2018 IEEE IEDM to showcase breakthrough in semiconductor technology

发布时间:2018-08-20 00:00
作者:Ameya360
来源:electroiq
阅读量:923

The 64thannual IEEE International Electron Devices Meeting (IEDM), the world’s largest, most influential forum for technologists to unveil breakthroughs and new concepts in transistors and related micro/nanoelectronics devices, will be held December 1-5, 2018 at the Hilton San Francisco Union Square hotel. The late-news submission deadline is September 10.

The IEDM’s tradition of spotlighting more leading work in more areas of the field continues, even as the conference evolves to support the interdisciplinary and continuing educational needs of the scientists, engineers and students whose efforts make possible the expansion of the worldwide electronics industry.

“We live in a time when electronics technology touches more aspects of business and industry than ever before,” said Kirsten Moselund, IEDM 2018 Publicity Chair and Research Staff Member at IBM Research–Zurich. “No matter what their specialty is, attendees will come away from the conference with a deeper understanding of the challenges and opportunities before them.”

“In terms of industrial applications, the evening panel session on EUV will give attendees the opportunity to explore and debate this emerging technology with the very people who are driving it forward,” said Rihito Kuroda, IEDM 2018 Publicity Vice Chair and Associate Professor at Tohoku University. “This is just one way in which the IEDM conference gives people insights into the technologies that will become mainstream in a few years.”

Here are details of some of the talks and events that will take place at this year’s IEDM. The papers to be presented in the technical sessions will be chosen in late September and highlights from them will be forthcoming soon thereafter:

Focus Sessions

  • Quantum Computing – Quantum computing will enable new types of algorithms to tackle problems in areas from materials science to medicine to artificial intelligence. We are still in early stages, facing fundamental questions such as: What is the best way to implement a quantum bit of information? How to connect them together? How to scale to larger systems without being overwhelmed by errors? This session brings together experts at the forefront of quantum computing research. Starting from an applications perspective, attendees will hear about different approaches to address fundamental questions at the device level; the progress achieved so far; and next steps.

  • Application Requirements for Quantum Computing, John Preskill, Caltech

    Materials and Device Challenges for Near-Term Superconducting Quantum Processors, Jerry Chow, IBM

    Towards Scalable Silicon Quantum Computing, Maud Vinet, CEA-Leti

    Silicon Isotope Technology for Quantum Computing, Kohei Itoh, Keio University

    Qubit Device Integration Using Advanced Semiconductor Manufacturing Process Technology, Ravi Pillarrisetty, Intel

    Scalable Quantum Computing with Single Dopant Atoms in Silicon, Andrea Morello, Univ. New South Wales

      Majorana Qubits, Leo Kouwenhoeven, Microsoft

  • Future Technologies Towards Wireless Communications: 5G and Beyond– 5G technology will drastically reduce limitations on accessibility, bandwidth, performance, and latency, but as it triggers fundamentally new applications it also will impose unique hardware requirements. This focus session will set a big picture view and then narrow down to how innovations in CMOS technologies, devices, filters, transceivers and antennas are coming together to enable the 5G platform.

  • Intel 22nm FinFET (22FFL) Process Technology for RF and mmWave Applications and Circuit Design Optimization for FinFET Technology, Hyung-Jin Lee, Intel

    RFIC/CMOS Technologies for 5G, mmWave and Beyond, Ali Niknejad, UC Berkeley

    GaN HEMTs for 5G Base Station Applications, Shigeru Nakajima, Sumitomo Electron Devices

    Highly Integrated mm-Wave Transceivers for Communication Systems,Vadim Issakov, Infineon

    BAW Filters for 5G Bands, Robert Aigner, Qorvo

    Reconfigurable Micro/Millimeter-wave Filters, Dimitrios Peroulis, PurdueChallenges for Wide Bandgap Device Adoption in Power Electronics– Wide bandgap (WBG) power devices offer potential savings in both energy and cost. But converters powered by WBG devices require innovation at all levels, entailing changes to system design, circuit architecture, qualification metrics and even market models. Can SiC or GaN push beyond what silicon can possibly achieve? What are the big challenges researchers should answer over the next decade? A team of experts will interpret the landscape and discuss challenges to the widespread adoption of these technologies.

    GaN and SiC Devices for Automotive Applications, Tetsu Kachi, Nagoya University

    SiC MOSFET for Mainstream Adoption, Peter Friedrichs, Infineon

    GaN Power Commercialization with Highest Quality-Highest Reliability 650V HEMTs- Requirements, Successes and Challenges, Primit Parikh, Transphorm

    The Current Status and Future Prospects of SiC High Voltage Technology, Andrei Mihaila, ABB

    Barriers to Wide Bandgap Semiconductor Device Adoption in Power Electronics, Isik Kizilyalli, ARPA-E

    High to Ultra-High Voltage SiC Power Device Technology, Yoshiyuki Yonezawa, AIST

    Effects of Basal Plane Dislocations on SiC Power Device Reliability, Robert E. Stahlbush, Naval Research Laboratory

  • Interconnects to Enable Continued Technology Scaling –BEOL copper (Cu) interconnects are close to end-of-life as a manufacturing technology, while the increasing complexity of MEOL processes requires novel materials. Also, the end of the Cu roadmap will coincide with significant changes in the dominant transistor architecture, and therefore the interaction between transistor architecture and interconnect will drive future interconnect development. This session provides a holistic perspective of interconnect scaling challenges and solutions. It will address the drivers of future interconnect architectures, the process options likely to be implemented in manufacturing, and how they will be tuned to ensure circuit reliability is maintained.

