纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

Release time:2024-08-01
author:AMEYA360
source:纳芯微电子
reading:767

  随着现代汽车电子技术的快速发展,步进电机作为一种精确且可靠的执行元件,在汽车电子系统中的应用日益广泛。为了实现车载步进电机应用的精确控制,纳芯微推出了集成LIN和MOSFET功率级的单芯片车用小电机驱动SoC——NSUC1610,可以帮助客户实现安全可靠的车载电机控制。

  本文将结合步进电机的结构与驱动方法,重点介绍基于NSUC1610的步进电机控制原理及其实际应用

  步进电机结构及其驱动方法

  与人们熟知的大部分电机一样,步进电机的结构也是由定子和转子组成。转子由轴承、铁芯、磁钢等构成。转子铁芯带有齿轮,是步进电机单部步距的行程;定子是由铁芯、定子绕组和支撑结构构成。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  步进电机结构

  根据绕组方式,步进电机主要分为两大类:一类是单极性步进电机,它是由带中心抽头(公共线)的单绕组组成,其电流均由1、2、3、4四根线的相线流入中心抽头公共线,因此电流方向是单向的。另一类是双极性步进电机,由没有中心抽头的绕组构成,其电流方向是双向的。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  步进电机的分类

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  单极性步进全步运转示意图

  单极性步进电机和双极性步进电机的驱动方式不尽相同,上图中单极性步进电机的A、B、C、D分别是两相四线,5为抽头的公共线。在驱动电机全步运行时,步骤如下:

  第一步:

  A相通电,B、C、D相不通电,A相产生磁场,且磁极是S极,吸引转子的N极;

  第二步:

  A、B相全部通电且电流相同,产生相同的磁极,两个S极磁场矢量合成,吸引转子向A、B相之间旋转;

  第三步:

  B相通电,A相断电,B相产生磁场,且磁极是S极,吸引转子的N极;

  第四步:

  B、C相通电且电流相等产生相同的磁性,两个S极磁场矢量合成,即可吸引转子向BC相之间旋转。

  依次类推五六七八步,使整个步进电机旋转起来。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  双极性步进全步运转示意图

  双极性步进电机的驱动是直接驱动A+、A-、B+、B-两相四根线来实现运转的。步骤如下:

  第一步:

  A相通电,B相不通电,A相产生磁场且A+磁极是S极,A-磁极是N极,吸引转子的N极至A+,S极至A-;

  第二步:

  A、B相全部通电且电流相同,产生相同的磁极,两个S极的N极磁场矢量合成,吸引转子N极向A+、B+相之间旋转;

  第三步:

  B相通电,A相断电,B相产生磁场且磁极是S极,吸引转子的N极至B+;

  第四步:

  B相通电,A相断电且电流相等,产生相同磁性,两个S极磁场矢量合成,吸引转子N极,向B+、A-相之间旋转。

  依此类推五六七八步,整个步进电机便旋转起来。

  基于NSUC1610的步进电机控制

  纳芯微NSUC1610采用数字恒流控制技术,由PWM 100%控制每个周期的电流输出,实现对输出电流的精确调节。这意味着,在输出电流未达到设定电流值之前,PWM输出on,一旦达到设定电流值便输出off;如果在输出off之后的输出电流低于设定值,就会在下一个周期重新输出高电平,继续增加输出电流,以便在PWM输出off时使电流及时衰减至设定值。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  硬件电流控制

  NSUC1610的电流控制采用三种衰减方式,以适应不同类型和需求的步进电机。第一种是慢衰减(slow decay)方式,打开电流输出时,上桥臂输出PWM波,下桥臂输出常高;关闭电流时,关闭上桥臂,下桥臂保持常高,通过MOSFET的体二极管实现泄放。这种方式是将电流的电能转化为热能,但泄放能力有限。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  异步慢衰减

  第二种是快衰减(fast decay)方式,打开电流输出时,上下桥臂均输出PWM波;关闭电流输出时,通过打开反向的上下桥臂,直接将能量泄放至电源充电,此时泄放能力较大。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  同步快速衰减

