上海雷卯<span style='color:red'>电子</span>:TOSHIBA的SSM3K37FS国产替代型号LM1012T参数对比
雷卯<span style='color:red'>电子</span>:集成电路电磁兼容性及应对措施相关分析(二)集成电路ESD问题应对措施
  ESD是指处于不同电位的两个物体之间,由于直接接触或静电场感应导致的电荷传输现象。在电子设备中,ESD 可能会对敏感的电子元件造成损害,因此提高ESD抗扰度对于保证电子设备的正常运行至关重要。预防措施能够将 ESD 抗扰度提高到约 15kV,这表明通过合理的设计和防护,可以有效降低 ESD 对电子模块的影响。  ESD问题应对措施  ESD测试只能在成品部件上进行,这是因为只有在整个部件完成开发和生产后,才能准确地评估其在实际工作环境中的ESD抗扰度。这也意味着在产品开发过程中,需要提前规划和考虑ESD防护措施,以避免在测试阶段出现问题而导致成本增加和时间延误.  1、改进IC设计:IC 制造商可以通过改进 IC 的设计来提高其ESD抗扰度。例如,采用更先进的ESD保护技术、优化电路布局和增加ESD保护器件等。这可以在一定程度上降低 ESD故障的发生概率,但需要在 IC 设计和制造过程中进行大量的研究和投入.  2、优化机械结构设计:在机械结构设计中采取适当的EMC预防措施也可以减少ESD对集成电路的影响。当 ESD干扰源自散热器并直接作用于IC外壳时,改变机械设计是解决问题的有效方法。这可能包括重新设计散热器的结构、位置或材料,以减少其对 IC 的干扰。然而,这种方法需要更改机械结构部件和生产工具,成本较高。因此,在产品设计的早期阶段,了解 IC 的电磁兼容性特性,并采取相应的预防措施,可以避免在后期出现此类问题,从而降低成本和缩短开发周期.  3、增加屏蔽:集成电路(IC)周围增加屏蔽罩、滤波电路等,以减少电磁干扰的耦合和传播。这需要在设计阶段就充分考虑 EMC 问题,并与电子设计人员进行密切合作。  (图3) 用场源检测到的微控制器的易感区域  比如,为了提高 ESD 免疫力,可以在 IC 上方设置屏蔽罩,以拦截散热片发出的电场,(如图3所示),在进行静电放电(ESD)  测试中,屏蔽罩还必须延伸到石英晶体上。从而将 ESD 免疫力提高到大约 15kV 左右。不过,需要注意的是,IC中的其他薄弱点可能会限制进一步提高免疫力,因为干扰仍可能通过线路网络耦合到 IC。因此在电子设备的设计中,需要综合考虑各种因素,不能仅仅依赖屏蔽层来解决电磁兼容性问题。  4、加强测试和评估:为了确保IC的 EMC 性能,需要进行严格的测试和评估。这包括 ESD 测试、电磁兼容性测试等,以验证集成电路在各种电磁环境下的性能和可靠性。通过测试,可以及时发现问题并采取相应的改进措施,从而提高集成电路的质量和稳定性。
关键词:
发布时间:2024-12-20 09:44 阅读量:250 继续阅读>>
杭晶<span style='color:red'>电子</span> | 陶瓷谐振器在产品中的应用。
  陶瓷谐振器是一种基于压电陶瓷材料的振荡元件,具有成本低、结构简单、频率稳定性良好的特点,广泛应用于以下领域:  消费电子产品  1、电视机、音响设备:作为时钟振荡器,为系统提供稳定的频率基准。  2、遥控器:用于无线传输信号的频率控制,确保设备精确响应指令。  02.计算机与外设设备  微处理器时钟:提供标准时钟频率,支撑主控芯片运行。  03、家用电器  微波炉、洗衣机:作为时序控制单元,保证操作的准确性和稳定性。  04.、汽车电子  车载控制系统:陶瓷谐振器在车载传感器和自动化控制系统中应用广泛,提供可靠的频率参考。  05.通信设备  无线传输模块:如对讲机、蓝牙模块中,用于提供频率稳定的振荡信号,确保数据传输无误。  陶瓷谐振器凭借其成本优势、良好的稳定性及可靠性,成为电子产品中常见的时钟元件,广泛应用于消费电子、汽车电子、家电及通信设备中,推动了电子技术的发展与普及。  陶瓷谐振器主要工作在低频段,常见的频率包括:  1.3.58 MHz 和 4.00 MHz:常用于遥控器、玩具及低速通信设备。  2. 6.00 MHz - 8.00 MHz:适合微控制器和消费电子设备。  3. 10.00 MHz - 16.00 MHz:广泛用于微处理器时钟、电器控制系统等。  4. 20.00 MHz - 30.00 MHz:适用于通信模块、时序控制等高频需求设备。  这些频率段满足不同电子设备对稳定频率控制的需求,具有成本低、性能可靠的优势。
