禹创半导体全新小封装BLDC预驱动IC介绍
  随着科技的飞速发展,我们欣喜地宣布,禹创半导体近日推出了全新的小封装单相无刷直流(BLDC)预驱动IC——ERD1101及ERD1102,为我国长期被日美欧品牌占据主导地位的马达产业注入了一股强劲的国产力量。  自 2018 年成立以来,禹创半导体一直致力于技术创新与产品研发,先后推出了 LCD 驱动 IC,AMOLED 驱动 IC 和多串锂电池保护IC等产品。2024 年禹创新推出了马达驱动IC,完成了公司产品线的三大布局。禹创半导体的马达团队来自国际大厂: TI 及安森美(三洋)的马达团队,平均拥有 20 年的马达 IC 设计年资,具有丰富的设计经验及对马达市场细致的了解。除了ERD1101/ERD1102,接下来半年内我们将陆续推出内置 MOSFET 的单相无刷直流驱动马达 IC: ERD100x 系列,以满足客户不同的应用需求。  ERD1101是一款开环的单相无刷直流(BLDC)预驱动IC,配合不同的外置MOSFET,可适用于12V/24V/48V电压,以及各种大电流的应用,主要应用于电脑处理器,显卡,电源模组的冷却风扇,冰箱的循环风扇。而ERD1102则是一款闭环的单相无刷直流(BLDC)预驱动IC。这两款IC采用了引脚兼容的设计,可轻松应用于同一PCB上的开环和闭环设计。为了减少PCB的面积,ICs采用了QFN16 3*3的小型化封装。  马达是各种电子设备中不可或缺的关键部件,尽管它们在我们的日常生活中隐形存在,却承载着重要的功能。冷气机、冰箱、洗衣机、吸尘器、打印机、电脑、汽车等各类设备都依赖于各种马达的工作。为了满足对马达稳定性和耐用性的高要求,我们在ERD1101/ ERD1102内置了锁定检测、过热保护、欠压保护和限流保护等功能,以更好地保护IC免受外界因素的损害。此外,我们还提供了GUI界面来控制IC内部的各种参数,从而大大缩短了开发周期。QFN3*3的封装使到客户可以将它应用在更小的空间,从而达到小型化的要求。在ERD1101/ ERD1102推出市场之前,我们已经得到两岸多家客户的评估及品质验证。随着2024年Q1的量产,我们相信很快就可以在市场上看到采用ERD1101/ ERD1102的产品了。  随着科技的发展,AI和机器人成为了现今科技界最热门的话题。在这个充满活力的领域,马达IC也扮演着重要的角色。我们相信马达产业的奇异点即将到来,禹创半导体布局马达驱动IC不仅可以参与这第四次工业革命的浪潮,还将为我国的人形机器人产业提供强大的后盾。
关键词:
发布时间:2024-12-17 15:50 阅读量:207 继续阅读>>
安森德多层外延高压超结MOS助力高端功率器件国产化
  总部位于深圳的安森德半导体有限公司(ASDsemi)成立于2018年,是一家更懂应用的模拟芯片和系统级芯片设计公司,致力于为全球客户提供半导体功率器件和模拟IC,产品覆盖功率器件:中低压 、高压、超结MOSFET,第三代半导体SiC、GaN;模拟芯片:电源管理芯片、信号链芯片;SiP系统级芯片三大类产品线。产品可广泛应用于工业电源、电机驱动、消费电子、新能源、光伏储能等众多领域,并与全球顶尖企业在技术与业务方面进行深入合作。先后获得国家高新技术企业,创新型中小企业,科技型中小企业等荣誉资质。  安森德高压超结MOS,使用行业最通用的多层外延工艺,经过资深的研发团队多年的研发和技术积累,成功的把22mΩ到1.6Ω成系列的产品实现了量产并推向市场,电压范围覆盖500V、600V、650V、700V、800V、900V、封装包括TO-247、TO-263、 TO-220、 TO-252、 TOLL、 DFN 8*8等主流封装形式。  拥有20多年海内外著名功率半导体公司工作经验的研发团队,保证了产品设计处于行业领先水平。安森德高压超结MOS选用国际领先的晶圆代工厂进行流片,国内一流的封装厂进行封装,选用的晶圆厂和封装厂都通过了TS16949, ISO9001等质量体系认证,保证了产品生产的可靠性和一致性。  已经实现量产的ASJ028N60L2H-T,最小Rdson达到了业内领先的22mΩ水平,全可靠性的测试认证保证了该产品适用于各种高端场合应用:通讯电源、服务器电源、工业电源、充电桩等。高性价比的ASJ037N65L2H-T(650V/37mΩmax), 在保持优秀的开关损耗的同时,改善了EMI和EAS性能,大大提高了客户系统的效率和性能,能够很好应对苛刻条件下的的产品设计。  最新推出的650V,180mΩmax产品成功的实现TO-252的封装,是业内能把200mΩ以下产品封装到TO-252封装的少数厂家之一。  安森德半导体在致力于为全球客户提供领先的半导体功率器件和模拟IC的道路上不断地探索,即将推出的600V、18mΩ、TO-247封装和650V,40mΩ, TOLL封装产品,将能为客户提供更优异性能和更先进封装的产品选择。  安森德高压超结MOS将在助力高端功率器件国产化的道路上不断前进。