  第三种是混合衰减(mix decay)方式,它结合了前两种方式,一段时间采用慢衰减方式,一段时间采用快衰减方式,并调控两者的时间比例。

  至于具体采用哪一种衰减方式来衰减电流,需要根据电机的电感参数及电机的转速等合理选择。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  混合衰减

  在采用NSUC1610驱动双极性步进电机时,只需将电机的A+、A-、B+、B-四根线直接与MOUT0、MOUT1、MOUT2、MOUT3相连,VSS、ISNS管脚直接接地,外围电路只需加一些必要的电容、电阻及二极管等被动元件,即可实现用单芯片控制双极性步进电机,同时还可以实现与LIN主机的通信,大大地提高系统的集成度和可靠性。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  基于NSUC1610的步进电机图

  从步进电机的驱动原理来看,通过给电机的两相通上交流电流即可使电机旋转。实际上,这是比较粗糙的步进电机控制方式,这种控制方式产生的电流突变点较多,转距不恒定,旋转也就不太平顺。

  为了让电机较为平顺丝滑地旋转,通常采用微步驱动方式。微步驱动方式不同于全步驱动方式,它是在8步全步中去掉了4步,插入了中间点临界电流,即0电流。通过不断类推,不断插入中间电流,即可减小电流突变,细化电机的电流变化,使之接近正弦,从而实现微步。微步的目标是产生A、B相位差90°的正弦电流。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  微步原理

  NSUC1610利用数字恒流控制实现了微步正弦电流控制,具体实现原理是采用比较器恒流控制。方法是在正端接入一个桥臂电流采样信号,负端接入一个DAC输出电压信号,在每一个微步控制期间触发固定的DAC输出。

  如果桥臂电流信号大于DAC,则打开相应的桥臂输出;如果桥臂电流小于DAC值,则关闭相应的桥臂输出,这样即可实现每一个微步期间的闭环恒流控制。在整个步进区间中,根据正弦公式改变DAC输出,即可实现电流信号的正弦输出,从而实现步进电机的微步控制。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  步进电机微步电流控制

  在电机旋转过程中,会出现一定概率的堵转而导致电机失步。为了检测电机是否出现堵转失步,可以通过测量电机的反电动势来判定。由于电机的反电动势与其转速成正比,因此需要为测量到的反电动势设定一个合理的阈值,小于设定阈值即可认为电机出现了失步。

  在整个电流控制区间,电机的反电动势大部分是不可测量的。只有当电流为0,桥臂没有导通驱动电机时,测量的两个桥臂电压才是真实反电动势。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  步进电机失速检测

  电机的启动和停止时速度为0,如果直接满速启动或停止,那么电机的启停就会很突然,出现不平顺。为了实现较为平缓的速度控制,可以采用梯形加减速的方式实现位置控制。由于速度控制的曲线是梯形,位移曲线就是S型。从图中可以看到,电流波形在加速减速阶段较为稀疏,而在匀速阶段较为密集。一般步进电机停止前,会有一段大的稳定电流,旨在防止电机转到目标位置时出现过冲;接着进入hold状态,利用一个小的hold电流可使扭矩保持不变。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  步进电机位置控制

  更高效智能的车载步进电机控制

  通过采用数字恒流控制技术,NSUC1610实现了对步进电机电流的精确调节,以适应不同类型和需求的步进电机。NSUC1610还支持微步驱动方式,使步进电机的旋转更加平顺丝滑。


("Note: The information presented in this article is gathered from the internet and is provided as a reference for educational purposes. It does not signify the endorsement or standpoint of our website. If you find any content that violates copyright or intellectual property rights, please inform us for prompt removal.")