关键词:
发布时间:2024-12-19 10:17 阅读量:167 继续阅读>>
江西萨瑞微<span style='color:red'>电子</span>:入门开关电源必备:功率开关管指南
  开关电源是一种高频化电能转换装置,是电源供应器的一种。其功能是将一个位准的电压,透过不同形式的架构转换为用户端所需求的电压或电流。开关电源的核心部件是功率开关管,是一个至关重要的组件。它负责控制电流的导通和截止,实现电能的转换和调节。  在众多功率开关管中,MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金属氧化物半导体场效应晶体管)因其优异的性能而被广泛应用。本文将详细介绍 MOSFET 的工作原理、特性、选型以及在开关电源中的应用。  MOSFET的工作原理  MOSFET 是一种电压控制型器件,通过栅极电压来控制漏极和源极之间的电流。它主要由栅极(G)、漏极(D)和源极(S)三个电极组成,其中栅极与源极之间由一层绝缘层隔开。  当栅极电压为零时,MOSFET 处于截止状态,漏极和源极之间没有电流流过。当栅极电压超过一定阈值时,绝缘层下方会形成一个导电沟道,使得漏极和源极之间导通,电流可以流过 MOSFET。通过控制栅极电压的大小,可以调节导电沟道的宽度,从而控制漏极电流的大小。  功率MOSFET的内部结构与电气符号如图下所示。图(a)给出的是具有双扩散结构的垂直沟道 MOSFET示意图,这也是最成功的产品设计之一。MOSFET 的电气符号如图(b)所示,其极性有N沟道和P沟道两种,其中N沟道功率MOSFET应用最多、功率 MOSFET的内部结构使其寄生了一个一极管,称之为体二极管。这个二极管具有和MOSFET相同的工作频率,可以作为高频整流管来使用。现今的同步整流技术就利用了这个体二极管。正常工作时、体二极管处于反向截止状态,不影响MOSFET的开/关操作。  功率 MOSFET是增强型MOSFET,对于N沟道MOSFET,UGS施加正极性电压,产生漏极电流;对于P沟道MOSFET,UGS需要施加负极性电压才会产生极电流。  功率MOSFET属于电压控制型半导体元件,当UGS施加一定的电压时,在源极和漏之间会形成较大的电流,这就是功率MOSFET的放大效应。下面以N沟道功率MSFET为例、介绍其工作原理。  功率 MOSFET属于电压控制型半导体元件  功率MOSFET的工作原理与特性曲线如图下所示。其中图(a)为工作原理,图(b)为转移特性曲线,图(c)为输出特性曲线。如图(a)所示,功率MOSFET工作时,需要施加正极性的UGS和UDS,只要在栅极施加一定的电压,就会在漏极产生较大的电流ID。由于MOSFET的输入阻抗很高,栅极电流极小,因此极电流ID与源极电流IS相等,通常将流过源极的电流也称为漏极电流ID,并以此来计算电路参数。  功率MOSFET的栅极对源极电压(简称栅-源电压)UGS与漏极电流ID的关系曲线图(b)所示,该曲线称为MOSFET的转移特性。可以看出,当UGS从(0~UGSth)变时,漏极电流 ID始终为零、功率MOSFET 处于截止(关断)状态;当UGS大于 UGSth以后,随着UGS的增加漏极电流ID开始迅速增大,功率MOSFET处于导通状态。功率UGSth是功率MOSFET导通与关断的切换点电压,该电压叫做开启电压或值电压。MOSFET的开启电压通常在2~4V之间。  功率 MOSFET的输出特性曲线如图 (c)所示,图中描述了栅-源电压 UGS、漏极电流ID与漏极对源极电压(简称漏-源电压)UDS之间的关系曲线。输出特性曲线可分为截止区、饱和区和电阻区三个区域。当UGS小于开启电压UGsth的时候,MOSFET处于截止区(关断状态),此时漏极电流很小,并且不随UDS的大小变化,该电流被称为漏电流,通常用IDSS来表示。开关电源的功率开关管关断时就处于截止区。在电路分析计算时,可以认为漏电流为零。  随着UGS升高,功率MOSFET开始产生更大漏极电流,进入导通状态。此时,如果较大,MOSFET将工作在图(c)所示饱和区。在饱和区的时候,漏极电流只与UGS大小有关,而与UDS大小无关。也就是说,此时极漏电流ID处于恒定电流状态,因此,饱和区也称为恒流区。  