关键词:
发布时间:2024-12-17 15:46 阅读量:179 继续阅读>>
江西萨瑞微电子:入门开关电源必备:功率开关管指南
  开关电源是一种高频化电能转换装置,是电源供应器的一种。其功能是将一个位准的电压,透过不同形式的架构转换为用户端所需求的电压或电流。开关电源的核心部件是功率开关管,是一个至关重要的组件。它负责控制电流的导通和截止,实现电能的转换和调节。  在众多功率开关管中,MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金属氧化物半导体场效应晶体管)因其优异的性能而被广泛应用。本文将详细介绍 MOSFET 的工作原理、特性、选型以及在开关电源中的应用。  MOSFET的工作原理  MOSFET 是一种电压控制型器件,通过栅极电压来控制漏极和源极之间的电流。它主要由栅极(G)、漏极(D)和源极(S)三个电极组成,其中栅极与源极之间由一层绝缘层隔开。  当栅极电压为零时,MOSFET 处于截止状态,漏极和源极之间没有电流流过。当栅极电压超过一定阈值时,绝缘层下方会形成一个导电沟道,使得漏极和源极之间导通,电流可以流过 MOSFET。通过控制栅极电压的大小,可以调节导电沟道的宽度,从而控制漏极电流的大小。  功率MOSFET的内部结构与电气符号如图下所示。图(a)给出的是具有双扩散结构的垂直沟道 MOSFET示意图,这也是最成功的产品设计之一。MOSFET 的电气符号如图(b)所示,其极性有N沟道和P沟道两种,其中N沟道功率MOSFET应用最多、功率 MOSFET的内部结构使其寄生了一个一极管,称之为体二极管。这个二极管具有和MOSFET相同的工作频率,可以作为高频整流管来使用。现今的同步整流技术就利用了这个体二极管。正常工作时、体二极管处于反向截止状态,不影响MOSFET的开/关操作。  功率 MOSFET是增强型MOSFET,对于N沟道MOSFET,UGS施加正极性电压,产生漏极电流;对于P沟道MOSFET,UGS需要施加负极性电压才会产生极电流。  功率MOSFET属于电压控制型半导体元件,当UGS施加一定的电压时,在源极和漏之间会形成较大的电流,这就是功率MOSFET的放大效应。下面以N沟道功率MSFET为例、介绍其工作原理。  功率 MOSFET属于电压控制型半导体元件  功率MOSFET的工作原理与特性曲线如图下所示。其中图(a)为工作原理,图(b)为转移特性曲线,图(c)为输出特性曲线。如图(a)所示,功率MOSFET工作时,需要施加正极性的UGS和UDS,只要在栅极施加一定的电压,就会在漏极产生较大的电流ID。由于MOSFET的输入阻抗很高,栅极电流极小,因此极电流ID与源极电流IS相等,通常将流过源极的电流也称为漏极电流ID,并以此来计算电路参数。  功率MOSFET的栅极对源极电压(简称栅-源电压)UGS与漏极电流ID的关系曲线图(b)所示,该曲线称为MOSFET的转移特性。可以看出,当UGS从(0~UGSth)变时,漏极电流 ID始终为零、功率MOSFET 处于截止(关断)状态;当UGS大于 UGSth以后,随着UGS的增加漏极电流ID开始迅速增大,功率MOSFET处于导通状态。功率UGSth是功率MOSFET导通与关断的切换点电压,该电压叫做开启电压或值电压。MOSFET的开启电压通常在2~4V之间。  功率 MOSFET的输出特性曲线如图 (c)所示,图中描述了栅-源电压 UGS、漏极电流ID与漏极对源极电压(简称漏-源电压)UDS之间的关系曲线。输出特性曲线可分为截止区、饱和区和电阻区三个区域。当UGS小于开启电压UGsth的时候,MOSFET处于截止区(关断状态),此时漏极电流很小,并且不随UDS的大小变化,该电流被称为漏电流,通常用IDSS来表示。开关电源的功率开关管关断时就处于截止区。在电路分析计算时,可以认为漏电流为零。  随着UGS升高,功率MOSFET开始产生更大漏极电流,进入导通状态。此时,如果较大,MOSFET将工作在图(c)所示饱和区。