Magnetoelectric RAM Slashes Energy

发布时间:2017-08-24 00:00
作者:Ameya360
来源:R. Colin Johnson
阅读量:1094

  A team of Russian and French researchers bonded a piezoelectric material to magneto-elastic magnetoelastic layers of a terbium-cobalt alloy (TbCo2) and an alloy of iron and cobalt (FeCo) to create a nonvolatile memory architecture that could decrease the required read/write energy of traditional memories by a factor of 10,000 or more.

  The key to achieving the ultralow-power magnetoelectric RAM (MELRAM), according to the researchers, was to abandon giant magnetoresistive stacks and magnetic tunnel junctions. The demonstration architecture instead relies on magnetoelectric interactions for readout of the information coded in the magnetic subsystem when an electric field is applied, accomplished via a composite multiferroic heterostructure using piezoelectrically stress-mediated magnetoelectronics.

  The downside is that reading destroys the memory state, which must be rewritten after each read, the researchers report in “Magnetoelectric write and read operations in a stress-mediated multiferroic memory cell.” Despite that drawback , the American Institute of Physics published the researchers’ results in the peer-reviewed Applied Physics Letters because achievement of a 10,000x reduction in energy would outweigh the necessity of rewriting after each read. In fact, the authors claim that 99 percent of the consumed power of today’s memory systems is wasted in the form of heat.

  In more detail, because the material is anisotropic, when the read/write voltage is applied to the memory cell the piezoelectric layer deforms, setting either a 1 or 0 depending on polarity (see illustration). When a read current is applied, the resulting voltage reveals whether the state is a 1 or a 0, but the bit state is destroyed during reading.

  All operations in the demonstration chip were performed at room temperature. The millimeter-sized demonstration cell can be scaled down to the size of traditional RAM cells, according to the researchers.

  The collaborators hailed from the University of Valenciennes (France); the Moscow Institute of Physics and Technology (MIPT); the Moscow Technological University (MIREA); the Kotelnikov Institute of Radio Engineering and Electronics (IRE) of the Russian Academy of Sciences (RAS); and the International Associated Laboratory of the Critical and Supercritical Phenomena in Functional Electronics, Acoustics, and Fluidics (Moscow). The principal investigator was Sergei Nikitov, who is deputy head of MIPT’ s Section of Solid State Physics, Radiophysics, and Applied Information Technologies; a corresponding member of RAS; and the director of IRE RAS.

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
MC33074DR2G onsemi
型号 品牌 抢购
BP3621 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
ESR03EZPJ151 ROHM Semiconductor
TPS63050YFFR Texas Instruments
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码