功率 MOSFET的饱和区和双极型晶体管的放大区特性基本相同。如图(c)所示,通常用漏极电流ID的变化量ΔID与栅-源电压UGS的变化量ΔUGS的比值,来描述MOSFET的放大能力,称为正向跨导,常用gfs来表示。漏极电流ID越大的功率MOSFET,其正向跨导值gfs也越大。  功率MOSFET进入导通状态时,如果漏-源电压UDS较低,MOSFET将处于电阻区如图(c)所示,该区域位于UDS=UGS-UGS(th)边界线的左侧。在该区域 MOSFET的漏极与源极之间呈现为固定电阻,该电阻被称为导通电阻,常用RDS(ON)来表示。如果漏-源电压UDS为零,则无论栅-源电压UGS为多少,漏极电流ID也会变为零。RDS(ON)的阻值与UGS的大小有关,因此该区域也称为可变电阻区或欧姆区。开关电源的功率开关管导通时就处在该区域。因此,即使漏极电流ID很大,也可通过选择较低RDS(ON)的功率MOSFET,来保持较低的导通损耗。  功率MOSFET的使用注意事项  (1)关于漏极电压  在开关电源中,选择功率MOSFET时,首先要考虑击穿电压。由于MOSFET不存在二次击穿现象,电压余量可以选小一些,通常按MOSFET的击穿电压UDSS为功率开关管承受最大电压的1.2~1.4倍即可。  (2)关于漏极电流  由于多数功率MOSFET的最大漏极电流IDM为额定漏极电流ID的3~4倍,因此,电流余量也可以选小一些,通常选择MOSFET漏极电流ID为功率开关管的最大极电流的1.5~2倍即可。  需要说明:功率MOSFET参数表中给出的额定漏极电流ID,通常是在其外壳温度T为25℃时的参数值。当MOSFET外壳温度升高的时候,其额定漏极电流ID将会下降。图给出了IRF840的漏极电流和外壳温度的关系曲线。可以看出,T为25℃时,ID为8A;当T为75℃时,ID下降为6A;当T为100℃时,ID下降为5A。这表明当功率MOSFET工作在高温环境时,应该选择额定漏极电流ID更大MOSFET,以便满足高温时的漏极工作电流要求。  (3)关于导通电阻  通常额定漏极电流ID较小的 MOSFET,其导通电阻RDS(ON),较大。在漏极电流较大的时候,功率开关管的导通损耗也会较大,为了降低导通损耗,应该选择导通电阻RDS(ON)较小的功率MOSFET。  此外,导通电阻RDS(ON)还会随着漏极电流ID的增加而变大。图给出了IRF840的导通电阻和漏极电流的关系曲线。可以看出,当ID为5A时,RDS(ON)不到0.7Ω,当ID为10A时,RDS(ON)大约0.8Ω;当ID为20A时、RDS(ON)将达到1.2Ω 左右。  (4)关于栅极电压  前文说过,RDS(ON)的阻值与UGS的大小有关。但是,当UGS大到一定程度(一般为10V以上),RDS(ON)的阻值基本不再变化。图也给出了UGS为10V和20V时RDS(oN)的阻值曲线,可以看出其差异不大。因此,功率MOSFET驱动电路的输出电压应该大于10V,通常选择为12~15V。  (5)关于输入电容  虽然功率MOSFET的输入阻抗很高,但其栅极G与源极S之间存在较大的输入电容。根据生产厂家和制造工艺的不同,输入电容C的容量差异也较大。为了提高开关速度,减小驱动电路的负载,应选择输入电容C较小的功率MOSFET。  此外,为了提高开关速度,需要给输入电容快速的充放电,这就要求驱动电路能够提供很大的峰值电流,该电流通常可达1~2A,但持续时间通常不到100ns。这也说明,虽然功率MOSFET驱动电路的功耗很小,但仍然需要输出很大的峰值电流。  (6)关于管壳温度  和双极型晶体管一样。当功率MOSFET的管壳温度升高时,最大允许电流及功耗会明显下降。同时,高温也会使导通电阻RDS(ON)的增大,产生更大的导通损耗。因此,许多厂家在其器件参数表中直接给出了T为100℃时允许的漏极电流值或者给出了高温降额曲线。读者一定要根据功率开关管的实际工作温度来修正最大允许漏极电流ID的参数值。  MOSFET 在开关电源中的应用  MOSFET 在开关电源中有广泛的应用,主要包括以下几个方面:  1. 主开关管:在正激、反激、半桥、全桥等拓扑结构的开关电源中,MOSFET 作为主开关管,控制电能的转换。  2. 同步整流管:在一些高效率的开关电源中,采用同步整流技术,用 MOSFET 代替二极管作为整流管,以降低整流损耗,提高效率。  3. 