纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

发布时间:2024-08-01 09:05
作者:AMEYA360
来源:纳芯微电子
阅读量:486

  随着现代汽车电子技术的快速发展,步进电机作为一种精确且可靠的执行元件,在汽车电子系统中的应用日益广泛。为了实现车载步进电机应用的精确控制,纳芯微推出了集成LIN和MOSFET功率级的单芯片车用小电机驱动SoC——NSUC1610,可以帮助客户实现安全可靠的车载电机控制。

  本文将结合步进电机的结构与驱动方法,重点介绍基于NSUC1610的步进电机控制原理及其实际应用

  步进电机结构及其驱动方法

  与人们熟知的大部分电机一样,步进电机的结构也是由定子和转子组成。转子由轴承、铁芯、磁钢等构成。转子铁芯带有齿轮,是步进电机单部步距的行程;定子是由铁芯、定子绕组和支撑结构构成。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  步进电机结构

  根据绕组方式,步进电机主要分为两大类:一类是单极性步进电机,它是由带中心抽头(公共线)的单绕组组成,其电流均由1、2、3、4四根线的相线流入中心抽头公共线,因此电流方向是单向的。另一类是双极性步进电机,由没有中心抽头的绕组构成,其电流方向是双向的。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  步进电机的分类

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  单极性步进全步运转示意图

  单极性步进电机和双极性步进电机的驱动方式不尽相同,上图中单极性步进电机的A、B、C、D分别是两相四线,5为抽头的公共线。在驱动电机全步运行时,步骤如下:

  第一步:

  A相通电,B、C、D相不通电,A相产生磁场,且磁极是S极,吸引转子的N极;

  第二步:

  A、B相全部通电且电流相同,产生相同的磁极,两个S极磁场矢量合成,吸引转子向A、B相之间旋转;

  第三步:

  B相通电,A相断电,B相产生磁场,且磁极是S极,吸引转子的N极;

  第四步:

  B、C相通电且电流相等产生相同的磁性,两个S极磁场矢量合成,即可吸引转子向BC相之间旋转。

  依次类推五六七八步,使整个步进电机旋转起来。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  双极性步进全步运转示意图

  双极性步进电机的驱动是直接驱动A+、A-、B+、B-两相四根线来实现运转的。步骤如下:

  第一步:

  A相通电,B相不通电,A相产生磁场且A+磁极是S极,A-磁极是N极,吸引转子的N极至A+,S极至A-;

  第二步:

  A、B相全部通电且电流相同,产生相同的磁极,两个S极的N极磁场矢量合成,吸引转子N极向A+、B+相之间旋转;

  第三步:

  B相通电,A相断电,B相产生磁场且磁极是S极,吸引转子的N极至B+;

  第四步:

  B相通电,A相断电且电流相等,产生相同磁性,两个S极磁场矢量合成,吸引转子N极,向B+、A-相之间旋转。

  依此类推五六七八步,整个步进电机便旋转起来。

  基于NSUC1610的步进电机控制

  纳芯微NSUC1610采用数字恒流控制技术,由PWM 100%控制每个周期的电流输出,实现对输出电流的精确调节。这意味着,在输出电流未达到设定电流值之前,PWM输出on,一旦达到设定电流值便输出off;如果在输出off之后的输出电流低于设定值,就会在下一个周期重新输出高电平,继续增加输出电流,以便在PWM输出off时使电流及时衰减至设定值。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  硬件电流控制

  NSUC1610的电流控制采用三种衰减方式,以适应不同类型和需求的步进电机。第一种是慢衰减(slow decay)方式,打开电流输出时,上桥臂输出PWM波,下桥臂输出常高;关闭电流时,关闭上桥臂,下桥臂保持常高,通过MOSFET的体二极管实现泄放。这种方式是将电流的电能转化为热能,但泄放能力有限。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  异步慢衰减

  第二种是快衰减(fast decay)方式,打开电流输出时,上下桥臂均输出PWM波;关闭电流输出时,通过打开反向的上下桥臂,直接将能量泄放至电源充电,此时泄放能力较大。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  同步快速衰减

