used to operate in-car features.  Features  Works with automobiles and other systems that require high reliability components. Downsizing (0603M size) achieved with copper electrodes.  Approximately 80% lower volume and approximately 70% smaller mounting area than Murata’s existing products (1005M size). Because this product has the same characteristics as our existing products, there is no need to change the circuit board design when replacing an existing product with this product. This product will also help our customers increase their component density and save space on the circuit board.  Small in volume and capable of fast response.  Specifications
Key word:
Release time:2024-08-28 15:21 reading:374 Continue reading>>
simcom:MWC Shanghai 2024: A New Avenue for 5G Popularization
  Under the theme "Future First," as we all know, 5G-Advanced is the next step in the evolution of cellular technologies, enabling advanced use cases for various verticals such as government and security, transportation, oil and gas, airlines and logistics, and healthcare to realize the full potential of 5G.  As a hallmark technology of 5G evolution, RedCap has garnered extensive attention from the industry since its inception during MWC Shanghai. 5G RedCap offers advantages such as lowering the complexity, cost, size, and power consumption of 5G products. This not only fills the middle ground of 5G capabilities but also opens a new avenue for 5G to empower various industries.  At MWC Shanghai, SIMCom aims at 5G ultra-high-speed scenarios and has the 5G module series SIM8270 and SIM8390, providing a maximum speed of over 10Gbps. These modules are suitable for applications that have strict requirements on speed and latency, such as broadband access, video monitoring and industrial control.  Also, SIMCom has launched the SIM8230 and SIM8230-M2 series RedCap modules based on the Qualcomm platform. The SIM8230 module supports multi-frequency bands for 5G R17 SA, comes with a variety of functional interfaces for external device expansion, and boasts advantages such as lightweight, energy efficiency, compactness, and cost-effectiveness. It can be widely utilized in various domains including 5G CPE, wearable devices, industrial routers, high-definition streaming devices, AR/VR, drones, and remote-controlled robots.  SIMCom has already fully deployed and accelerated the commercial scale of 5G RedCap. As market recognition of RedCap technology continues to increase, the popularization of 5G will further accelerate. SIMCom is committed to developing more diverse and reliable products based on advanced technology, promoting the large-scale commercialization of technologies like 5G RedCap, and contributing to the digital transformation and development of various industries with 5G technology.
Key word:
Release time:2024-08-27 15:56 reading:311 Continue reading>>
Renesas Launches Ultra-Compact Sensor Module for Smart Air Quality Monitoring at Homes, Schools and Public Buildings
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, today introduced an advanced all-in-one sensor module designed for indoor air quality monitoring. The RRH62000, the first multi-sensor air quality module from Renesas, integrates multiple sensor parameters in a compact design and accurately detects different particle sizes, volatile organic compounds, and gasses harmful to human health. With a Renesas microcontroller (MCU) on board, the module offers an intelligent sensor management solution for a growing market of air monitoring applications, including air purifiers, smoke detectors, HVAC systems, weather stations, and smart home systems. Its robust firmware also enables customer products to comply with various air quality standards around the world.  The RRH62000 features one of the smallest footprints in its class of sensor modules, measuring only 46.6 x 34.8 x 12 mm. It packs Renesas’ RA Family MCU and seven sensor signals: the laser-based PM1/ 2.5/ 10 sensor, ZMOD4410 gas sensor, and the HS4003 humidity and temperature sensor. Together, these sensors can detect particulate matter, total volatile organic compounds (TVOC), estimated CO2, temperature, and humidity all in one system. All key components have been pre-integrated and fully calibrated at the factory, allowing developers to start their sensor system designs right out of the box.  "Our RRH62000 module represents the next step in sensor fusion technology, which combines data from multiple sensors and turns it into comprehensive and actionable insights for environmental monitoring," said Uwe Guenther, Sr. Director, Modules and Solutions Product Line at Renesas. "We are dedicated to providing integrated sensing solutions that simplify development for customers and will continue to drive innovation in sustainable products that reduce environmental impact and enhance safety and comfort in our lives."  Public interest in air quality and its effects on health has increased significantly since the COVID-19 pandemic. People are now more aware of how air pollutants can affect respiratory health and overall well-being. Less known is that pollutants are typically six to ten times more concentrated indoors than outdoors. These include dust, paint fumes, smoke from cooking, pollen, and particulates from HVAC filters, which can enter the respiratory system and cause lung damage, cancer, and other health problems.  In order to meet these new challenges, Renesas’ new sensor module is equipped to monitor a broad range of air quality conditions. Using laser-based technology, which offers higher precision compared to conventional LED methods, it can monitor concentrations of PM1, PM2.5, and PM10 particulates -- particles with diameters of 0.3- to 10µm -- as well as absolute or relative TVOC measurements in different power mode settings, providing the highest level of accuracy for these pollutants. The RRH62000 delivers seven sensor outputs simultaneously, and its onboard MCU allows the system to detect surrounding air quality data in real time.  The RRH62000 combo module comes with building standard firmware plus artificial intelligence (AI) algorithms, which lets engineers configure the sensors to conform to the requirements of various green air quality standards in public buildings, such as The Well Building Standard (WELL), Home Ventilating Institute (HVI) and RESET. With these features, for example, a school in China can use the same hardware as one in the U.S. or another location and simply update the AI-enabled firmware for its needs.  Intelligent sensor devices, such as the Renesas RRH62000 and recently announced RRH46410 gas sensor module, can support demand-controlled ventilation, allowing HVAC systems to adjust airflow based on carbon dioxide levels and occupancy information to maintain optimal air quality and energy efficiency. Similarly, these modules use AI algorithms to predict when HVAC filters must be replaced or detect an anomaly before system failure occurs, significantly saving cost and time for system maintenance.  Key Features of the RRH62000 All-in-One Sensor Module  Up to 7 simultaneous sensor outputs  Laser-based technology for accurate detection of PM1, PM2.5, PM10  Metal oxide-based gas sensor  Precise temperature and humidity sensor  Absolute measurement of TVOC  Estimated CO2 for low-cost CO2 room indication  Ultra-compact size: 46.6 x 34.8 x 12mm to fit in many applications  On-board MCU for smart sensor management  Robust & Siloxane resistant  Support I²C and UART communication  Winning Combinations  Renesas has combined the RRH62000 with numerous compatible devices from its portfolio to offer a wide array of Winning Combinations. This includes the In-home Air Quality Monitoring System and Air Quality Monitor (PM2.5) with Secure Cloud Connection, which combine the RRH62000 with the RA6M3 and RL78/G14 MCUs, and various power devices to enable cost-efficient, compact, modular solutions for modern appliances. These Winning Combinations are technically vetted system architectures designed from mutually compatible devices that work together seamlessly to bring an optimized, low-risk design for faster time to market. Renesas offers more than 400 Winning Combinations with a wide range of products from the Renesas portfolio to enable customers to speed up the design process and bring their products to market more quickly. They can be found at renesas.com/win.  Availability  The RRH62000 is available today along with the RRH62000-EVK evaluation kit. The RRH46410 and the RRH46410-EVK are also available. Please contact your local sales teams for more details. A blog about the new air quality sensor module is also available on the Renesas website.