辅助开关管:在一些开关电源中,需要使用辅助开关管来实现软开关、同步整流等功能。  4. 保护电路:MOSFET 可以用于过流保护、过压保护等保护电路中,当出现异常情况时,及时切断电路,保护开关电源和负载。  MOSFET 的驱动电路  MOSFET 的驱动电路是开关电源中的重要组成部分,它负责将控制信号转换为合适的栅极电压,以控制 MOSFET 的导通和截止。驱动电路的设计需要考虑以下几个因素:  1. 驱动能力:驱动电路需要提供足够的驱动电流,以确保 MOSFET 能够快速导通和截止。  2. 栅极电:驱动电路需要提供合适的栅极电压,以保证 MOSFET 能够可靠地导通和截止。  3. 隔离要求:在一些应用中,需要将驱动电路与控制电路进行隔离,以提高系统的安全性和可靠性。  4. 保护功能:驱动电路需要具备过流保护、短路保护等功能,以保护 MOSFET 和驱动电路本身。  结论  MOSFET 作为开关电源中的关键组件,其性能直接影响到开关电源的效率、可靠性和成本。在设计开关电源时,需要根据具体的应用要求,选择合适的 MOSFET,并设计合理的驱动电路和散热方案。通过对 MOSFET 的深入了解和合理应用,可以设计出高性能、高效率的开关电源。
发布时间:2024-12-17 15:06 阅读量:169 继续阅读>>
村田<span style='color:red'>电子</span>:应对传感器噪声的对策和推荐电路
  传感器是“IoT (Internet of things)”和“自动驾驶”的重要元件,今后也将广泛地搭载于各种机器设备上。各种传感器的性能提升显著,能够将信息更多更精细地传送。另一方面,我们也看到一些由于传感器感知到的信息没有被正确地传送出去而造成了严重的事故。  为了避免噪声导致的误操作,各种传感器的静噪对策非常重要不可或缺。  随着MEMS技术的发展,现在One chip传感器已经成为主流。为此,本文将以One chip传感器(数字输出型)为例,探讨误操作发生的原理和静噪对策方法。  02、噪音如何导致传感器误操作?  One chip传感器主要由信号、电源、GND三种线构成。而信号线是用了时钟和数据等多根线进行通信的。考虑各根线在施加了噪声后的影响。  向数字信号线施加噪声时,噪声引起的超过高/低阈值而被误判断时,无法正常通信从而发生误操作(下图)。实际为加速度传感器的数字信号线加入噪声做评估,确认通信会发生停止。  模拟前端包含增幅电路和A/D转换电路,当这些电路的电源变动没有正常工作时,会输出异常值从而发生误操作(下图)。实际为加速度传感器的电源线加入噪声做评估,确认输出会出现紊乱。  从上面两种情况可以看出,One chip传感器的信号线或电源线施加噪声时,会发生通信停止或输出值紊乱的误操作。  本文即为您介绍一种使用EMI滤波器抑制噪声传播的有效方法。  03、静噪对策:要点及推荐电路  用于传感器静噪对策的滤波器要求满足以下条件:  通过设备工作所需的电源或信号线;  屏蔽造成误操作的噪声。  One Chip传感器有许多种类和型号,针对造成误操作的噪声所需的滤波器也各有不同。这是因为对滤波器所要求的2个条件,与传感器是相通的:  通过设备工作所需的电源或信号线:  →One Chip传感器的接口(IC引线)统一化;  屏蔽造成误操作的噪声:  →施加的噪声是抗扰性测试规格内的。  此外,滤波器的贴装位置在传感器附近效果较好。  电源线的静噪对策,适合从低频到高频的宽幅带宽下插入损耗较大的滤波器。  仅使用电容器的情况下,需要低频端的大容量电容器和为获得高频端插入损耗的低ESL电容器。  使用电容器和电感器组合的情况下,可使插入损耗显著增加。传感器比电感器配置足够的容量,构成多段结构,可形成有效的静噪滤波器。  信号线的静噪对策:作为信号线(数据/时钟)的静噪对策,通过的信号频率需要插入损耗小的滤波器。  噪声级别小或信号和噪声的频率相差大的情况下,可以只用电容器进行降噪,但如果信号频率和噪声频率相近时,需要电感器和电容器组合来构成插入损耗陡峭的滤波器。  信号线的静噪对策  需要注意的是,将电感器插入特定线时,线路变得不平衡而转换成普通模式(电位差),误操作可能进一步恶化。插入电感器时很重要的一点是,全线使用同一型号。铁氧体磁珠是电感型滤波器,不仅具有高阻抗可以阻止噪声,铁氧体还能够吸收噪声能量,可以得到更好的静噪效果。  