Online messageinquiry

reading
供应链全国产!纳芯微NSSine™系列实时控制MCU工规版正式量产
  2024年11月正式发布的NSSine™系列实时控制MCU,经过广泛验证和严格测试,目前已有三款工规版本产品顺利进入量产阶段,分别为:NS800RT5039、NS800RT5049 和 NS800RT3025。同时,该系列车规版本正在进行认证测试,预计将在完成之后快速推向市场。  自发布以来,NSSine™系列产品已通过来自各行业数十家客户的严苛测试与验证,收获了积极正面的市场反馈。该系列产品在首次流片即一次性成功,至今未出现因功能性缺陷(BUG)导致的版本改动,充分体现了NSSine™实时控制MCU系列在高可靠性产品设计与开发上的成熟能力。  在产品设计方面,NSSine™系列充分考虑了替代兼容需求,硬件管脚布局与软件架构均与国际主流实时控制MCU高度兼容,有效降低了客户迁移成本,加速了项目切换的效率。  此外,NSSine™系列产品还采用自主可控的全国产供应链体系(中国大陆本土晶圆制造),支持包括Keil、IAR、Novo Studio(基于Eclipse架构)、UDE等多种主流开发工具,同时搭配自研一拖多烧录器方案,在不确定的地缘政治挑战下,为客户的供应链安全与稳定性提供了有力保障。NS800RT5/3 主要参数对比  多场景赋能:从工业到汽车全覆盖  在光伏 / 储能领域,可精准实现光伏逆变器 MPPT 控制、储能系统双向 DC/AC 转换以及电池管理系统(BMS)的精准监测,有效提升能源转换效率与系统稳定性。  在工业自动化领域,能够满足协作机器人关节控制、伺服驱动器高精度定位以及 PLC 高速 IO 处理等需求,助力工业生产向智能化、高效化迈进。  在新能源汽车领域,适用于车载充电机(OBC)高效转换、主驱逆变器电机控制以及热管理系统智能调节,为新能源汽车的性能提升与安全运行提供有力支持。  值得注意的是,NSSine™系列特别适配基于SiC和GaN功率器件打造的数字电源和电机控制系统,其超高精度PWM控制能够充分发挥宽禁带半导体器件的性能优势。
2025-05-09 13:38 reading:220
方寸之间构筑系统级可靠性,纳芯微发布国产首款高性能 2 线制霍尔开关 MT72xx系列
  纳芯微推出国内首款 2 线制霍尔开关MT72xx系列。该系列产品具有卓越的EMC性能、丰富极性选择以及高集成设计,满足 ASIL-A 功能安全认证标准,符合AEC-Q100 Grade 0标准,可应用于车身电子、域控制器长线束应用场景,为安全带锁扣检测、摇窗电机等场景提供更优解决方案。  聚焦车规应用,解决长线束痛点  随着汽车智能化、电动化趋势加速,车身功能日益复杂,车身域控制器集成化程度不断提高,使得传感器与控制器间的线束长度显著增加,进而带来了信号干扰风险上升、成本增加和系统可靠性降低等问题。  纳芯微推出的MT72xx系列高可靠2线电流型霍尔开关产品,可在保证信号传输完整性的同时,有效减少线束数量,降低线束成本和系统布线复杂度,特别适合车门锁止检测、车窗防夹控制、电动尾门位置感知、座椅位置调节、安全带锁扣等车身长线束场景应用。其稳定的电流型信号输出形式,具备良好的抗干扰特性,即便在较长线束环境下,依旧能保障信号稳定可靠。  高集成高可靠,满足车规严苛标准  针对车规环境复杂、EMI干扰强的环境特征,MT72xx内部集成100nF电容,有效提升EMC和ESD性能,简化外围器件配置,节省BOM空间,提升整车系统结构设计灵活度。产品满足AEC-Q100 Grade 0标准,适应高温严苛环境,保障整车长期稳定运行。  此外,MT72xx支持单极性、全极性、锁存等多种感应极性选择,配合不同灵敏度阈值,能够灵活适配不同磁铁方案和车辆结构需求,大幅提升设计自由度,降低开发调试复杂度。  全套开发资源,缩短客户项目周期  为进一步提升客户开发效率,纳芯微同步推出MT72xx专用demo板及磁场仿真服务,助力客户快速完成选型验证与磁铁方案匹配,降低开发调试成本,缩短产品导入周期。
2025-05-08 10:15 reading:231