在饱和区的时候,漏极电流只与UGS大小有关,而与UDS大小无关。也就是说,此时极漏电流ID处于恒定电流状态,因此,饱和区也称为恒流区。  功率 MOSFET的饱和区和双极型晶体管的放大区特性基本相同。如图(c)所示,通常用漏极电流ID的变化量ΔID与栅-源电压UGS的变化量ΔUGS的比值,来描述MOSFET的放大能力,称为正向跨导,常用gfs来表示。漏极电流ID越大的功率MOSFET,其正向跨导值gfs也越大。  功率MOSFET进入导通状态时,如果漏-源电压UDS较低,MOSFET将处于电阻区如图(c)所示,该区域位于UDS=UGS-UGS(th)边界线的左侧。在该区域 MOSFET的漏极与源极之间呈现为固定电阻,该电阻被称为导通电阻,常用RDS(ON)来表示。如果漏-源电压UDS为零,则无论栅-源电压UGS为多少,漏极电流ID也会变为零。RDS(ON)的阻值与UGS的大小有关,因此该区域也称为可变电阻区或欧姆区。开关电源的功率开关管导通时就处在该区域。因此,即使漏极电流ID很大,也可通过选择较低RDS(ON)的功率MOSFET,来保持较低的导通损耗。  功率MOSFET的使用注意事项  (1)关于漏极电压  在开关电源中,选择功率MOSFET时,首先要考虑击穿电压。由于MOSFET不存在二次击穿现象,电压余量可以选小一些,通常按MOSFET的击穿电压UDSS为功率开关管承受最大电压的1.2~1.4倍即可。  (2)关于漏极电流  由于多数功率MOSFET的最大漏极电流IDM为额定漏极电流ID的3~4倍,因此,电流余量也可以选小一些,通常选择MOSFET漏极电流ID为功率开关管的最大极电流的1.5~2倍即可。  需要说明:功率MOSFET参数表中给出的额定漏极电流ID,通常是在其外壳温度T为25℃时的参数值。当MOSFET外壳温度升高的时候,其额定漏极电流ID将会下降。图给出了IRF840的漏极电流和外壳温度的关系曲线。可以看出,T为25℃时,ID为8A;当T为75℃时,ID下降为6A;当T为100℃时,ID下降为5A。这表明当功率MOSFET工作在高温环境时,应该选择额定漏极电流ID更大MOSFET,以便满足高温时的漏极工作电流要求。  (3)关于导通电阻  通常额定漏极电流ID较小的 MOSFET,其导通电阻RDS(ON),较大。在漏极电流较大的时候,功率开关管的导通损耗也会较大,为了降低导通损耗,应该选择导通电阻RDS(ON)较小的功率MOSFET。  此外,导通电阻RDS(ON)还会随着漏极电流ID的增加而变大。图给出了IRF840的导通电阻和漏极电流的关系曲线。可以看出,当ID为5A时,RDS(ON)不到0.7Ω,当ID为10A时,RDS(ON)大约0.8Ω;当ID为20A时、RDS(ON)将达到1.2Ω 左右。  (4)关于栅极电压  前文说过,RDS(ON)的阻值与UGS的大小有关。但是,当UGS大到一定程度(一般为10V以上),RDS(ON)的阻值基本不再变化。图也给出了UGS为10V和20V时RDS(oN)的阻值曲线,可以看出其差异不大。因此,功率MOSFET驱动电路的输出电压应该大于10V,通常选择为12~15V。  (5)关于输入电容  虽然功率MOSFET的输入阻抗很高,但其栅极G与源极S之间存在较大的输入电容。根据生产厂家和制造工艺的不同,输入电容C的容量差异也较大。为了提高开关速度,减小驱动电路的负载,应选择输入电容C较小的功率MOSFET。  此外,为了提高开关速度,需要给输入电容快速的充放电,这就要求驱动电路能够提供很大的峰值电流,该电流通常可达1~2A,但持续时间通常不到100ns。这也说明,虽然功率MOSFET驱动电路的功耗很小,但仍然需要输出很大的峰值电流。  (6)关于管壳温度  和双极型晶体管一样。当功率MOSFET的管壳温度升高时,最大允许电流及功耗会明显下降。同时,高温也会使导通电阻RDS(ON)的增大,产生更大的导通损耗。因此,许多厂家在其器件参数表中直接给出了T为100℃时允许的漏极电流值或者给出了高温降额曲线。读者一定要根据功率开关管的实际工作温度来修正最大允许漏极电流ID的参数值。  MOSFET 在开关电源中的应用  MOSFET 在开关电源中有广泛的应用,主要包括以下几个方面:  1. 主开关管:在正激、反激、半桥、全桥等拓扑结构的开关电源中,MOSFET 作为主开关管,控制电能的转换。  2. 同步整流管:在一些高效率的开关电源中,采用同步整流技术,用 MOSFET 代替二极管作为整流管,以降低整流损耗,提高效率。  