  第三种是混合衰减(mix decay)方式,它结合了前两种方式,一段时间采用慢衰减方式,一段时间采用快衰减方式,并调控两者的时间比例。

  至于具体采用哪一种衰减方式来衰减电流,需要根据电机的电感参数及电机的转速等合理选择。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  混合衰减

  在采用NSUC1610驱动双极性步进电机时,只需将电机的A+、A-、B+、B-四根线直接与MOUT0、MOUT1、MOUT2、MOUT3相连,VSS、ISNS管脚直接接地,外围电路只需加一些必要的电容、电阻及二极管等被动元件,即可实现用单芯片控制双极性步进电机,同时还可以实现与LIN主机的通信,大大地提高系统的集成度和可靠性。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  基于NSUC1610的步进电机图

  从步进电机的驱动原理来看,通过给电机的两相通上交流电流即可使电机旋转。实际上,这是比较粗糙的步进电机控制方式,这种控制方式产生的电流突变点较多,转距不恒定,旋转也就不太平顺。

  为了让电机较为平顺丝滑地旋转,通常采用微步驱动方式。微步驱动方式不同于全步驱动方式,它是在8步全步中去掉了4步,插入了中间点临界电流,即0电流。通过不断类推,不断插入中间电流,即可减小电流突变,细化电机的电流变化,使之接近正弦,从而实现微步。微步的目标是产生A、B相位差90°的正弦电流。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  微步原理

  NSUC1610利用数字恒流控制实现了微步正弦电流控制,具体实现原理是采用比较器恒流控制。方法是在正端接入一个桥臂电流采样信号,负端接入一个DAC输出电压信号,在每一个微步控制期间触发固定的DAC输出。

  如果桥臂电流信号大于DAC,则打开相应的桥臂输出;如果桥臂电流小于DAC值,则关闭相应的桥臂输出,这样即可实现每一个微步期间的闭环恒流控制。在整个步进区间中,根据正弦公式改变DAC输出,即可实现电流信号的正弦输出,从而实现步进电机的微步控制。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  步进电机微步电流控制

  在电机旋转过程中,会出现一定概率的堵转而导致电机失步。为了检测电机是否出现堵转失步,可以通过测量电机的反电动势来判定。由于电机的反电动势与其转速成正比,因此需要为测量到的反电动势设定一个合理的阈值,小于设定阈值即可认为电机出现了失步。

  在整个电流控制区间,电机的反电动势大部分是不可测量的。只有当电流为0,桥臂没有导通驱动电机时,测量的两个桥臂电压才是真实反电动势。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  步进电机失速检测

  电机的启动和停止时速度为0,如果直接满速启动或停止,那么电机的启停就会很突然,出现不平顺。为了实现较为平缓的速度控制,可以采用梯形加减速的方式实现位置控制。由于速度控制的曲线是梯形,位移曲线就是S型。从图中可以看到,电流波形在加速减速阶段较为稀疏,而在匀速阶段较为密集。一般步进电机停止前,会有一段大的稳定电流,旨在防止电机转到目标位置时出现过冲;接着进入hold状态,利用一个小的hold电流可使扭矩保持不变。

纳芯微高集成单芯片SoC如何高效智能控制车载步进电机?

  步进电机位置控制

  更高效智能的车载步进电机控制

  通过采用数字恒流控制技术,NSUC1610实现了对步进电机电流的精确调节,以适应不同类型和需求的步进电机。NSUC1610还支持微步驱动方式,使步进电机的旋转更加平顺丝滑。