Key word:
Release time:2024-08-26 14:10 reading:413 Continue reading>>
SIMCom Achieves ISO/SAE 21434 Certification for Automotive Cybersecurity Management
  SIMCom, a global leader in IoT communication, has proudly received the ISO/SAE 21434 certification for Automotive Cybersecurity Management from TÜV NORD, an international independent third-party testing, inspection, and certification organization. This certification marks a significant milestone in SIMCom’s commitment to advancing automotive cybersecurity and delivering top-tier solutions to the automotive industry.  Importance of ISO/SAE 21434  Achieving the ISO/SAE 21434 certification underscores SIMCom's ability to meet stringent cybersecurity risk management requirements across the entire product lifecycle—from conceptual design, development, and production to operation and maintenance. This critical achievement validates SIMCom's dedication to adhering to the highest standards of automotive cybersecurity. In an era of increasing vehicle connectivity, robust cybersecurity measures are paramount. The certification confirms that SIMCom’s products are designed to safeguard against evolving cyber threats, ensuring the safety and security of in-vehicle systems and communications.  Comprehensive Automotive Solutions  In alignment with automotive industry trends, SIMCom continues to expand its automotive product lineup, offering enhanced IoT solutions to car manufacturers and Tier 1 suppliers. This strategic expansion not only strengthens SIMCom's position in the connected vehicle industry but also underscores its commitment to providing secure and reliable products.  SIMCom offers a complete range of automotive-grade cellular communication modules, including SIM7800X, SIM7805X, and SIM8800X and so on. Additionally, SIMCom provides smart modules, GNSS positioning modules, 5G modules and Wi-Fi & Bluetooth modules, delivering one-stop services to global car manufacturers and Tier 1 suppliers. These products are designed to meet diverse application scenarios, including in-vehicle communication, vehicle positioning, smart cockpits, and digital keys. The integration of various cybersecurity functions, such as encryption, authentication, and data integrity checks, ensures the security of in-vehicle systems and communications, preventing unauthorized access and data tampering.  Future Outlook  SIMCom will continue to align with market demands and industry standards, focusing on vehicle network and information security. By collaborating with industry partners, SIMCom aims to continually enrich its automotive product portfolio, offering compliant, reliable, and professional products and services. This commitment will drive the intelligent and secure development of the automotive industry chain.
Key word:
Release time:2024-08-23 13:13 reading:339 Continue reading>>
Power Module : Working Principle, Structural Features, and Process
  A power module is an electronic device used to convert one form of electrical energy into another for supply to specific electronic systems or devices. It typically comprises an input terminal for receiving the raw power source (such as AC or DC) and one or more output terminals for providing converted and regulated electrical energy. This article summarizes the working principle, structural features, process flow, selection parameters, and design considerations of power modules.  Working Principle of Power ModuleThe working principle of a power module is based on power electronics technology and control circuitry. Its core consists of switching power devices and control circuits. The following are detailed operational steps of power module operation:  1. Input Voltage Conversion  The power module first receives input voltage from the power line, typically AC.  Next, through rectification circuitry using diodes or bridge rectifiers, AC is converted into pulsating DC.  Subsequently, filtering circuits utilize capacitors to remove the pulsation, resulting in stable DC.  2. Output Voltage Regulation  The converted DC enters a voltage regulation circuit for voltage regulation.  The voltage regulation circuit operates using feedback control. Specifically, it compares the difference between the output voltage and a reference voltage and controls the regulator’s operation based on this difference.  Through this regulation, the output voltage is maintained at the set stable value.  3. Role of Switching Power Devices  During the power conversion process of the power module, switching power devices (such as MOSFETs, BJTs, IGBTs, etc.) play a crucial role.  When the switching device is conducting, the power module can convert input energy into output energy. The primary function of the switching device is to achieve intermittent energy conversion to provide the required stable voltage or current.  When the switching device receives an input or control signal, it generates corresponding switch signals to control its state.  4. Role of Control Circuits  Control circuits are another important component of the power module responsible for precise regulation and stabilization.  Feedback circuits monitor changes in output voltage or current and send feedback signals to comparators. This allows the power module to adjust output energy promptly based on the feedback signal to meet various circuit requirements.  5. Protection Mechanisms  Power modules typically feature various protection mechanisms such as overload protection, overvoltage protection, and short circuit protection.  Overload protection monitors the output current and limits or cuts off the output when the current exceeds a set value.  Overvoltage protection monitors the output voltage and automatically cuts off the output power when the voltage exceeds a set value.  Short circuit protection similarly operates by monitoring the output current. When a short circuit is detected, it promptly cuts off the power to prevent damage.  