3. 辅助开关管:在一些开关电源中,需要使用辅助开关管来实现软开关、同步整流等功能。  4. 保护电路:MOSFET 可以用于过流保护、过压保护等保护电路中,当出现异常情况时,及时切断电路,保护开关电源和负载。  MOSFET 的驱动电路  MOSFET 的驱动电路是开关电源中的重要组成部分,它负责将控制信号转换为合适的栅极电压,以控制 MOSFET 的导通和截止。驱动电路的设计需要考虑以下几个因素:  1. 驱动能力:驱动电路需要提供足够的驱动电流,以确保 MOSFET 能够快速导通和截止。  2. 栅极电:驱动电路需要提供合适的栅极电压,以保证 MOSFET 能够可靠地导通和截止。  3. 隔离要求:在一些应用中,需要将驱动电路与控制电路进行隔离,以提高系统的安全性和可靠性。  4. 保护功能:驱动电路需要具备过流保护、短路保护等功能,以保护 MOSFET 和驱动电路本身。  结论  MOSFET 作为开关电源中的关键组件,其性能直接影响到开关电源的效率、可靠性和成本。在设计开关电源时,需要根据具体的应用要求,选择合适的 MOSFET,并设计合理的驱动电路和散热方案。通过对 MOSFET 的深入了解和合理应用,可以设计出高性能、高效率的开关电源。
发布时间:2024-12-17 15:06 阅读量:210 继续阅读>>
村田电子:应对传感器噪声的对策和推荐电路
  传感器是“IoT (Internet of things)”和“自动驾驶”的重要元件,今后也将广泛地搭载于各种机器设备上。各种传感器的性能提升显著,能够将信息更多更精细地传送。另一方面,我们也看到一些由于传感器感知到的信息没有被正确地传送出去而造成了严重的事故。  为了避免噪声导致的误操作,各种传感器的静噪对策非常重要不可或缺。  随着MEMS技术的发展,现在One chip传感器已经成为主流。为此,本文将以One chip传感器(数字输出型)为例,探讨误操作发生的原理和静噪对策方法。  02、噪音如何导致传感器误操作?  One chip传感器主要由信号、电源、GND三种线构成。而信号线是用了时钟和数据等多根线进行通信的。考虑各根线在施加了噪声后的影响。  向数字信号线施加噪声时,噪声引起的超过高/低阈值而被误判断时,无法正常通信从而发生误操作(下图)。实际为加速度传感器的数字信号线加入噪声做评估,确认通信会发生停止。  模拟前端包含增幅电路和A/D转换电路,当这些电路的电源变动没有正常工作时,会输出异常值从而发生误操作(下图)。实际为加速度传感器的电源线加入噪声做评估,确认输出会出现紊乱。  从上面两种情况可以看出,One chip传感器的信号线或电源线施加噪声时,会发生通信停止或输出值紊乱的误操作。  本文即为您介绍一种使用EMI滤波器抑制噪声传播的有效方法。  03、静噪对策:要点及推荐电路  用于传感器静噪对策的滤波器要求满足以下条件:  通过设备工作所需的电源或信号线;  屏蔽造成误操作的噪声。  One Chip传感器有许多种类和型号,针对造成误操作的噪声所需的滤波器也各有不同。这是因为对滤波器所要求的2个条件,与传感器是相通的:  通过设备工作所需的电源或信号线:  →One Chip传感器的接口(IC引线)统一化;  屏蔽造成误操作的噪声:  →施加的噪声是抗扰性测试规格内的。  此外,滤波器的贴装位置在传感器附近效果较好。  电源线的静噪对策,适合从低频到高频的宽幅带宽下插入损耗较大的滤波器。  仅使用电容器的情况下,需要低频端的大容量电容器和为获得高频端插入损耗的低ESL电容器。  使用电容器和电感器组合的情况下,可使插入损耗显著增加。传感器比电感器配置足够的容量,构成多段结构,可形成有效的静噪滤波器。  信号线的静噪对策:作为信号线(数据/时钟)的静噪对策,通过的信号频率需要插入损耗小的滤波器。  噪声级别小或信号和噪声的频率相差大的情况下,可以只用电容器进行降噪,但如果信号频率和噪声频率相近时,需要电感器和电容器组合来构成插入损耗陡峭的滤波器。  信号线的静噪对策  需要注意的是,将电感器插入特定线时,线路变得不平衡而转换成普通模式(电位差),误操作可能进一步恶化。插入电感器时很重要的一点是,全线使用同一型号。铁氧体磁珠是电感型滤波器,不仅具有高阻抗可以阻止噪声,铁氧体还能够吸收噪声能量,可以得到更好的静噪效果。  推荐电路  用于数字One chip传感器的接口一般有I2C和SPI两种。