  • Interconnect Design and Technology Optimization for Conventional and Exotic Nanoscale Devices: A Physical Design Perspective, Naeemi, Georgia Tech

    Mechanisms of Electromigration Damage in Cu Interconnects, K. Hu, IBM

    Interconnect Metals Beyond Copper: Reliability Challenges and Opportunities, K. Croes, Imec

    Microstructure Evolution and Effect on Resistivity for Cu Nano-interconnects and Beyond, Paul Ho, UT Austin

    Integrating Graphene into Future Generations of BEOL Interconnects,-S. Philip Wong, Stanford

    Interconnect Trends for Single Digit Nodes, Mehul Naik, Applied Materials

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
Revenue Growth in China's Semiconductor Industry Would Slow Down to 16.2% in 2019 due to Pessimistic
  According to the latest report by TrendForce - Breakdown Analysis of China’s Semiconductor Industry, the outlook for China’s semiconductor industry has been tampered since the second half of 2018 due to pessimistic economy worldwide and uncertainties brought by the China-U.S. trade war, although the industry managed to reach a total revenue of over 600 billion RMB in 2018. Looking ahead to 2019, the revenue of China's semiconductor industry is expected to reach RMB 729.8 billion, but the annual growth rate would slow down to 16.20%, the lowest in the past five years.  According to Jeter Teo, Research Director at TrendForce, there would be several challenges for China's semiconductor industry in the coming year, including the global economic slowdown, the overall weak demand, the negative growth in global smartphone production volume, as well as the continued trade conflicts between China and the United States.  However, as the Chinese government continues to seek self-sufficiency of chips and aims at reducing its dependence on foreign companies, the domestic semiconductor industry will keep growing. On the other hand, new applications will trigger increasing demand for semiconductors, driven by emerging technologies like AI, 5G, autonomous driving, electric vehicles, CIS, biometric recognition, Internet of Things, and edge computing.  It is worth noting that, recent years have seen the rise of China's domestic IC design industry, which has played a key role in leading the development of China's semiconductor industry. The industrial structure has continued to be optimized as well. For 2019, the sector of IC design is expected to account for 40.62% of China's semiconductor industry, while IC manufacturing would account for 28.68%, IC testing and packaging would take about 30.7%.  On the other hand, TrendForce’s data show that key sectors of the semiconductor industry are expected to register continued growth in revenue, with the growth rate of IC manufacturing reaching 18.58%, higher than 17.86% of IC design and 12% of IC testing and packaging. More than 10 new fabs for 12-inch wafer will enter production in China in 2019, while some 8-inch wafer fabs and the power semiconductor sector anticipate production expansion.
2019-01-25 00:00 阅读量:4190
Demand for xEV Batteries Grow Steadily, but Chinese xEV Battery Market Faces Reshuffle as Subsidies Phase Out
  According to the latest research by EnergyTrend, a division of TrendForce, the market of new energy vehicle will continue to grow steadily, driving the demand for xEV batteries, despite the slowdown in global automotive market since 2018. The global demand for lithium-ion batteries used in new energy passenger cars is estimated to reach 155GWh in 2019, a growth of 63% from 95GWh in 2018.  According to Duff Lu, senior research manager of EnergyTrend, China has become the world's fastest-growing market for new energy vehicles driven by the government’s subsidies and supporting policies. After a rapid growth in 1H18, the shipments of new energy cars in China slowed down in 2H18, moderating the demand in the xEV battery industry as well. However, with increasing penetration of new energy vehicles, the demand for lithium-ion batteries used in new energy passenger cars in China will grow to 54GWh in 2019, a growth of nearly 80% from 30GWh in 2018.  In terms of supply, the production capacity of xEV battery in China has surpassed 134GWh by the end of 2018, and has a chance to reach 164GWh in 2019. Amid the oversupply and phasing out of subsidies from the Chinese government, the industry has been faced with a reshuffle since the second half of 2018. Major manufacturers have grown stronger at the expense of the demise of smaller companies. Leading players like Contemporary Amperex Technology (CATL) and BYD continue to expand, while less competitive ones who rely too much on regional markets, such as OptimumNano Energy, may have to exit the market during the market reshuffle.  EnergyTrend expects that, with new capacity entering operation in 2019, the xEV battery industry will become more concentrated. The top five battery manufacturers would continue to grow and become the major suppliers. Subsidies from the Chinese government will be phased out by 2020, but before that, the industry will still depend on the subsidies to cover their R&D costs for advanced battery technologies. Manufacturers need to continue the development of high energy density solutions, building up competitiveness, before the electric vehicle market enters the maturity stage.
2019-01-25 00:00 阅读量:4634
Semiconductor Unit Shipments Exceeded 1 Trillion Devices in 2018
