AMEYA360:纳芯微GaN HEMT驱动芯片NSD2017助力解决激光雷达应用挑战

发布时间:2024-07-17 13:10
作者:AMEYA360
来源:网络
阅读量:329

  自动驾驶是新能源汽车智能化的重要发展方向,而具备强感知能力的激光雷达则是L2+及以上级别自动驾驶不可或缺的硬件设备。纳芯微的单通道高速栅极驱动芯片NSD2017,专为激光雷达发射器中驱动GaN HEMT(高电子迁移率晶体管)而设计,助力应对激光雷达应用中的各项挑战。

  1)激光雷达系统结构介绍

  自动驾驶中使用的激光雷达通常采用DToF(Direct Time-of-Flight)测距方式,即通过直接测量激光的飞行时间来进行距离测量和地图成像。下图为DToF激光雷达系统的典型结构,其中信号处理单元通过记录激光发射器发出光脉冲的时刻,以及激光接收器收到光脉冲的时刻,根据时间间隔和光速即可计算出目标距离。

AMEYA360:纳芯微GaN HEMT驱动芯片NSD2017助力解决激光雷达应用挑战

  激光雷达为了实现高分辨率与宽检测范围,需要极窄的激光脉冲宽度、极快的激光脉冲频率和极高的激光脉冲功率,这对激光发射器中功率开关器件的性能提出了更高的要求。相比传统的Si MOSFET,GaN HEMT具有更优越的开关特性,非常适合DToF激光雷达应用。GaN HEMT的性能表现依赖于高速、高驱动能力和高可靠性的GaN栅极驱动芯片,NSD2017凭借其优异的产品特性,充分发挥了GaN HEMT在激光雷达中的优势。

  2)NSD2017产品特性

  - 推荐工作电压:4.75V~5.25V

  - 峰值拉灌电流:7A/5A

  - 最小输入脉宽: 1.25ns

  - 传输延时: 2.6ns

  - 脉宽畸变: 300ps

  - 上升时间@220pF负载: 650ps

  - 下降时间@220pF负载: 850ps

  - 封装:DFN6(2mm*2mm),WLCSP(1.2mm*0.8mm)

  - 满足AEC-Q100车规认证

  - 同相和反相输入引脚可用于产生极窄脉宽

  - 具备UVLO、OTSD保护

AMEYA360:纳芯微GaN HEMT驱动芯片NSD2017助力解决激光雷达应用挑战

  3) NSD2017关键性能应对激光雷达应用挑战

  1. 大电流驱动能力,支持激光雷达远距离探测

  激光雷达的远距离探测能力使自动驾驶车辆能够提前发现障碍物并及时避让,从而提升自动驾驶速度上限。为实现更远的探测距离,通常需要在保证不损伤人眼的前提下,采用更大功率的激光发射器,这就需要更大电流的GaN HEMT以及驱动能力更高的驱动芯片。纳芯微的NSD2017具备7A峰值拉电流和5A灌电流能力,可用于驱动大电流GaN HEMT,从而产生高峰值激光功率,实现远距离探测。

  2. 极窄输入脉宽,满足激光雷达高测距精度要求

  DToF激光雷达通过测量脉冲激光发射和接收的时间间隔来实现测距,但是如果来自两个相邻目标的反射光脉冲发生重叠,系统将无法分辨出这两个相邻目标的距离信息。为了满足厘米级别的距离分辨率的要求,激光雷达需要极窄的光脉冲宽度,通常低至几纳秒,并且具有快速的上升沿和下降沿。NSD2017的最小输入脉宽典型值仅为1.25ns,且开启和关断路径具有优异的延迟匹配,输入到输出的脉冲宽度失真低至300ps。此外在220nF负载下,NSD2017的上升时间典型值为650ps,下降时间典型值为850ps,也有利于产生更窄的脉冲激光。

AMEYA360:纳芯微GaN HEMT驱动芯片NSD2017助力解决激光雷达应用挑战

  3. 小封装和高频开关,优化激光雷达角分辨率与点频性能

  激光雷达的角分辨率表示扫描过程中相邻两个激光点之间的角度差,点频则表示在三维视场内每秒发出的激光点数。一般来说,激光雷达的角分辨率越小,相邻点云之间越密集,往往点频越高,激光雷达的感知能力也就越强。为实现更高的角分辨率和点频,激光雷达需要布置更多的激光发射器,因而对驱动芯片的封装尺寸提出了更高的要求。NSD2017车规级芯片不但提供DFN (2mm*2mm) 封装,还可以提供更小尺寸的WLCSP (1.2mm*0.8mm) 封装。NSD2017支持最高60MHz开关频率,传输延时典型值低至2.6ns,确保了系统控制环路具有足够快的响应时间,也有利于提高激光雷达点频性能。

