一直以来,芯片都是不少科技公司研发的重点,尤其在芯片市场竞争异常火热的今天。
芯片研发周期长、成本高,重度依赖设计,优秀的芯片设计师非常稀缺,基本都被几家老牌芯片大厂垄断,后起之秀很难在短期内挖到足够的资深设计师。
随着技术的不断升级,AI 的作用也越来越重要,很多科技企业都在对 AI 进行不断的投入研发。近日,Google AI 负责人 Jeff Dean 和谷歌研究部门、谷歌芯片实现和基础设施团队共同撰写了一篇论文,论文中描述了一种基于学习的芯片设计方法,并声称可以平均在 6 个小时内完成芯片的设计。
该论文的发布,意味着片上晶体管的放置可以在很大程度上实现自动化。如果技术成果可以公开发表,那么这项技术可以让资金紧张的初创公司开发出自己的芯片,用来进行人工智能或其他行业的研究应用。此外,该技术还可以帮助缩短芯片的设计周期,使硬件能够更好地适应理论研究的快速发展。
Jeff Dean 在去年年底的一次采访中曾透露过这一项技术,并介绍到"从你想要的设计,到实际将其铺设在芯片上,并在面积、功率和线长等方面有适当的限制,满足所有的设计或制造过程,这是一个持续很长时间的过程,而我们基本上设计出了一款机器学习模型,它可以学习如何为一个特定的芯片进行元件布局。"
该 AI 模型的方法旨在将逻辑门、存储器和更多的网格图放置到芯片画布上,从而使设计在遵守放置密度和路由拥塞限制的同时,优化功耗、性能和面积(PPA)。图谱的大小从几百万到几十亿个节点组成的集群不等,通常情况下,评估目标指标需要数小时到一天以上的时间。
Jeff Dean 提到,数十年来,推动计算技术发展的基本思想是:给要解决的问题匹配足够的算力。问题越大,算力越大。但当我们进入 AI 时代后突然发现,算力并没有那么重要了。
事实证明,AI/ML 不需要典型的 CPU/GPU 的复杂功能,所需的数学运算也更简单,而且要求的精度也低很多。
事实证明,AI 在设计芯片方面天赋异禀。AI 设计芯片的水平越来越高,完全自动化地布置芯片上晶体管也毫无压力。现在,AI 设计芯片平均只需要 6 个小时。而同样的活儿,人工做要花费几周时间。
研究人员将逻辑门和存储器组成的芯片网表放在一个芯片画布上,这样就可以一目了然地优化设计中的功耗、性能和面积(PPA),同时遵守对布置密度和走线阻塞的限制。这些网表大小不等,由成千上万个集群中的数百万到数十亿个节点组成,通常,评估达成目标需要花费几个小时到一天以上的时间。
研究人员设计了一个框架,指导 AI 智能体进行强化学习训练,来优化芯片的布置位置。(强化学习通过奖励政策来刺激 AI 智能体完成目标,在这种情况下,AI 智能体会根据奖励最大化的情况进行布置。)
根据芯片网表,当前节点的 ID,以及网表和半导体技术的元数据,一个政策 AI 模型会在可用的布置位置上输出一个概率分布,而价值模型则对当前布置的预期报酬做出估计。
就这样,从一个空芯片开始,AI 智能体完成网络列表,然后按顺序布置组件。最终 AI 智能体会收到系统的奖励。为了引导 AI 智能体先选择布置哪些组件,组件按降序大小排列; 先布置较大的组件,会减少以后无法布置组件的可能性。
培训 AI 智能体,需要创建一个包含 10,000 个芯片布置情况的数据集,其中输入与给定布置相关的状态,标签是布置相对应的奖励(即,线路长度和阻塞)。研究人员首先挑选了 5 个不同的芯片网表,然后应用 AI 算法为每个网络列表创建 2000 个不同的布置位置。
在实验中,研究人员报告说,在越多的芯片上训练框架,就能够越快地进行训练,产生更高质量的结果。他们声称,与主流芯片相比,谷歌 TPU (人工智能加速器芯片)的产品实现了更好的 PPA。
研究人员得出结论,现有的方法总是从零开始优化每个新芯片布置位置,我们的工作利用了先前布置芯片所积累的知识,随着时间的推移训练效果变得越来越好。
在线留言询价
型号 | 品牌 | 询价 |
---|---|---|
MC33074DR2G | onsemi | |
BD71847AMWV-E2 | ROHM Semiconductor | |
CDZVT2R20B | ROHM Semiconductor | |
RB751G-40T2R | ROHM Semiconductor | |
TL431ACLPR | Texas Instruments |
型号 | 品牌 | 抢购 |
---|---|---|
BU33JA2MNVX-CTL | ROHM Semiconductor | |
ESR03EZPJ151 | ROHM Semiconductor | |
IPZ40N04S5L4R8ATMA1 | Infineon Technologies | |
STM32F429IGT6 | STMicroelectronics | |
BP3621 | ROHM Semiconductor | |
TPS63050YFFR | Texas Instruments |
AMEYA360公众号二维码
识别二维码,即可关注