这里,我们针对One chip传感器,推荐静噪对策滤波器和相应电路。  I2C对象接口:  其信号频率为100kbps(50kHz)、400kbps(200kHz)、3.4Mbps(1.7MHz)等等,最大約为2MHz;  其截止频率(信号频率×5)为10MHz。  I2C接口推荐电路  I2C接口信号线插入损耗  I2C接口电源线插入损耗  SPI对象接口:  其信号频率信号频率1~2Mbps(1MHz)、20Mbps(10MHz)等等,最大 10MHz;  其截止频率(信号频率×5)50MHz。  SPI接口推荐电路  SPI接口信号线插入损耗  SPI接口电源线插入损耗  用于数字One chip传感器的接口,无论是I2C还是SPI,信号频率并不是一定的,如果滤波器需要对应的截止频率I2C为10MHz,SPI为50MHz,适合使用上述滤波器。  04、应用事例  下面,我们以“车载设备用的传导抗扰度规定BCI测试”为设想来介绍防止传感器误操作的对策。  以车载设备为例研究传感器误操作发生的情况对电源线和信号线的噪声影响。  电源线的静噪对策  传感器的电源线受噪声影响,会发生传感器输出值的异常(输出误差)。将注入电源线的噪声级固定,对对策前后的输出误差的大小进行调查。传感器输出值发生误操作的起因是“电源线的常态噪声”,在传感器附近插入0.1uF的低ESL电容器。这样一来,传感器的输出误差降到了1%以下。  电源线的静噪对策事例  需要进一步静噪对策时,像前文介绍的,可运用电感器和电容器组合成π型滤波器进行对策。  信号线的静噪对策事例  传感器的信号线收到噪声影响,传感器的通信会发生停止。提高注入的噪声水平,调查能够正常工作(不发生误操作)的水平极限。  初期:误操作耐性根据频率不同而明显不同。(此事例为100MHz和250MHz,耐性较低。)  对策①,追加电容器改善100/250MHz的耐性  对策②,用铁氧体磁珠和电容器构成滤波器改善200/250MHz的耐性  对策③,为了取得平衡,将π型滤波器加在电源线,GND线上追加铁氧体磁珠,从而改善全频率范围的耐性  可看到使用对策③(推荐电路),全频带的噪声耐性良好(下图):  信号线的静噪对策事例对比  05、总 结  本文介绍了传感器噪声对策的必要性和推荐电路,以及可能的难点。村田制作所能够为您提供上述“噪声造成传感器误操作的原理”和“对策事例”中介绍的产品。
关键词:
发布时间:2024-12-17 14:51 阅读量:241 继续阅读>>
茂睿芯推出90A智能功率级(SPS)MK6850
  自2022年OpenAI发布ChatGPT以来,生成式人工智能(AI)技术获得了广泛关注,一系列开创性研究成果相继发布,引领了人工智能的新一轮创新浪潮。当前人工智能、数据中心等算力基础设施,都以GPU、NPU/TPU、CPU等算力芯片作为计算核心,它们均基于先进半导体工艺制作,采用多相电源(多相控制器 + 智能功率级Smart Power Stage,简称SPS)为其提供低压大电流的电源管理解决方案。为满足客户当前对多相电源高功率密度、高效率和高可靠性的需求,降低TCO、提高电能转换效率和实现“双碳”目标,茂睿芯推出了90A等级的智能功率级MK6850。  SPS在AI服务器供电架构中的应用  SPS在传统服务器供电架构中的应用  二、茂睿芯90A SPS产品 MK6850  智能功率级是一种高端的DC-DC芯片,是电源管理芯片中技术含量最高的产品之一。MK6850作为一颗智能功率级产品,采用多晶圆封装技术,内部集成了两颗超低Rdson 的SGT MOSFET和一颗高性能驱动芯片,同时采用了业界标准的5mmx6mm QFN封装,此封装占板面积小,可大幅提升功率密度,能广泛应用于高性能服务器,存储服务器,数据通讯,AI训练和推理加速卡,显卡,高端台式机和笔记本等应用。  