AMEYA360:纳芯微GaN HEMT驱动芯片NSD2017助力解决激光雷达应用挑战

  4. 强抗干扰能力,保证激光雷达的安全可靠

  在激光发射器中,为了快速开关GaN HEMT,栅极驱动芯片外部的栅极串联电阻通常设置为零;栅极驱动芯片的峰值拉电流和灌电流,会通过芯片的封装寄生电感和PCB寄生电感,引起芯片内部的VDD和GND产生较大的抖动,从而可能导致驱动电路工作异常。NSD2017通过优化封装寄生电感,并且在芯片内部集成去耦电容,有效地滤除驱动电路抽载产生的高压毛刺,从而提升了抗噪声能力。此外,NSD2017具备过温保护和欠压保护功能,保证激光雷达安全可靠地工作。

  4)总结

  GaN HEMT栅极驱动芯片NSD2017具备高开关频率、低传输延时、极窄脉宽、低失真、强驱动能力和抗干扰等特性,采用小尺寸车规级封装,能够助力应对激光雷达各项应用挑战,提升感知能力,确保其安全可靠运行。

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
纳芯微出席第十四届电动汽车标准法规研讨会,以模拟芯片创新赋能汽车电气化
  2024年8月14-15日,由中国汽车技术研究中心有限公司中国汽车标准化研究院主办、东风汽车集团有限公司研发总院联合主办的第十四届电动汽车标准法规研讨会在武汉召开。来自国内外整车企业、零部件企业、检测机构、科研机构及高校等单位的近300位专家参加了本次会议。  纳芯微技术市场经理谭园应邀出席会议,并以“汽车电气化浪潮下模拟芯片的演进趋势”为话题发表演讲,向与会嘉宾分享了纳芯微模拟芯片技术创新如何赋能汽车电气化。  纳芯微技术市场经理谭园应邀出席会议并发表演讲  汽车电气化不仅改变了汽车的动力形式,也深刻影响了汽车的电子电气架构和功能。芯片作为汽车电气化的核心,其需求量正不断提升。据统计,一辆新能源汽车平均使用1500多颗芯片,是传统燃油车芯片用量的两倍;另一方面,越来越高压化的电驱动系统也对芯片性能提出了新的要求:更高的功率密度、更高的功能安全等级、更可靠的抗扰能力、更优化的系统成本…这些新的要求为汽车芯片发展带来挑战的同时,也创造了巨大的机遇。  纳芯微汽车电子解决方案总览  凭借在汽车领域的深耕细作,纳芯微已实现了全面的汽车芯片产品布局,可在新能源汽车主驱逆变器控制、车载充电机(OBC)、直流充电机(DC-DC)、电池管理系统(BMS)以及热管理系统中提供涵盖传感器、信号链、电源管理等完善的芯片产品,包括数字隔离器、隔离驱动、隔离采样、传感器、接口、高低边开关、电子保险丝、固态继电器、电机驱动、高集成度的SoC等,以一站式解决方案支持客户的系统创新。  此外,纳芯微还积极推动中国汽车芯片高质量发展。作为汽车芯片标准体系建设研究工作单位之一,纳芯微也积极参与《汽车芯片环境及可靠性通用规范》、《电动汽车用功率驱动芯片技术要求及试验方法》、《汽车LIN收发器芯片技术要求及试验方法》等多项国家标准、行业标准的起草和修订,与行业伙伴共同推动汽车电子等行业的质量提升和技术创新。面向国际,纳芯微也积极融入全球产业生态,加入AEC(Automotive Electronics Council)汽车电子委员会,成为AEC组件技术委员会成员,与国际权威标准组织的对接将助力纳芯微进一步提高车规级芯片研发和质量管控能力。  2024年上半年,纳芯微汽车电子领域收入占比33.51%,出货量达1.33亿颗,汽车客户覆盖所有主流新能源车企和Tier-1供应商。谭园表示,纳芯微致力于成为汽车产业首选的供应链合作伙伴,以系统级理解、整体解决方案、多年车规芯片量产经验和稳定的质量表现,助力汽车客户提升差异化竞争力,共赢市场机遇,共赴绿色可持续的电动化未来。
2024-08-23 13:01 阅读量:354
全链国产,全系覆盖,全面认证!纳芯微高边开关系列重磅发布!