  Semiconductor units forecast to increase 7% in 2019 with IC units rising 8%, O-S-D units growing 7%.  Annual semiconductor unit shipments, including integrated circuits and optoelectronics, sensors, and discrete (O-S-D) devices grew 10% in 2018 and surpassed the one trillion unit mark for the first time, based on data presented in the new, 2019 edition of IC Insights’ McClean Report—A Complete Analysis and Forecast of the Integrated Circuit Industry. As shown in Figure 1, semiconductor unit shipments climbed to 1,068.2 billion units in 2018 and are expected to climb to 1,142.6 billion in 2019, which equates to 7% growth for the year.  Starting in 1978 with 32.6 billion units and going through 2019, the compound annual growth rate for semiconductor units is forecast to be 9.1%, a very impressive growth figure over 40 years, given the cyclical and often volatile nature of the semiconductor industry.Figure 1  Over the span of just four years (2004-2007), semiconductor shipments broke through the 400-, 500-, and 600-billion unit levels before the global financial meltdown caused a big decline in semiconductor unit shipments in 2008 and 2009.  Unit growth rebounded sharply with 25% growth in 2010, which saw semiconductor shipments surpass 700 billion devices. Another strong increase in 2017 (12% growth) lifted semiconductor unit shipments beyond the 900-billion level before the one trillion mark was achieved in 2018.  The largest annual increase in semiconductor unit growth during the timespan shown was 34% in 1984, and the biggest decline was 19% in 2001 following the dot-com bust.  The global financial meltdown and ensuing recession caused semiconductor shipments to fall in both 2008 and 2009; the only time that the industry experienced consecutive years in which unit shipments declined.  The 25% increase in 2010 was the second-highest growth rate across the time span.  The percentage split of total semiconductor shipments is forecast to remain heavily weighted toward O-S-D devices in 2019 (Figure 2).  O-S-D devices are forecast to account for 70% of total semiconductor units compared to 30% for ICs.  This percentage split has remained fairly steady over the years.  In 1980, O-S-D devices accounted for 78% of semiconductor units and ICs represented 22%.  Many of the semiconductor categories forecast to have the strongest unit growth rates in 2019 are those that are essential building-blocks for smartphones, automotive electronics systems, and devices that are used in computing systems essential to artificial intelligence, “big data,” and deep learning applications.Figure 2
2019-01-24 00:00 阅读量:4129
Despite concern, large TFT LCD panel shipments increase
  Global shipments of large thin-film transistor (TFT) liquid crystal display (LCD) panels rose again in 2018 despite concerns of over-supply in the market. In particular, area shipments increased by 10.6 percent to 197.9 million square metres compared to the previous year, driven by TV and monitor panels, according to IHS Markit.  Fierce price competition in large 65 and 75-inch display panels was ignited as Chinese panel maker BOE started the mass production of the panels in 2018 at its B9 10.5-generation facility. “With BOE operating the 10.5-generation line, panel makers have become more aggressive on pricing since early 2018 to digest their capacity,” said Robin Wu, principal analyst at IHS. “Large panels are still more profitable than smaller ones.”  Rising demand for gaming-PC and professional-purpose monitors boosted shipments of high-end, large panels. “Some panel makers have allocated more monitor panels to the fab, replacing existing TV panels, to make up for poor performance of that business,” Wu said.  Demand for other applications, which include public, automotive and industrial displays, recorded the highest growth rates of 17.5 percent by area and 28.6 percent by unit. “Panel makers view these applications as a new cash cow that can compensate for the sharp price erosion in main panels for TVs, monitors and notebook PCs,” Wu said.  LG Display led the area shipments of large display panels, with a 21 percent share in 2018, followed by BOE (17 percent) and Samsung Display (16 percent). BOE boasted the largest unit-shipment share of 23 percent, followed by LG Display (20 percent) and Innolux (17 percent), according to the Large Area Display Market Tracker by IHS Markit.  Large TFT LCD panel shipment growth is expected to continue in 2019. The preliminary forecast for unit shipments of three major products indicates that panel makers will continue to focus on the monitor and notebook PC panel businesses, increasing shipments by 5.3 percent and 6.6 percent, respectively, over the year, while shipments of TV panels are forecast to grow just 2.6 percent.  In 2019, three new 10.5-generation fabs – ChinaStar’s T6, BOE’s second fab and Foxconn/Sharp’s Guangzhou line – are expected to start mass production. All of them are assigned to manufacture TV panels, further boosting TV panel supply. “As the TV panel business is predicted to remain tough, panel makers, who enjoyed relatively better outcomes with monitor and notebook PC panels in 2018, will likely focus on the IT panel businesses,” Wu said.
2019-01-24 00:00 阅读量:1895
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
CDZVT2R20B ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
TL431ACLPR Texas Instruments
MC33074DR2G onsemi
BD71847AMWV-E2 ROHM Semiconductor
型号 品牌 抢购
ESR03EZPJ151 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
BU33JA2MNVX-CTL ROHM Semiconductor
BP3621 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。