三、MK6850 产品特征  ● 集成高性能SGT MOSFET上下管和智能驱动  ● 30V/25V 上/下管耐压  ● 90A 最大平均电流  ● 120A 峰值过流保护  ● 5uA/A IMON上报  ● 8mV/℃ 温度上报  ● 200kHz-1.2MHz 开关频率,瞬态4MHz  ● 4.5V-16V 输入电压范围  ● 4.5V-5.5V 驱动电压  ● 3.3V/5V PWM逻辑电平  ● 支持三态PWM和使用下管体二极管进行降低过冲操作  ● BOOT-PHASE 电容电压自动刷新充电  ● 丰富的保护功能:正电流保护, 负电流保护, 过温保护,VCC/VDRV/BOOT-PHASE欠压保护, 上、下管短路保护,智能故障上报识别Fault ID  ● 兼容多品牌多相控制器  ● 符合ROHS标准  ● 管脚兼容(行业标准39-Pin 5x6 QFN)  四、MK6850 引脚封装图&典型应用框图  MK6850引脚封装图  MK6850典型应用框图  五、MK6850 三大重要设计指标  GPU、NPU/TPU、CPU等算力芯片的运算速率越来越高,处理数据量与日俱增,能耗持续攀升,对智能功率级(SPS)的性能和稳定性提出了更高的要求,因此茂睿芯将高可靠性,高效率和高精度IMON上报作为MK6850的三大重要设计指标。  1、高可靠性  针对高可靠性,MK6850采用了垂直结构的SGT MOSFET,相较于平面MOSFET,SGT MOSFET具有热阻小,耐压高,EAS能力强。经过器件长时间的封装可靠性测试、超20万小时的重载可靠性测试以及极限测试,全方位地验证了器件的可靠性,确保其稳定可靠。  2、高效率  为提高效率,MK6850采用了超低Rdson的SGT MOSFET,配以低阻抗大通流的铜扣封装,对死区时间进行了精细优化。以12V输入、1.8V输出、5V驱动电压、800kHz开关频率条件为例,MK6850的峰值效率为94.7%,领先于国内同类产品。  12V 转1.8V效率图(已含电感损耗)  3、高精度 IMON 上报  SPS产品的IMON上报精度对于CPU等中央处理器的性能起到至关重要的作用,上报偏高会限制CPU的性能;上报偏低可提高CPU性能,但会使CPU过热从而影响CPU使用寿命。  MK6850具备实时侦测内部MOSFET电流信息的能力,结合驱动器内置的先进电流上报算法以及精准的温度补偿机制,使其能够实现5uA/A且精度为±5%的IMON输出,确保提高CPU性能的同时不影响CPU的使用寿命。  12V转1.8V 800kHz IMON上报误差图  六、MK6850 温度上报与保护功能  MK6850内部集成了温度上报与过温保护功能,温度信息通过TMON引脚以8mV/℃的比例输出。同时,MK6850 TMON引脚还兼具故障输出功能,能够通过电平的高低向多相控制器报告不同类型的错误。  在保护功能方面,MK6850特别设计了峰值逐周期限流功能,专为预防多相控制器误发长PWM脉宽信号而出现输出电感饱和的问题,这一功能设计为防止电感饱提供了坚实后盾与最后一道安全防线。  其次,MK6850还具备负电流保护功能,能够在输出电压下调(DVID DOWN)或过压保护(OVP)等情况时,有效防止因长时间开启下管所导致的电感反向饱和现象。即便在电感未发生反向饱和的情况下,当控制器需要关闭下管时,也能阻止过大的负电流流经上管的体二极管,从而确保上管的安全,避免其因过热而损坏。  值得一提的是,MK6850还具备BOOT电容自动刷新功能,当PWM信号持续处于三态模式,并且BOOT电容电压跌落至预设的阈值以下时,驱动电路会自动对BOOT电容进行充电,这一设计确保了在下一次上管开启时能够为其提供足够的驱动电压,从而保障整个电源系统稳定和高效的运行。  七、MK6850 兼容性分析与测试  1、MK6850 兼容性分析  智能功率级(SPS)与控制器必须连接的三个引脚为IMON、TMON/FLT和PWM,以下从原理上分析MK6850 这三个引脚和市面上主流多相控制器的兼容性。  ①IMON 引脚  MK6850 IMON上报符合业界通用标准5uA/A,通过微调控制器IMON的Gain和Offset,可达到CPU所要求的IMON上报精度,也可以外接1kΩ电阻,将电流型的IMON变成电压型IMON,实现向下兼容。  ②TMON/FLT 引脚  MK6850 TMON符合业界通用标准8mV/℃,0.6V@0℃,可完全实现兼容,发生Fault时TMON能拉高至3.3V。  ③PWM 引脚  MK6850 符合业界控制器通用3.3V PWM电平标准。  MK6850可以在PWM三态、PWM高和PWM低之间任意切换,POCP功能可保护PWM高到PWM三态产生长脉宽而造成地电感饱和。  MK6850支持PWM高最小脉冲,当PWM高不足50ns时能扩展为50ns,可防止驱动器损坏。  MK6850支持PWM低最小脉冲,当PWM低不足50ns时能扩展为50ns,可防止驱动器损坏。  MK6850支持NOCP,当PWM常低时防止电感反向饱和,阻止负电流损坏上管体二极管。  