  纳芯微今日宣布推出高边开关产品系列NSE34XXXS/D/Q和NSE35XXXS/D,其具备行业领先的带载能力和完善可靠的诊断保护功能,适用于驱动车身BCM等系统中各类传统的阻性、感性和卤素灯负载,同时也充分适配区域控制器ZCU中一/二级配电下常见的大容性负载。  产品亮点  •依托全国产化自主可控供应链设计和制造,在单车用量最大的汽车模拟芯片品类上,实现“全链国产”。  •提供1/2/4通道选择,提供同时兼容PSSO-16/PSSO-14的封装选择,导通电阻范围横跨8mΩ至140mΩ,满足“全系覆盖”。  •符合AEC-Q100-012短路可靠性能力Grade A、ISO7637/ISO16750、CISPR25-2021 Class 5等多种测试要求,完成“全面认证”。  产品能力详解  电流/通道/封装 — 灵活可选  纳芯微推出的高边开关系列提供1/2/4通道选择,导通电阻范围为8mΩ至140mΩ。客户可以根据不同负载大小灵活选择最适合的产品,从而优化系统性能和可靠性。  阻/容/感各类负载 — 轻松应对  ◆ 阻性负载:额定通流带载能力  高边开关应用中,芯片的额定通流能力是选型的最重要考量之一,其本质是考验高边开关芯片的自身阻抗大小及封装散热能力。阻性负载,如座椅加热中的电阻丝,对芯片的额定通流能力有明确的指标要求。以下汇总了纳芯微高边开关各产品型号的额定负载性能参数(测试环境:TA=85℃):  ◆ 容性/卤素灯负载:浪涌电流应对能力  在汽车系统中,启动容性负载和冷态卤素灯时常会面临高浪涌电流的严峻挑战。纳芯微高边开关系列凭借业内领先的过流保护能力,能够有效应对各种浪涌电流。以NSE35系列为例,以下是其能够稳定驱动的容性负载大小和卤素灯类型(TA=-40℃)  ◆ 感性负载:过压钳位保护能力  电磁阀、雨刮器、继电器等感性负载也是汽车电子系统中常见的负载类型。在感性负载关断时,由于路径上需要续流,高边开关的输出会出现几十伏、甚至更大的与感性负载退磁能量正相关的负电压,这会给内部功率MOSFET的漏-源极带来巨大的电应力。如果无过压保护措施,功率MOSFET可能会面临损坏的风险。因此,纳芯微高边开关全系集成了针对感性负载的过压钳位保护,以确保在各种应用场合下系统的稳定安全运行。  可靠性/电磁兼容性 — 饱和验证  纳芯微高边开关通过了一系列应用方面的测试,可确保该产品系列在各种场景下的稳定性和可靠性,包括但不限于:  •符合AEC-Q100标准的车规可靠性测试要求  •符合AEC-Q100-006标准的车规可靠性加严测试要求  •符合AEC-Q100-012标准的开关器件短路测试要求:短路寿命大于一百万次,达到Grade A  •符合ISO 7637/ISO 16750标准的电源瞬态抗干扰测试要求  •符合CISPR 25-2021 Class 5标准的EMI测试要求  车身域控制器应用的未来,纳芯微与您同行!在现代汽车的电气化和智能化进程中,车身域控制器作为核心模块,扮演着愈发重要的角色。  从供电管理到功率驱动,纳芯微可为客户提供包括高边开关在内的完整车身域控制器半导体解决方案,覆盖各个关键环节,实现了智能配电与功能整合,支持灵活的软件配置和整车智能诊断,助力汽车客户在智能化发展道路上稳步前行!
2024-08-19 14:59 阅读量:354
纳芯微电子:电容隔离器件的隔离失效模式
  电容式隔离产品(如隔离器、隔离放大器、隔离电源产品等)是将输出端与输入端隔离的器件,能够避免两个系统之间出现非预期的直接和瞬态电流,同时确保可以正确地传输信号和功率。例如,隔离器可以转换不同参考电平的信号,保护敏感控制模块免受高电压的影响,并在发生电气故障时最大限度减小故障影响范围。对于此类隔离产品,隔离屏障失效可能导致系统故障,并对操作人员的安全构成潜在威胁。因此,我们将探讨隔离失效模式的作用机制,以及容隔器件的推荐应用方式以避免发生隔离失效。  1. 隔离失效模式的作用机制  1.1.电容隔离器的结构  图1显示了一个串联电容隔离器的结构。其中,不同裸片上各配置一个串联隔离电容器,同时厚度超过28μm的SiO2隔离介质可以实现加强绝缘。与其他绝缘材料(如环氧树脂、聚酰亚胺等)相比,SiO2具有高可靠性和高介电强度等优点。  根据电容隔离器的结构,本文探讨了两种可能的失效模式,帮助用户了解隔离失效的原因。  1.2. 失效模式1:隔离屏障两端过压  第一种失效模式为隔离屏障两端过压,如图2(a)所示。当施加在隔离侧的电压超过隔离耐受电压时,就会发生该种失效。图2(b)为第一种隔离失效模式的图片。  在破坏性试验中,在绝缘电压VISO=13kVrms的条件下,依据UL1577对NSI1300D25样片进行了试验。由于电气过应力,隔离电容器被损坏并发生短路。