(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
纳芯微参与车身域控制器测试方法团体标准审定,助力汽车电子行业技术创新
  近期,根据《团体标准管理规定》的相关要求,深圳自动化学会组织召开了《车身域控制器场效应管负载能力试验方法(送审稿)》、《车身域控制器通用功率驱动装置测试规程(送审稿)》两项团体标准审定会。比亚迪汽车工业有限公司、苏州纳芯微电子股份有限公司(以下简称“纳芯微”)等12家起草单位共23位代表参加审定会议,审查组一致同意两项团体标准通过审定。  在现代汽车制造领域,随着智能化和电气化技术的不断进步,汽车内部的功能系统变得越来越复杂,因此引入了域控制(Domain)架构,将汽车功能划分为动力域、底盘域、车身域、座舱域和自动驾驶域,各由专门的域控制器(Domain Controller)管理。然而,这种划分导致车身布线复杂,随着汽车电子部件数量增加,往往由于缺乏统一标准而导致兼容性问题,对系统可靠性带来了不少挑战。  为解决这些问题,推动国产汽车行业发展,制定相关控制系统标准尤为重要。11月5日,纳芯微作为起草单位之一,参与了由深圳自动化学会组织的《车身域控制器场效应管负载能力试验方法(送审稿)》和《车身域控制器通用功率驱动装置测试规程(送审稿)》两项团体标准的审定会议。此次会议严格遵循《团体标准管理规定》的相关要求,旨在推动汽车行业的技术标准化与创新发展。  本次团体标准审定会汇聚了来自学术界与产业界的权威专家,包括深圳市鹏城技师学院先进制造学院原院长、高级工程师李云峰,哈尔滨工业大学(深圳)机电工程与自动化学院执行院长楼云江教授,澳门科技大学工程科学系主任、澳门系统工程研究所伍乃骐教授(IEEE Fellow)等多位知名学者与行业领袖。会议由李云峰担任专家审查组组长,深圳自动化学会秘书长贺艳萍主持。  纳芯微参与了此次线上与线下结合的审定会议。《车身域控制器场效应管负载能力试验方法》旨在通过科学有效的测试方法,确保车身域控制器中的场效应管能够稳定承受实际工作负载,提升汽车控制系统的可靠性。《车身域控制器通用功率驱动装置测试规程》则致力于规范功率驱动装置的设计与性能评估,推动产品质量提升及技术创新。  专家组认为:经过对两项团体标准的逐条讨论与细致审查,起草单位提交的标准文档资料齐全,编制过程规范,技术定位准确,框架合理,内容完整且具有可操作性。审查组一致同意两项团体标准通过审定,并建议起草单位根据审定意见进行进一步修改完善,以尽快形成标准报批稿上报并发布实施。  作为汽车芯片标准体系建设研究工作单位之一,纳芯微也积极参与《汽车芯片环境及可靠性通用规范》、《电动汽车用功率驱动芯片技术要求及试验方法》、《汽车LIN收发器芯片技术要求及试验方法》等多项国家标准、行业标准的起草和修订,与行业伙伴共同推动汽车电子等行业的质量提升和技术创新。纳芯微致力于成为汽车产业首选的供应链合作伙伴,以系统级理解、整体解决方案、多年车规芯片量产经验和稳定的质量表现,助力汽车客户提升差异化竞争力,共赢市场机遇,共赴绿色可持续的电动化未来。
2024-11-21 13:44 阅读量:146
纳芯微联合芯弦推出NS800RT系列实时控制MCU
  纳芯微今日宣布联合芯弦半导体(ChipSine),推出NS800RT系列实时控制MCU。该系列MCU凭借更加高效、功能更强大的实时控制能力和丰富的外设,使工程师能够在光伏/储能逆变器、不间断电源、工业自动化、协作机器人、新能源汽车大/小三电、空调压缩机等系统中,实现皮秒(万亿分之一秒)级别的PWM控制,从而显著提升系统运行精度和效率。  NS800RT系列实时控制MCU的首发型号包括NS800RT5039,NS800RT5049和NS800RT3025,分别采用单颗主频为260MHz和200MHz的Arm Cortex-M7内核,支持分支预测、DSP指令集和FPU。NS800RT系列还配备了256KB SRAM,32KB高速缓存(I-Cache, D-Cache)和最高256KB的超大紧耦合内存(ITCM, DTCM),通过更快的读写速度,显著提升了内核综合处理性能。该系列器件符合车规AEC-Q100认证标准,支持汽车ISO26262 ASIL B与工业IEC61508 SIL2等级的功能安全,并且内设AES-128/256和TRNG算法,进一步提升了信息安全。  