MK6850支持POCP,当控制器P2CL不准确,或者PWM常高时防止电感饱和。  MK6850支持大动态释放负载时PWM变为三态进入Body Braking模式。  2、MK6850 兼容性测试  MK6850的驱动器内置严密控制和保护逻辑,已成功与国内外多家厂商的多相控制器进行了广泛的兼容性测试,包括但不限于英特尔VR14 Eagle Stream 350W平台、国内64核ARM平台&SW64平台。  ①Intel VR14 Eagle Stream平台0A-445A静态电流上报: 通过  ②Intel VR14 Eagle Stream平台108A-445A, 1081A/us, 3D Worst Case:通过  ③通过多客户多平台测试  八、MK6850 典型应用场景
关键词:
发布时间:2024-12-17 14:12 阅读量:307 继续阅读>>
海凌科:B_S-2WR3系列DC/DC电源模块 转换效率高达90%
支持最高1500W电机驱动,纳芯微NSUC1602轻松应对大电流挑战
  新能源汽车市场正步入一个群雄逐鹿、竞争白热化的格局重塑阶段,系统性能的些许提升和技术创新上的差异化都将成为企业增强竞争力的关键所在。在此背景下,热管理系统的高效化与智能化发展无疑成为了推动行业进步的重要一环。  作为国内领先的汽车芯片供应商,纳芯微继2023年初国内首发车用小电机驱动SoC NSUC1610后,今日正式宣布推出高集成度嵌入式电机控制IC NSUC1602。与集成了LIN和MOS功率级的单芯片NSUC1610相比,NSUC1602集成式SoC支持外置独立功率MOSFET的设计,这一创新方案能够轻松应对更大电流需求的场景。  此外,NSUC1602集成3路半桥预驱,从而将电机控制功率范围提升至20W-1500W。这一提升不仅进一步优化了BLDC电机的控制性能,更能满足更高功率输出的应用需求。  在新能源汽车领域,热管理系统尤为复杂,对确保车辆的整体性能至关重要。它承担着对电动机、电力电子设备和电池进行温度管理的重任,同时确保座舱内乘客的舒适度达到理想状态。一个高效的热管理系统不仅有助于延长电池使用寿命,还能防止因过热引发的热失控风险,为新能源汽车的安全运行保驾护航。  为了实现这些目标,热管理系统高度依赖于多种执行器的精确控制,如电动压缩机、电子水泵、油泵和风扇电机、阀门和暖通空调控制模块等等。这些执行器的电机通常需要具备高功率输出的能力,以确保在各种工况条件下都能实现稳定且精确的性能表现,从而满足新能源汽车热管理系统对于高效、精准控制的严苛要求。  纳芯微推出的高集成度嵌入式电机控制IC NSUC1602凭借其卓越的高集成度特性和强大电机控制算法,在新能源汽车关键执行器的管理中发挥了举足轻重的作用。该芯片内部集成ARM® Cortex®-M3和高效的三相预驱电路,能够支持更为先进、复杂的电机控制算法,包括FOC矢量控制或无感六步换相控制。这些高级算法的应用,极大地提升了电动机和电子设备的温度管理精度与效率,为智能三相无刷直流电机控制领域,如汽车电子冷却扇、电子水泵等提供了强有力的技术支持。此外,NSUC1602还通过一系列优化设计,显著提升了系统的整体能效,确保在高负荷运行环境下的稳定表现。  NSUC1602不仅满足AEC-Q100 Grade 0可靠性标准,能够在极端高温环境(晶圆结温高达175℃)下稳定运行,其内置的诊断和保护功能也得到了进一步强化。片上系统内嵌了各种诊断和保护功能,确保了系统的高可靠性,为用户提供了全面的安全保障。  在保持高度集成化设计的同时,NSUC1602还优化了电源管理方案。LIN端口支持±40V过反压耐压要求,BVDD引脚则支持-0.3V~40V的耐压范围,能够由12V汽车电池供电,从而简化系统设计,还显著减少了开发成本。  针对多样化的场景,NSUC1602展现出了其广泛的适用性。无论是汽车电子水泵、冷却风扇、空调鼓风机,还是座椅调节、天窗控制、尾门控制等需要精确温控与高效动力传输的BLDC和BDC应用,NSUC1602都能凭借其卓越的电机控制性能发挥关键作用。其优化的电源管理方案,确保了这些设备在提供卓越性能的同时,还能实现能耗的大幅降低与使用寿命的显著延长。  