为了避免发生此类失效,建议选择满足系统电压等级并具备足够裕量的隔离产品。纳芯微电容隔离产品具备业界领先的隔离性能。由于具备更高裕量,该类产品能够帮助用户进一步降低发生失效模式1的风险。  1.3. 失效模式2:隔离器一侧高功率  第二种失效模式是隔离器一侧发生高功率,如图3(a)所示。在安全限值(即工作条件的边界范围)内,即使功能丧失,仍能保持绝缘性能。当隔离器在超出安全限值的工况下工作时,会发生第二种失效模式,比如短路、过度静电放电(ESD)和功率晶体管击穿等,导致电路遭受严重的结构损坏。如果隔离器中的异常高电压和大电流持续一段时间,与隔离电容器集成在同一芯片上的电路和元件会因过度热应力而受损,导致隔离电介质损坏。  这种失效会影响受损芯片的隔离性能。在纳芯微的电容隔离技术中,通过在两个独立芯片上各串联设置一个分离式电容器实现增强隔离。当发生第二种失效模式时,隔离电容器的一侧可能受损,而另一侧仍然完好,负责提供基本隔离功能。  图3(b)为第二种隔离失效模式的图片。样片为经过VDD到GND电气过应力(EOS)试验后的NSI8131器件。左侧芯片的隔离电容器受到了周围受损电路的影响。受损样片仍能满足UL1577标准规定的3kVrms的绝缘电压要求。在此情况下,操作员的安全风险仍然可以避免。  2. 应用示例  本节我们以典型电机驱动系统为例,探讨如何通过选择和应用电容隔离器以避免发生上述两种失效模式。  图4所示的典型电机驱动系统将交流电网转换为电机驱动输出。该系统由整流电路、逆变电路以及主控微控制器(MCU)组成。用户可以通过通信总线访问控制模块MCU。为了满足安全需求,人机界面(HMI)与高压和功率电路之间必须设置绝缘屏障。电压和电流感测芯片提供隔离信号,实现闭环控制和系统保护。隔离驱动将脉宽调制(PWM)信号转换为IGBT模块的隔离驱动信号。隔离屏障的设置旨在满足功能要求、安全要求或两者兼有。  IEC 61800-5-1标准规定了电机驱动系统中隔离的安全要求。选择隔离芯片用于满足系统电压、暂时过压、冲击电压、工作电压、间隙、爬电距离等要求,并预留足够的裕量。裕量越大,隔离可靠性越高。
2024-08-19 14:08 阅读量:368
纳芯微:电源“芯”世界,车载LDO一站式解决方案手册
  欢迎来到纳芯微电源“芯”世界!作为基础和桥梁,电源芯片存在于汽车电子电气架构的每个功能执行单元,其重要性不言而喻。在这个全新的系列中,我们就将带您深入探索最新、最前沿的电源管理技术,为您带来专业的解决方案和实用的干货知识解读。  聚焦车载LDO,为您呈现一站式解决方案的独特魅力!  车载LDO的五大分类  在汽车电子系统中,LDO的稳定性和可靠性至关重要。我们的车载LDO一站式解决方案涵盖以下五大分类,确保满足各种应用需求。  一级LDO  功能:一级电压调节,提供稳定的中间电压。  应用:电池供电系统的初级稳压等  二级LDO  功能:进一步精确调节电压,提供低噪声、高精度输出。  应用:微处理器和精密模拟电路等  天线LDO  功能:为天线和无线通信模块提供低噪声、高稳定性的电源。  应用:车载无线通信设备、GPS模块等  电压跟随器LDO  功能:稳定电压传输,缓冲和隔离不同电路。  应用:减少电路干扰和噪声的应用场景等  看门狗LDO  功能:集成看门狗定时器,监控系统运行状态。  应用:提高系统可靠性和安全性,防止系统失灵等  纳芯微在以上不同品类LDO的设计和性能上都具备独特优势,如低静态功耗、高电源抑制比(PSRR)、低噪声、优异的瞬态性能等,能够全面提升汽车电子系统的可靠性和效率,确保系统在各种环境下的稳定性和性能。
2024-08-06 09:47 阅读量:456
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
型号 品牌 抢购
ESR03EZPJ151 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
TPS63050YFFR Texas Instruments
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BP3621 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。