纳芯微车规级2路半桥驱动NSD3602-Q1:多负载兼容,提升汽车域控系统的灵活性
  纳芯微今日推出NSD3602-Q1系列双通道半桥栅极驱动芯片,提供2路半桥驱动,可驱动1路直流有刷电机或者1-2路电磁阀。  NSD3602-Q1适合用于车身应用中多电机或多负载场景,如车窗升降、电动座椅、门锁、电动尾门和比例阀等。新推出的NSD3602-Q1是对纳芯微现有NSD360x-Q1系列的补充,NSD360x-Q1系列还包括4通道和8通道的半桥驱动产品。  产品特性  ◆ 宽工作电压:4.9V – 37V(最大值40V)  ◆ 2通道半桥栅极驱动  ◆ 可配置时序充放电电流驱动(CCPD),优化EMC性能  ◆ 集成电荷泵实现 0~100% PWM  ◆ 集成1路可编程宽模运放  ◆ 低功耗模式  ◆ 两种版本:SPI 版本支持16位 10MHZ SPI通信;硬件版本支持IO独立配置,减少MCU IO  ◆ 全面的诊断保护功能  ◆ 工作温度:Tj=-40°C~150°C  ◆ 封装形式:VQFN32  ◆ AEC-Q100认证  NSD3602-Q1功能框图  可配置时序充放电电流驱动(CCPD):优化EMC性能  由于车身应用中执行器的位置特殊性,例如电动尾门和天窗非常靠近车身天线,这就对相应的电机驱动提出了较高的EMC要求:驱动器即使在PWM工作时也拥有较低的辐射及传导干扰(RE/CE) 。  为了应对这些挑战,NSD3602-Q1提供了可配置时序充放电电流驱动(CCPD: Configurable Charge/Discharge Current Profile Driver)。NSD3602-Q1可以根据外部负载(MOSFET)的参数和应用需求,同时实现2路半桥独立时序电流PWM驱动,电流型驱动也不再需要外部门级电阻和GS/GD电容。  如下图所示,NSD3602-Q1的CCPD模块将MOS导通/关断过程分为三个阶段:预充电/预放电阶段、充电/放电阶段、尾放电阶段(导通只有两阶段),所有阶段的持续时间和驱动电流独立可配置。CCPD驱动时间示意图  宽模运放:精准电流检测,简化BOM  NSD3602-Q1内部集成了1个高性能差分放大器 (CSA),通过测量外部采样电阻上的差分电压来测量电流,CSA模块支持可编程增益和偏置、宽共模、双向输入、消隐 (blanking) 和采样保持 (sample & hold) 功能,通过CSA模块可以实现精准和灵活的电流采样,节省客户BOM。  全面的诊断保护功能,提升系统可靠性  NSD3602-Q1 集成了全面的诊断保护功能,如实时电源及电荷泵电压监控,实现全功能的欠压过压诊断保护(DVDD UV, PVDD OV, PVDD UV 和VCP UV)、驱动模块监控实现VGS及VDS诊断保护、实现运行和关闭状态下负载的开路、短路诊断(内置了上下拉电流源,从而实现off状态下负载检测)、过热报警及过热保护、CSA过流诊断、看门狗、睡眠模式和工作模式下的刹车保护功能等。所有诊断保护功能支持SPI配置或者信息读取,也支持独立的PIN脚实现IO状态输出。  NSD3602-Q1集成的刹车保护功能,可有效抑制外部机械作用力(如人为拉拽、拖拽)导致的电压骤升,从而防止MOS管因过压损坏。这一功能在侧滑门、电动踏板、尾门撑杆等应用中尤为关键,可降低因误操作或突发冲击引起的系统故障风险,提升整体可靠性。  NSD360x-Q1系列产品选型表  除了NSD3602-Q1,纳芯微还提供NSD3604/8-Q1,以满足不同通道数的需求。NSD3602/4/8-Q1系列支持 2/4/8 路半桥驱动,具备高集成度和设计灵活性,适用于多电机或多负载应用,助力客户选型。
2025-05-08 10:09 reading:260
纳芯微推出车载视频SerDes芯片组NLS9116和NLS9246