推荐电路  用于数字One chip传感器的接口一般有I2C和SPI两种。这里,我们针对One chip传感器,推荐静噪对策滤波器和相应电路。  I2C对象接口:  其信号频率为100kbps(50kHz)、400kbps(200kHz)、3.4Mbps(1.7MHz)等等,最大約为2MHz;  其截止频率(信号频率×5)为10MHz。  I2C接口推荐电路  I2C接口信号线插入损耗  I2C接口电源线插入损耗  SPI对象接口:  其信号频率信号频率1~2Mbps(1MHz)、20Mbps(10MHz)等等,最大 10MHz;  其截止频率(信号频率×5)50MHz。  SPI接口推荐电路  SPI接口信号线插入损耗  SPI接口电源线插入损耗  用于数字One chip传感器的接口,无论是I2C还是SPI,信号频率并不是一定的,如果滤波器需要对应的截止频率I2C为10MHz,SPI为50MHz,适合使用上述滤波器。  04、应用事例  下面,我们以“车载设备用的传导抗扰度规定BCI测试”为设想来介绍防止传感器误操作的对策。  以车载设备为例研究传感器误操作发生的情况对电源线和信号线的噪声影响。  电源线的静噪对策  传感器的电源线受噪声影响,会发生传感器输出值的异常(输出误差)。将注入电源线的噪声级固定,对对策前后的输出误差的大小进行调查。传感器输出值发生误操作的起因是“电源线的常态噪声”,在传感器附近插入0.1uF的低ESL电容器。这样一来,传感器的输出误差降到了1%以下。  电源线的静噪对策事例  需要进一步静噪对策时,像前文介绍的,可运用电感器和电容器组合成π型滤波器进行对策。  信号线的静噪对策事例  传感器的信号线收到噪声影响,传感器的通信会发生停止。提高注入的噪声水平,调查能够正常工作(不发生误操作)的水平极限。  初期:误操作耐性根据频率不同而明显不同。(此事例为100MHz和250MHz,耐性较低。)  对策①,追加电容器改善100/250MHz的耐性  对策②,用铁氧体磁珠和电容器构成滤波器改善200/250MHz的耐性  对策③,为了取得平衡,将π型滤波器加在电源线,GND线上追加铁氧体磁珠,从而改善全频率范围的耐性  可看到使用对策③(推荐电路),全频带的噪声耐性良好(下图):  信号线的静噪对策事例对比  05、总 结  本文介绍了传感器噪声对策的必要性和推荐电路,以及可能的难点。村田制作所能够为您提供上述“噪声造成传感器误操作的原理”和“对策事例”中介绍的产品。
关键词:
发布时间:2024-12-17 14:51 阅读量:170 继续阅读>>
杭晶<span style='color:red'>电子</span>:晶振等级介绍
  晶振作为电子设备的核心组件,根据不同使用环境,分为以下四大等级,每种等级对应不同的性能需求和应用场景:  消费电子用晶振(-20°C 至 +70°C)  特点:适用于温度变化较小的室内环境。  应用:广泛用于手机、智能家居、电脑等日常电子设备,满足一般稳定性需求。  工业级晶振(-40°C 至 +85°C)  特点:具备较强的抗高温、抗湿度和抗振动能力,可适应较恶劣的工业环境。  应用:应用于工业控制设备、自动化仪器和监控系统。  车规级晶振(-40°C 至 +125°C)  特点:需通过严格的AEC-Q200认证,具有抗震、耐高温和长期可靠性。  应用:广泛用于车载导航、娱乐系统和高级驾驶辅助系统(ADAS)。  军工级晶振(-55°C 至 +125°C)  特点:能应对极端温度、强振动和高辐射环境,可靠性极高。  应用:航空航天、军用通信、导弹控制等高要求领域。  y根据使用环境选择合适等级的晶振,不仅能提升设备性能,还能确保在各种复杂条件下的稳定运行。  苏州杭晶电子科技有限公司成立于2014年,专注于石英频率控制元件之研发、设计、生产与销售,是研产销一体的科技中小型企业。  通过专业的团队组合及先进之生产技术,搭建起石英晶体、晶体振荡器、晶体滤波器、温度补偿型及电压控制型产品等多条完整的产品线。  在压电晶体行业,杭晶电子的技术、质量均处于领先地位。  产品应用范围涵盖移动电话、平板电脑、卫星通讯、车载系统、全球定位系统、个人电脑、无线通信及家用产品等,扮演基本信号源产生、传递、滤波等功能。  持续致力于技术研究开发及品质落实扎根,营运据点遍布香港、台湾、北京、深圳、成都、上海、杭州、苏州等世界各地。使杭晶得以提供服务予世界电子大厂!