Structural Features of Power ModuleThe structural features of power modules are summarized as follows:  1. Modular Design  Power modules typically employ modular design, making the entire power system more compact and efficient. Each module has independent functionality, allowing for flexible combinations and extensions based on actual needs. This facilitates users in customizing power solutions according to specific application scenarios.  2. High Integration  Power modules integrate numerous electronic components and circuits internally, such as transformers, rectifiers, and filters. The optimized design of these components and circuits endows the power module with high efficiency and stability.  3. High Reliability  Power modules undergo rigorous production processes and quality control, resulting in high reliability. Additionally, internal redundancy design and protection circuits effectively prevent damage to the system due to abnormal conditions such as power fluctuations, overcurrent, and overvoltage.  4. Ease of Maintenance  Due to the modular design of power modules, when a fault occurs, users can conveniently replace the faulty module, thereby reducing maintenance costs and time. Furthermore, the modular structure facilitates upgrades and modifications to the power system.  Process Flow of Power ModuleThe production process of power modules involves multiple steps, from material preparation to final testing and quality inspection, with each step being crucial. Below is a simplified description of the operation process of power module production:  1. Material Preparation and Bill of Materials (BOM) Verification  Based on the design drawings of the power module and the BOM (Bill of Materials) list, prepare the required components, PCB boards, connecting wires, insulation materials, etc.  Check the quantity, model, and specifications of the materials to ensure accuracy.  2. PCB Board Processing and Component Soldering  Clean and dry the PCB board to remove surface stains and moisture.  According to the design drawings, solder the components onto the PCB board. Pay attention to soldering temperature and time control to avoid solder joints or poor soldering.  3. Power Circuit Connection and Insulation Processing  Based on the circuit diagram of the power module, connect the power input and output lines.  Insulate exposed wires and connection points to ensure safety.  4. Functional Testing and Performance Debugging  Conduct functional testing on the power module to check if input and output voltage and current are normal.  Based on the test results, perform performance debugging to optimize the efficiency of the power module.  5. Overall Assembly and Enclosure Installation  Assemble the soldered PCB board, connecting wires, and other components into a complete power module.  Install the enclosure of the power module to ensure reliable fastening.  6. Final Testing and Quality Inspection  Conduct final testing on the assembled power module, including voltage stability, ripple coefficient, load capacity, and other indicators.  According to quality inspection standards, screen and classify the power modules to ensure product quality.  7. Packaging and Warehouse Entry  Package the qualified power modules, indicating model, specifications, quantity, etc.  Store the packaged power modules in the warehouse, awaiting shipment or subsequent use.  Selection Parameters of Power ModuleDuring the process of selecting power modules, it is essential to consider a series of key parameters to ensure that the chosen power module can meet specific application requirements. Below is a detailed consideration of these parameters:  1. Input Voltage Range  Firstly, it is necessary to determine the input voltage range of the power module, i.e., the range within which it can operate normally. This depends on the power supply situation in the application, such as battery-powered or AC grid-powered. Ensure that the selected module can adapt to the existing input voltage and maintain stability during voltage fluctuations.  2. Output Voltage and Current  The output voltage and current of the power module are critical parameters to meet load requirements. Depending on the power consumption and characteristics of the load, choose appropriate output voltage and current levels. Also, consider whether the current output capacity of the power module is sufficient to handle the startup impact of the load and the current requirements during normal operation.  3. Efficiency and Power Consumption  Efficiency is the ability of the power module to convert electrical energy, i.e., the ratio of output power to input power. High efficiency means less energy loss and lower heat generation. Additionally, pay attention to the module’s power consumption, especially during standby or light load, to optimize energy use.  4. Ripple and Noise  Ripple refers to the AC component in the output voltage, while noise is the interference signal generated by the power module. These parameters are crucial for sensitive applications such as signal processing or measurement equipment. Therefore, when selecting, ensure that the ripple and noise levels of the selected module are below the system’s acceptable threshold.  5. Temperature Range  The operating temperature range of the power module is also a factor to consider. In extreme temperature environments, the performance and reliability of the module may be affected. Therefore, choose a module that can operate stably within the temperature range of the application.  6. Reliability and Lifespan  The reliability and expected lifespan of the power module are important indicators for assessing its long-term performance. When choosing, consider the module’s MTBF (Mean Time Between Failures) and the manufacturer’s provided warranty period.  7. Size and Packaging  The size and packaging of the power module are also factors to consider during the selection process. Ensure that the selected module can fit within the space constraints of the application and is easy to integrate into existing systems.  