集成数学加速核,显著提升DSP性能  除了搭载Arm Cortex-M7内核外,NS800RT系列的一大亮点是额外集成了一个支持浮点运算的硬件数学加速核(eMath),相比通用Arm Cortex-M7的数学运算能力,在三角函数、开方、指数、对数、傅里叶变换(FFT)、矩阵运算、FIR滤波等数字信号处理运算中有大幅算力提升。  丰富的外设支持,实现超高精度PWM控制  NS800RT系列实时控制MCU集成了丰富的外设,包括16对互补/32路独立PWM输出,其中高精度HRPWM有16路;3个12位ADC,采样速率高达5MSPS,INL和DNL低至±1.5LSB,支持高达34个采样通道;2个12位DAC,采样速率1MSPS,INL低至±1.5LSB;7对(14个)高速模拟比较器CMPSS,带DAC与斜波发生器;3路放大倍数可编程的差分输入运放(PGA);8个Sigma-Delta滤波器模块(SDFM)输入通道;以及两个全温度范围内精度可达±1%的高精度时钟。  在一系列高精度外设的加持下,NS800RT系列可实现100皮秒的高精度PWM控制,从而支持各种对高效率、高细分、高控制精度应用的需求,更加适配基于SiC和GaN功率器件打造的数字电源和电机控制系统。  完善的技术资源,加速用户上手和开发  纳芯微和芯弦联合推出了一系列技术资源和开发套件,以帮助用户快速上手并进行系统开发,包括全面的SDK开发套件;支持KEIL,IAR,GCC/Eclipse的IDE工具链;系统评估板等各种软硬件支持。相关技术资料可联系邮箱sales@novosns.com获取。  NS800RT系列实时控制MCU选型  NS800RT系列实时控制MCU首发型号NS800RT5039,NS800RT5049和NS800RT3025分别提供工规和满足AEC-Q100 Grade 1认证的车规版本,具体选型如下。
2024-11-21 11:57 阅读量:265
纳芯微CAN收发器NCA1044-Q1全面通过IBEE/FTZ-Zwickau EMC认证
  近日,纳芯微宣布其新推出的汽车级CAN收发器芯片NCA1044-Q1获得欧洲权威测试机构IBEE/FTZ-Zwickau出具的EMC认证测试报告。  NCA1044-Q1成功通过所有测试项,成为国内首颗全面通过IBEE/FTZ-Zwickau EMC测试的CAN收发器芯片。纳芯微现可提供相关测试报告,支持汽车制造商简化系统认证流程,加速产品上市。  CAN收发器芯片常用于汽车中的CAN总线网络,通常用于控制,诊断等关键功能,如三电、制动、转向、安全气囊等。这种环境中存在多种电磁干扰源,如电动车三电系统、发动机、变频器、无线通信设备等。这些干扰会对数据传输产生不良影响,从而导致信号传输错误或系统故障,甚至有可能影响整个系统的安全性。  此外,由于汽车系统中CAN总线布线长,CAN收发器的噪声容易以CAN总线作为天线对外产生辐射,从而导致模块或整机对外辐射发射(Radiated Emission)和传导发射(Conducted Emission)性能超出整车要求,因此,具备良好EMC(Electromagnetic Compatibility,电磁兼容性)性能的CAN收发器芯片是实现系统可靠性的重要保障。  全面通过IBEE/FTZ-Zwickau认证  鉴于CAN收发器芯片的EMC性能对汽车行驶安全的关键作用,各地区制定了严格的汽车电子电磁兼容性标准和认证流程,并要求汽车制造商遵循。例如,美国汽车工程师协会(SAE)的J2962标准和欧洲的IBEE/FTZ-Zwickau认证都对汽车电子的EMC性能提出了明确要求。  其中,IBEE/FTZ-Zwickau认证根据IEC62228-3标准进行,IEC62228-3相较于SAE J2962标准,排除了系统外围电路的影响,更聚焦CAN收发器本身的EMC特性,且要求等级更高,在除欧洲以外的车企中也得到了广泛参考应用。  IBEE/FTZ-Zwickau认证包括:发射射频干扰(Emission RF Disturbances), 抗射频干扰(Immunity RF Disturbances),瞬变免疫力(Immunity Transients)和抗静电(Immunity ESD)共四项测试,纳芯微NCA1044-Q1全部通过。  