关键词:
发布时间:2024-12-13 10:08 阅读量:301 继续阅读>>
航顺芯片:基于HK32F0301MC系列MCU<span style='color:red'>电子</span>烟方案
  一、电子烟的市场与规模增长  全球电子烟市场规模在2022年达到了347.3亿元人民币,同比增长17.61%,2015年至2022年市场规模年复合增长率接近27.05%。中国市场在2022年的电子烟产值达到625.4亿元人民币,同比增长8.1%,2015年至2022年复合增长率接近29.41%。  二、电子烟市场分部  全球电子烟需求主要集中在欧洲和美洲地区,预计 2028 年欧洲地区电子烟市场规模约 115 亿美元,美洲地区 2028 年电子烟市场规模预计达 122 亿美元。非洲市场增速快,2022 至 2028 年 CAGR 为 9.5%。  电子烟市场在全球范围内保持着快速增长的势头,特别是在中国市场,电子烟行业正逐渐替代传统卷烟成为烟民的新选择,市场规模和渗透率有望进一步提升。同时,随着政策的逐步出台和监管的加强,电子烟行业的经营将更加规范化。  三、航顺电子烟方案  基于航顺HK32F0301MC设计电子烟,通过高级定时器输出PWM到MOS 驱动,MOS驱动控制MOS管升降压,同时将负载阻值、输出功率等信息送显示,短路保护模块,检测MOSFET工作时两端的压差,压差超过设定阈值时,关闭MOSFET,停止工作,精准的加热丝阻抗测量功能和ADC采集电流,形成过吸保护,让电子烟更智能、用户体验更好。可以从多个方面带来显著的好处,HK32F0301MC方案是对舒适度、烟雾检测准确性、电池续航能力、可靠性及安全性。  产品系统框图  航顺HK32F0301MC系列MCU主要规格      >CPU 内核ARM® CortexTM-M0  >最高时钟频率:48MHz  >24 位System Tick 定时器  >支持中断向量重映射(通过Flash 控制器的寄存器配置)工作电压范围:2.4 V ~ 5.5 V产品概述  工作温度范围:-40°C ~ +105°C  典型工作电流:       >运行(Run)工作模式:2.751 mA@48 MHz@5V  >睡眠(Sleep)模式:0.997 mA@48 MHz@5V  >停机(Stop)模式:373.354 μA@5V(LDO 正常工作)  >低功耗停机(Low-power Stop)模式:6.876μA@5V(LDO 低功耗)      16 KByte Flash(64 页,每页256 Byte;32 位数据读,32 位数据写)      >Flash 具有数据安全保护功能,可分别设置读保护和写保护  >4 KByte SRAMCRC 校验硬件单元  >时钟片内高速时钟(HSI):48MHz  >片内慢速时钟(LSI):60 kHz  >GPIO 外部输入时钟:32MHz(最大值)复位NRST 引脚上的低电平(外部复位)  >窗口看门狗事件(WWDG 复位)  >独立看门狗事件(IWDG 复位)  >电源复位  >软件复位(SW 复位)  >低功耗管理复位GPIO 端口最多支持18 个GPIO 端口  >每个 GPIO 都可作为外部中断输入  >内置可开关的上、下拉电阻  >支持开漏(Open-Drain)输出  输出驱动能力可配IOMUX 引脚功能多重映射控制器小型封装(如 SOP8/TSSOP16)产品,可通过IOMUX 可以实现单根引脚对应多个GPIO 或外设IO 的映射控制。数据通信接口2 路高速(最高6 Mbit/s)UART  1 路高速(最高400 kbit/s)I2C:MCU 在Stop 模式下,支持数据接收唤醒  1 路高速(最高18 Mbit/s)SPI定时器及 PWM 发生器1 个 16 位高级PWM 定时器(共4 路PWM 输出,3 路带死区互补输出)  1 个 16 位通用PWM 定时器(共4 路PWM 输出)  1 个 16 位基本定时器(支持CPU 中断)  1 个自动唤醒定时器(AWUT),可用于MCU 停机(Stop)模式下工作片内模拟电路产品概述 1 个 12 位1 MSPS ADC(最多7 路外部模拟输入通道和2 路内部通道,支持差分对输入)  1 个上/下电复位电路  1 个欠压复位电路  1 个内部参考电压(内部参考电压在片内被ADC 采样)       CPU 跟踪与调试       SWD 调试接口  >ARM® CoreSightTM 调试组件(ROM-Table,DWT,BPU)  >自定义DBGMCU 调试控制器(低功耗模式仿真控制、调试外设时钟控制、调试及跟踪接口分配)     ID 标识     每颗HK32F0301MxxxxC 芯片提供一个唯一的96 位ID 标识      可靠性      通过HBM7000V/ CDM2000V /LU800mA 等级测试
关键词:
发布时间:2024-12-09 13:14 阅读量:195 继续阅读>>