8. Certification and Compliance  The selected power module should comply with relevant safety standards and regulatory requirements, such as UL, CE, etc. This helps ensure the safety and compliance of the power module.  9. Cost  Last but equally important is cost consideration. While meeting all performance requirements, strive to choose a cost-effective power module to optimize the overall cost-effectiveness of the system.  During the design and use of power modules, the following operational issues should be noted:I. Design Phase Considerations1. Clarify Requirements and Specifications  Before designing the power module, clarify the system’s requirements for power, including voltage, current, power, efficiency, and other specifications.  Fully consider the working environment of the module, such as temperature, humidity, vibration, and other factors that may affect the performance of the power supply.  2. Select Appropriate Topology  Choose the appropriate power supply topology according to the requirements, such as linear power supply, switching power supply, etc., to achieve high efficiency, stability, and reliability.  3. Optimize Circuit Layout and Wiring  Reasonably layout circuit components to reduce interference and losses.  Adopt the principle of wide and short wiring to reduce resistance and inductance, thereby improving power supply efficiency.  4. Redundancy and Protection Design  Consider redundancy design for the power module to improve system reliability and stability.  Design overvoltage, overcurrent, overheating, and other protection measures to prevent module damage or safety accidents.  5. Electromagnetic Compatibility (EMC) Design  Consider the electromagnetic compatibility of the power module and use filtering, shielding, and other technologies to reduce interference with other devices.  II. Considerations During Use1. Proper Installation and Connection  Follow the manufacturer’s installation guide to ensure the power module is installed correctly and securely fixed.  Carefully inspect the connections of input and output terminals to ensure good contact, no looseness, or short circuits.  2. Adjust Parameters Reasonably  According to actual needs, set the voltage, current, and other parameters of the power module reasonably to avoid overloading or underloading.  Regularly check parameter settings to ensure consistency with actual requirements.  3. Monitoring and Maintenance  Regularly conduct status checks on the power module, including monitoring parameters such as voltage, current, and temperature.  If any abnormal conditions are detected, take timely measures to address them, such as cleaning dust or replacing damaged components.  4. Heat Dissipation and Working Environment  Pay attention to the impact of electromagnetic interference and mechanical vibration in the working environment on the power module and take corresponding measures for protection.  5. Training and Operational Standards  Provide training for personnel using the power module to ensure they understand the working principle, operation methods, and safety precautions of the module.  Establish operational standards to ensure that personnel operate in accordance with the standards, avoiding problems caused by improper operation.
Release time:2024-08-22 13:33 reading:241 Continue reading>>
BIWIN Wins India's
  June 28th had witnessed the successful hosting of the 16th NCN-ICT India Partner Summit 2024 at New Delhi, India. In the midst of the celebrations, BIWIN was honored with the esteemed “The Most Extensive Range Memory Solutions Provider of 2023 Award”, a reflection of its unwavering dedication to excellence and innovation.  BIWIN is the Winner of “The Most Extensive Range Memory Solutions Provider of 2023”  As an annual event that celebrates the achievements and contributions of key players in the ICT industry, the NCN-ICT Summit Awards brought together industry leaders, corporate executives, distributors, and resellers from India and abroad. It serves as a platform for industry professionals to gain insights into the latest innovations, share best practices, and explore new business opportunities.  Through a combination of online voting and evaluations conducted by a panel of experts and judges, this accolade is a testament to BIWIN’s commitment to delivering a comprehensive range of high-performance memory solutions and pushing forward with innovation and product expansion.  Recognized as a leader in the storage industry, BIWIN offers a comprehensive range of embedded flash-based storage solutions, including mobile phones, education devices, tablets, gaming machines, smart wearables, UAVs, action cameras, in-vehicle systems, DVR/NVRs, servers, OTT boxes, routers, and more. By providing tailored storage solutions, BIWIN supports innovation and advancement in these diverse technology areas.  Attending on behalf of BIWIN, Rajesh Khurana, Country Manager for Consumer Business, was honored to participate in the NCN-ICT Summit & Awards Night 2024 and accept the awards. He expressed heartfelt gratitude for the industry recognition and committed to integrating purpose-driven initiatives into BIWIN’s future work. Khurana emphasized that these efforts will not only honor the awards but also elevate BIWIN to new industry heights.  Rajesh Khurana was also privileged to be part of a renowned panel at the 16th Annual NCN-ICT Partners Summit, which was joined by top industry leaders from Geonix, Savex, Synersoft, Kaspersky and Micron. The discussion focused on the next big thing in ICT technology and examined the need for new business approaches, emerging ICT technologies, and changing business dynamics, as well as their impact on the vendor-partner ecosystem.  As noted by Rajesh Khurana, industry projections indicate that the memory market is expected to experience continued growth in the coming years, especially with the advancement of AI technologies, big data and Internet of Things which set to drive the demand to new levels. BIWIN will also endeavor to provide improved memory solutions for customers while contributing to the industry’s future development.