业界领先的抗干扰特性  NCA1044-Q1通过巧妙的电路设计,解决了其输出电路受到异常高压干扰,导致输出信号出现误码的问题,从而提高了EMC性能,可帮助客户显著降低EMC设计难度,简化外围器件并降低成本。  此外,NCA1044-Q1还具备行业领先的抗干扰特性。根据IEC62228-3标准,当外部不同频段的射频噪声耦合到CAN总线时,可通过的功率越高,说明CAN收发器的抗干扰能力越强,在系统中出现误码的风险也就越低。  纳芯微NCA1044-Q1即使在总线不需要共模电感滤波的情况下,仍可以通过标准要求的最高功率(如图-1和表-2,应用层面一般不做要求,但纳芯微NCA1044-Q1依旧通过该项测试),可帮助用户减少系统外围电路,降低成本,提升系统鲁棒性。  封装和选型  NCA1044-Q1现已量产,提供SOP8和DFN8两种封装。NCA1044-Q1满足AEC-Q100,Grade 1要求,支持-40°C~125°C的宽工作温度范围,提供过温保护;NCA1044-Q1支持TXD显性超时保护,待机模式下支持远程唤醒。
2024-11-20 11:18 阅读量:159
纳芯微推出全新CSP封装MOSFET: NPM12023A
  近日,纳芯微全新推出CSP封装12V共漏极双N沟道MOSFET ——NPM12023A系列产品,优异的短路过流能力与雪崩过压能力、更强的机械压力耐受能力,可以为便携式锂电设备充放电提供全面的保护。  纳芯微全新CSP封装MOSFET系列产品,采用自有专利芯片结构设计,综合性能优于业内传统Trench VDMOS工艺,拥有超低导通阻抗及高ESD (>2kV) 保护功能等特点。该技术兼顾了产品小型化和高过流要求,同时解决了传统CSP封装芯片机械强度低、雪崩能量小、生产组装加工困难等问题,为客户提供更安全、更可靠的产品,简化客户的设计。  图1:纳芯微CSP封装MOSFET产品优势  便携式锂电设备对于充放电保护的要求:  高强度,小体积  智能手机、平板电脑等便携式锂电设备变得比以前更轻薄,功能更强大,同时对设备的充放电功率要求也越来越高:从最初的3-5W,到现在超过100W的充放电功率,使人们在享受更便捷的生活的同时,提高了充电效率,减少了电量焦虑的困扰。充放电功率的不断提高,对用于锂电池保护的MOSFET的性能提出了更高的挑战:如何在降低内阻的同时,兼顾机械应力及雪崩能量等要求,成为聚焦的重点。  图2:CSP封装MOSFET典型应用场景  技术特点  专有的CSP封装技术  传统CSP封装结构为了降低衬底电阻,采用了芯片厚度减薄的方法,从而降低了该封装结构的机械强度,随之而来的,在生产组装过程中,可能会造成芯片翘曲变形甚者产生裂纹,从而导致应用端不良等问题。  纳芯微全新CSP封装系列产品在设计之初就在产品结构上做了调整,使导通电流平行于芯片表面,缩短电流路径,从而降低导通电阻,也就从根源上解决了CSP封装MOSFET的机械强度问题(耐受机械压力>60N),更高的机械强度,可以帮助芯片在兼顾轻薄化、小型化的基础上,最大程度上降低使用过程中的变形、裂片等问题,保证了产品的可靠性和安全性。  图3:纳芯微CSP封装结构与传统CSP封装结构对比  高抗短路和雪崩的能力  作为锂电池保护电路中的关键器件,CSP封装MOSFET的短路过流能力和雪崩过压能力也是衡量该芯片的重要参数指标。相比市场上其他产品,纳芯微该系列产品具备非常好的抗短路和雪崩的能力:短路电流测试达到280A,雪崩能力测试>30A(225mJ)。  纳芯微CSP封装MOSFET产品选型表
2024-09-27 11:24 阅读量:507
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
BD71847AMWV-E2 ROHM Semiconductor
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
TL431ACLPR Texas Instruments
CDZVT2R20B ROHM Semiconductor
型号 品牌 抢购
TPS63050YFFR Texas Instruments
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
BP3621 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。