杭晶<span style='color:red'>电子</span>:晶振在AR/VR中的应用
  晶振在AR/VR设备中扮演重要角色,为其核心电子系统提供稳定的时钟信号,确保设备的高性能运行。  以下是晶振在AR/VR应用中的具体作用:  01、图像处理与同步  1、晶振为图形处理单元(GPU)和显示芯片提供精准的时钟信号,支持高速图像渲染和刷新率,减少延迟和画面撕裂现象。  2、支持高刷新率(如90Hz、120Hz)和低延迟,提升用户体验。  02、定位与跟踪系统  在AR/VR中的运动跟踪设备(如IMU传感器)中,晶振提供高精度的时钟信号,保证定位系统的稳定性与实时性。  03、无线通信模块  支持Wi-Fi、Bluetooth和5G通信,提供高稳定频率以满足无线传输中的低延迟和高带宽需求。  04、音频信号处理  在AR/VR的3D音频处理模块中,晶振帮助保持音频信号与视觉效果的同步,实现沉浸式体验。  05、边缘计算支持  高性能的晶振(如TCXO、OCXO)为设备提供抗温漂、高精度的频率支持,确保AR/VR在复杂环境下的计算稳定性。  晶振在AR/VR设备中通过提供高稳定性、高精度的时钟信号,支撑了设备在视觉、音频、通信和定位等核心模块的功能,是实现沉浸式体验的基础组件之一。  使用频率  在AR/VR设备中,常用的晶振频率根据应用场景的不同有所差异,以下是主要使用频率:  1、32.768 kHz  用于实时时钟(RTC)模块,提供低功耗的时间参考。  2、16 MHz 和 19.2 MHz  适合主控处理器、蓝牙和Wi-Fi通信模块,支持设备基础功能的运行。  3、26 MHz 和 40 MHz  常用于高性能通信芯片(如5G)和精密传感器,为定位和实时数据处理提供支持。  4、48 MHz 到 100 MHz  为高性能图形处理单元(GPU)和显示驱动芯片提供时钟支持,满足高刷新率和低延迟需求  5、高精度晶振(TCXO/OCXO)  如10 MHz、20 MHz  用于需要高稳定性的模块,如头戴设备中的惯性导航系统和音视频同步模块。  AR/VR的晶振选择需综合考虑性能、功耗和稳定性,以满足设备运行需求。
关键词:
发布时间:2024-12-04 10:03 阅读量:213 继续阅读>>
杭晶<span style='color:red'>电子</span>:温补晶振TCXO在导航/定位中的应用
  温补晶振(TCXO)在导航和定位设备中至关重要,其应用主要包括以下方面:  1. 高精度信号生成:在GPS、北斗等导航系统中,TCXO为接收机提供精准的参考频率,确保信号处理的准确性。  2.抗温度漂移:TCXO通过温度补偿技术维持频率稳定性,适应导航设备在多变环境下的性能需求。  3. 低功耗设计:在便携式导航设备(如车载GPS和智能穿戴)中,TCXO的低功耗特性延长了电池寿命。  4. 应用场景多样化:广泛用于智能手机、无人机和车联网等定位系统,提升了导航性能和用户体验。  TCXO以其高稳定性、可靠性和微型化设计成为导航和定位设备的核心元件之一。  导航设备中常用的晶振频率主要包括:  1. 26 MHz:广泛用于GPS接收器,为射频电路提供稳定的参考频率。  2. 16.368 MHz 和 19.2 MHz:常见于GNSS模块中,支持多模导航系统(如GPS、北斗、GLONASS)。  3. 32.768 kHz:作为低功耗系统的实时时钟(RTC)频率来源。  这些频率因其高稳定性和兼容性,被广泛应用于车载导航、智能手机、手持定位设备等领域。  关于杭晶  杭晶可提供多种封装TCXO,稳定度±0.5ppm@-40+85C 。  苏州杭晶电子科技有限公司成立于2014年,专注于石英频率控制元件之研发、设计、生产与销售,是研产销一体的科技中小型企业。  通过专业的团队组合及先进之生产技术,搭建起石英晶体、晶体振荡器、晶体滤波器、温度补偿型及电压控制型产品等多条完整的产品线。  在压电晶体行业,杭晶电子的技术、质量均处于领先地位。  产品应用范围涵盖移动电话、平板电脑、卫星通讯、车载系统、全球定位系统、个人电脑、无线通信及家用产品等,扮演基本信号源产生、传递、滤波等功能。
关键词:
发布时间:2024-11-29 10:26 阅读量:228 继续阅读>>
法雷奥与罗姆联合开发新一代功率<span style='color:red'>电子</span>领域