Key word:
Release time:2024-08-20 13:46 reading:275 Continue reading>>
GigaDevice GD32H7 Software Test Library (STL) Achieves TÜV Rheinland IEC 61508 Functional Safety Certification
  GigaDevice (Stock Code: 603986), a leading semiconductor company announced today that its GD32H7 Software Test Library (STL) has received the IEC 61508 SC3 (SIL 2/SIL 3) functional safety certification from TÜV Rheinland, an international independent testing, inspection, and certification organization. This marks the first STL certification awarded by TÜV Rheinland to a Chinese semiconductor company. By adopting the GD32H7 Software Test Library (STL), users can efficiently develop industrial applications that comply with international functional safety standards. This certification attests to GigaDevice's strong capabilities in developing industrial products and supporting software, demonstrating that GigaDevice's functional safety management has reached international standards.  The certification ceremony was attended by Vincent Li, GigaDevice CTO and General Manager of MCU BU, and Bin Zhao, General Manager Cybersecurity & Functional Safety Greater China from TÜV Rheinland, along with other representatives from both companies.  IEC 61508 is a globally recognized foundational standard for industrial functional safety. It provides a fundamental evaluation method for the entire safety lifecycle of electrical, electronic, and programmable electronic (E/E/PE) systems and products used in safety applications. The standard comprehensively covers all aspects including functional safety management, system, hardware, software phases, support processes, safety analysis, product reliability, and product release. It aims to control the risks associated with systematic failures and random hardware failures to an acceptable level. To conclude, IEC 61508 has already become a crucial reference standard in key industries such as industrial, energy, water transport, and railways etc. Obtaining this certification is essential for entering industries that require advanced functional safety.  With the development of digitalization and intelligent technology, the importance of functional safety is increasing in industries such as industrial automation and digital energy. The GD32H7 Software Test Library (STL) with its exceptional detection capabilities, can accurately identify random hardware faults in safety-critical components like CPUs, SRAM, and Flash. This helps users flexibly utilize the GD32H7 series of ultra-high performance MCUs in developing complex computations, multimedia technologies, edge AI, and other advanced applications, significantly reducing safety risks. And the GD32H7 STL can be widely applicable to various end-user scenarios and can guarantee the reliability and safety of industrial applications. Besides, the Software Test Library will also be compatible with the GD32MCU that uses the same Arm® Cortex® M7 core. Furthermore, GigaDevice is actively advancing the certification of Software Test Library based on Arm® Cortex® M4 and Arm® Cortex® M33 cores, with plans to release soon. The significant initiatives will further strengthen GigaDevice's technological advantages in functional safety and meet the safety needs of various industry applications.  Vincent Li, GigaDevice CTO and General Manager of MCU BU, stated: "GigaDevice is unwavering in the commitment to excellence in quality, adopting a quality policy that involves full employee participation and entire product lifecycle coverage. The industrial sector is an important strategic focus for us, where we place significant emphasis on the functional safety of products and applications. We are deeply appreciative to the professional team at TÜV Rheinland for their assistance and recognition. Obtaining IEC 61508 SC3 (SIL 2/SIL 3) certification is a significant milestone for GigaDevice in functional safety management. It will greatly enhance the safety and ease of developing industrial applications for our users. In the future, we plan to progressively integrate this international standard to a broader product line, continuously reinforcing the reliability of our products and software, while driving the advancement of industry functional safety standards."  Bin Zhao, General Manager Cybersecurity & Functional Safety Greater China of TÜV Rheinland stated: "Congratulations to GigaDevice for becoming the first Chinese semiconductor company to receive the TÜV Rheinland STL certification! As an international third-party certification organization with a 150-year history, TÜV Rheinland is dedicated to providing technical support for the quality and safety of products and systems. During the project, our technical experts conducted a comprehensive safety verification of the GD32H7 STL throughout its lifecycle with a meticulous and responsible approach. We are very pleased to see that GigaDevice has met international standards in functional safety. In the future, we will continue to strengthen our collaboration to enhance the safety and reliability of GigaDevice's products, aiming to build outstanding market competitiveness."