  纳芯微今日重磅推出基于全国产供应链、采用HSMT公有协议的车规级SerDes芯片组,包括单通道的加串器芯片NLS9116和四通道的解串器芯片NLS9246。  该系列芯片专为ADAS(摄像头、域控制器)及智能座舱(摄像头、显示屏、域控制器)系统中的高速数据传输场景设计,通过兼容性更强的公有协议、优异的模拟性能和全国产供应链,为汽车智能化、网联化提供关键基础支撑。  随着汽车智能化的发展,车载摄像头、显示屏、激光雷达等设备剧增,数据传输量呈指数级上升,SerDes作为高带宽、低延时、低功耗的数据传输方案代表,在满足摄像头、座舱显示屏等高像素、高分辨率图像传输等方面具有独特优势。  以L2/L3级的智能汽车为例,平均每车搭载8-16颗加串器和2-4颗解串器;更高阶的高端车型在新增侧视激光雷达、电子后视镜的情况下,对SerDes芯片的数量要求则更多。目前,单车搭载SerDes芯片价值大约是几十美元左右,未来随着摄像头、显示屏数量的增多,单车价值还有望继续增加。  全国产供应链+HSMT互联互通,  打造弹性供应标杆  当前,SerDes芯片领域仍由国际厂商主导。主流国际厂商基于GMSL、FPD-Link等私有协议开发产品,形成加串器和解串器“强绑定”的生态,导致汽车厂商在芯片选型时灵活性受限,并制约了供应链的多元化选择。  纳芯微NLS9116和NLS9246是业内率先完成芯片级协议互联互通测试的国产SerDes方案,和其他厂商HSMT协议的SerDes方案完成了图像数据流和控制业务流的打通和寄存器互操作,真正实现了加串器与解串器的解耦,使得客户可灵活选择不同供应商的芯片组合,得到了国内头部ADAS客户的高度认可。  此外,NLS9116和NLS9246在芯片设计、晶圆生产、封装测试等方面实现了全链路国产化,可助力客户在SerDes选型上打造更加弹性多元、稳健可控的供应链体系。  卓越模拟性能+完善的维测功能,  破解车载布线难题  模拟性能方面,NLS9116和NLS9246的接收机容限相比主流国际厂商产品提升100%,并具备更强的AEQ(自适应均衡)能力,助力降低汽车制造商的线缆布线成本;此外,MIPI驱动能力也做了相应增强,实测可以驱动超过30cm的PCB走线。  维测和故障定位方面,NLS9116和NLS9246创新性地内置了接插件瞬断监测功能,可实时检测接插件诸如接触不良等微秒级故障,并通过诊断接口输出日志,大大降低了工程师问题定位时间。此外,NLS9246还采用了TDR(时域反射)技术,在实时线缆故障检测定位精度上达到行业领先水平。当检测距离在1米以内时,精度小于30厘米;检测距离在15米以内时,精度小于1米。精准的故障定位能力能够帮助工程师快速确定线缆故障位置,及时进行修复,减少因线缆故障导致的系统停机时间。  抗干扰性方面,NLS9116和NLS9246在带电8kV的ESD测试中,图像传输无误码,在EMI/EMC性能上对标国际头部厂商,可显著减少整车厂的系统测试验证周期,助力客户加速产品上市。  封装和选型  NLS9116和NLS9246满足AEC-Q100 Grade 2要求,功能安全方面达到ASIL B等级,为汽车电子系统的安全性提供坚实保障。NLS9116和NLS9246的传输速率为2~6.4Gbps,满足HSMT协议,高效适配车载系统的高速数据传输需求。  封装方面,加串器NLS9116采用TQFN32封装,解串器NLS9246采用TQFN64封装,与市场主流产品P2P兼容,方便客户在现有设计基础上进行快速替换和升级。
2025-04-29 15:42 reading:309
  • Week of hot material
  • Material in short supply seckilling
model brand Quote
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
model brand To snap up
BU33JA2MNVX-CTL ROHM Semiconductor
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BP3621 ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 weixin Service Account AMEYA360 weixin Service Account
AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code