  业界先进的汽车零部件制造商Valeo Group(以下简称“法雷奥”)与全球知名半导体及电子元器件制造商ROHM Co., Ltd.(以下简称“罗姆”)将通过结合双方在功率电子领域的专业知识和技术优势,联合开发面向牵引逆变器的新一代功率模块。作为双方合作的第一步,罗姆将为法雷奥的新一代动力总成解决方案提供碳化硅(SiC)塑封型模块“TRCDRIVE pack™”。  法雷奥从电动摩托车等小型车辆到主流轿车,甚至大型电动卡车,跨越各种车辆类型和市场,扩大了高效电动移动出行的支持领域。此次合作将法雷奥拥有的机电、热控制以及软件开发的专业知识与罗姆的功率模块相结合,推动功率电子解决方案,助力全球汽车系统的性能和效率提升以及节能减排。  法雷奥和罗姆自2022年开始合作以来,一直在开展旨在提高牵引逆变器性能和效率的技术交流,而牵引逆变器是电动汽车(EV)和插电式混合动力汽车(PHEV)推进系统的重要组成部分。双方致力于通过改进功率电子技术来优化冷却系统和机电一体化,以改善散热性能、提高效率,从而优化性价比。另外,还通过采用碳化硅封装来提高整个系统的可靠性。  稳固的合作关系:法雷奥和罗姆利用双方的优势和密切的交流,实现高性能动力总成系统。  法雷奥电源逆变器平台总监 Nicolas GELEZ(右)、  法雷奥动力采购副总裁 Christophe CHEVALIER(中)、  罗姆半导体欧洲总裁 Wolfram HARNACK(左)  法雷奥动能系统事业部首席执行官Xavier Dupont表示:“对于法雷奥动能系统事业部来说,此次合作意味着在提供先进且高效率功率电子产品方面向前迈出重要一步。双方将共同致力于通过建立高耐压逆变器的新行业标准,加快向更高效、更经济电动出行的转型速度。”  罗姆半导体欧洲总裁Wolfram HARNACK表示:“很高兴罗姆的功率半导体能够为汽车零部件行业的领航企业法雷奥提供支持。罗姆的TRCDRIVE pack™实现了高功率密度,有助于提高功率转换效率。我们将通过与法雷奥的合作,为高效率动力总成系统的开发贡献力量。”  这些突破对于满足延长续航里程、实现高速充电功能以及适用于BEV和PHEV的性能高且经济实惠的逆变器等需求而言至关重要。  法雷奥计划于2026年初开始供应该项目的第一批产品。法雷奥和罗姆将共同为新一代xEV逆变器的效率提升和小型化贡献力量。  关于TRCDRIVE pack™的背景  TRCDRIVE pack™是牵引逆变器驱动用碳化硅塑封型模块的专用商标。该商标产品的功率密度高,并采用罗姆自有的引脚排列方式,有助于解决牵引逆变器需要解决的小型化、效率提升和减少工时等主要课题。碳化硅功率器件能够在高电压条件下以很低的损耗进行功率转换,因此将法雷奥的组件技术和外壳加工技术以及热控制技术优势与罗姆的功率模块技术优势相结合,将会产生协同效应。法雷奥和罗姆通过在车载功率电子领域的合作,来提高牵引逆变器的性能和效率,从而为实现无碳社会做出贡献。  如需了解更多信息,欢迎访问TRCDRIVE pack™页面:  https://www.rohm.com.cn/news-detail?news-title=2024-06-11_news_trcdrive-pack&defaultGroupId=false  ・TRCDRIVE pack™是ROHM Co., Ltd.的商标或注册商标。  关于法雷奥  法雷奥作为一家技术公司,是全球汽车制造商和新型交通参与者的合作伙伴。公司始终积极创新,致力于打造更安全且更智能、可持续的移动出行。法雷奥在电动化、驾驶辅助系统、舱内体验重塑和照明技术这四个领域拥有行业先进的技术和领导者地位,是移动出行变革进程中的重要发展原动力。  法雷奥相关数据:2023年销售额达220亿欧元,拥有109,600名员工,业务遍及全球28个国家,拥有159家工厂,64个研发中心,19个销售平台(截至2024年6月30日)  https://www.valeo.com/cn/  法雷奥已在巴黎证券交易所上市。  关于罗姆  罗姆是成立于1958年的半导体及电子元器件制造商。通过铺设到全球的开发与销售网络,为汽车和工业设备市场以及消费电子、通信等众多市场提供高品质和高可靠性的IC、分立半导体和电子元器件产品。在罗姆自身擅长的功率电子领域和模拟领域,罗姆的优势是提供包括碳化硅功率元器件及充分地发挥其性能的驱动IC、以及晶体管、二极管、电阻器等外围元器件在内的系统整体的优化解决方案。https://www.rohm.com.cn/
关键词:
发布时间:2024-11-26 17:26 阅读量:247 继续阅读>>

跳转至

/ 57

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
TL431ACLPR Texas Instruments
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
型号 品牌 抢购
STM32F429IGT6 STMicroelectronics
BP3621 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
ESR03EZPJ151 ROHM Semiconductor
TPS63050YFFR Texas Instruments
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。