Key word:
Release time:2024-08-19 15:48 reading:533 Continue reading>>
Difference between Diode and Triode in PCBA manufacturing
  In printed circuit board assembly (PCBA) manufacturing, understanding the differences between diode and triode is crucial for designing efficient electronic circuits. Both components play essential roles in controlling the flow of electrical current, but they have distinct characteristics that determine their specific applications and functionalities.  Diode:Diode  A diode is a two-terminal electronic component that primarily allows current to flow in one direction while blocking it in the opposite direction. Here are key characteristics and uses of diodes in PCBA manufacturing:  1. Functionality: Diodes are used for rectification, converting AC (Alternating Current) to DC (Direct Current). They ensure that current flows in only one direction, preventing reverse polarity which can damage sensitive components.  2. Types: Common types include:  – Rectifier Diodes: Used in power supplies to convert AC to DC.  – Zener Diodes: Maintain a constant voltage for regulation.  – Light-Emitting Diodes (LEDs): Emit light when current flows through them, used for indicators and displays.  3. Applications: Diodes are found in almost all electronic circuits:  – Power supplies  – Signal demodulation  – Overvoltage protection  – Voltage regulation  Triode (Transistor):Triode  A triode, also known as a transistor, is a three-terminal semiconductor device that amplifies or switches electronic signals and electrical power. Here are the key characteristics and uses of triodes in PCBA manufacturing:  1. Functionality: Triodes can amplify current, acting as switches or amplifiers depending on the configuration:  – Bipolar Junction Transistors (BJTs): Amplify current and are used for analog circuits.  – Field-Effect Transistors (FETs): Control current flow with an electric field, used in digital circuits.  2. Types: Different types cater to specific applications:  – NPN and PNP BJTs: Common bipolar transistor types.  – MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors): High-speed switching in digital circuits.  – JFETs (Junction Field-Effect Transistors): Used in amplifiers and analog switches.  3. Applications: Triodes are essential in modern electronics:  – Amplifiers in audio systems  – Switching circuits in digital logic gates  – Oscillators in radio frequency applications  – Drivers for motors and relays  Comparison– Function: Diodes primarily control current direction, whereas triodes amplify or switch currents.  – Configuration: Diodes are two-terminal devices, while triodes (transistors) have three terminals: emitter, base, and collector.  – Applications: Diodes are crucial for power supply and signal processing, while triodes are fundamental in amplification and digital switching.  In conclusion, while diodes and triodes are both essential components in PCBA manufacturing, their distinct functionalities and applications make them suitable for different roles within electronic circuits. Understanding their differences is key to designing and assembling efficient and reliable electronic devices.
Key word:
Release time:2024-08-16 14:24 reading:258 Continue reading>>

Turn to

/ 225

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
model brand To snap up
BU33JA2MNVX-CTL ROHM Semiconductor
TPS63050YFFR Texas Instruments
ESR03EZPJ151 ROHM Semiconductor
BP3621 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
STM32F429IGT6 STMicroelectronics
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.