NSUC1602系列性能参数  32位ARM® Cortex®-M3  64 KB闪存,4 KB SRAM,2.5 KB NVRAM  片上高精度晶振,主频为48MHz  35KHz 低功耗和低速时钟  工作电压范围5.5V~28V  1路12位高精度ADC  1路8位DAC和比较器  3路反电动势比较器(BEMFC)  1路SPI通信接口,支持3线/4线  LIN PHY支持LIN2.x  1路窗口看门狗和1路数字看门狗  支持最大300mA可配置的电流型三相预驱电路GDU  1路5V LDO输出支持外部带载  支持最高耐压55V的charge pump  内部集成两路温度传感器用于过热关断保护  休眠模式功耗全温区范围内小于50μA  满足AEC-Q100 Grade 0标准  封装:QFN40(5mm×5mm),支持wet-table flank  丰富设计支持  当前我们可以对外提供NSUC1602-EVALKIT开发板,开发板上集成DAP-Link电路方便客户直接连接电脑快速调试。并且可以提供软件例程使用说明以及电机算法控制的相关应用笔记。
关键词:
发布时间:2024-12-16 14:13 阅读量:352 继续阅读>>
支持16位PWM调光,集成4路LED驱动,纳芯微氛围灯驱动NSUC1500点亮座舱新体验
  近日,纳芯微宣布其SoC产品系列NovoGenius家族迎来新成员——高集成度氛围灯驱动SoC产品NSUC1500-Q1。  该产品通过集成ARM® Cortex®-M3内核与4路高精度电流型LED驱动,支持16位独立PWM调光和6位模拟调光功能,能够实现更精准的调光混色控制,并有效补偿光衰现象。此外,NSUC1500-Q1系列也满足AEC-Q100 Grade 1和CISPR 25 Class 5 EMC标准,确保了产品的高可靠性和灵活性。  这一创新产品将助力打造更高效、更具创新性的智能座舱照明方案,为用户带来更加卓越的视觉体验。  伴随汽车个性化创新的不断推进,未来的汽车将不再仅仅是交通工具,而是演变为充满情感与智能化的移动生活空间。智能座舱的快速发展,进一步激发了终端用户对更加智能、舒适驾乘体验的强烈需求。在此背景下,车内氛围的营造日益受到重视,用户期望通过氛围灯与其他座舱应用融合交互,来提升整个座舱的沉浸感和情感连接体验。  座舱氛围灯的角色也随之悄然转变,它不再局限于传统的照明与装饰功能,而是成为了提升驾乘体验的核心要素。通过个性化的定制、智能响应行驶状态以及增强的智能互动功能,车内氛围灯能够显著加强驾乘者的沉浸感与归属感,为每一位营造出独一无二的驾乘氛围。  NSUC1500-Q1是一款高集成度氛围灯驱动SoC,其内部不仅搭载了ARM® Cortex®-M3处理器核心,配备了4路LED驱动电路,还集成了高精度恒流源、信号控制以及LIN接口,使得每个LED的电流都能够得到精确控制,完美适配复杂多变的氛围灯设计需求,支持对大量灯珠进行灵活调控。借助内部的高精度PWM信号,NSUC1500-Q1能够实现更为细腻平滑的调光与混色效果,并且能够有效补偿RGB氛围灯因温度波动和长期使用老化而产生的亮度衰减,确保灯光效果的持久稳定与卓越表现。  高系统可靠性与保护机制  NSUC1500-Q1在系统可靠性方面表现出色,不仅满足AEC-Q100 Grade 1的严格可靠性标准,而且内置了先进的片上系统级LED诊断与保护功能。这一设计进一步增强了系统的整体可靠性,确保了氛围灯系统在各种复杂环境下的稳定运行,为用户带来更加安心、可靠的驾乘体验。  卓越的电气特性与应用灵活性  在电气特性方面,NSUC1500-Q1展现出了非凡的适应性和灵活性。其LIN端口具备-40V~40V过反压耐压能力,确保了在高强度电气环境下的稳健运行。BVDD引脚则支持-0.3V~40V的耐压范围,能够直接接受汽车电池12V供电,极大地简化了系统设计流程,并显著提升了应用部署的灵活性。  集成高精度ADC,提升信号处理能力  NSUC1500-Q1内置高性能12位SAR ADC,为氛围灯驱动提供更精准的信号处理支持。在单端模式下,其差分非线性(DNL)控制在-1LSB至0.8LSB之间,积分非线性(INL)则控制在-1.1LSB至1.1LSB范围内,保证了信号处理的高精度和稳定性。而在差分模式下,NSUC1500-Q1的DNL和INL控制范围可达到为-0.8LSB至0.8LSB,能够实现复杂光效场景下更细腻流畅的色彩过渡和亮度调节。  极致BOM简化,显著降低成本  纳芯微NSUC1500-Q1以其极致精简的BOM方案,为氛围灯系统带来了显著的成本效益提升与设计优化。除了氛围灯灯珠外,其外围电路仅需5个元器件:3个电容器、1个磁珠、1个防反二极管,以及可选的TVS(瞬态电压抑制)二极管。这一精简的BOM设计,不仅显著削减了系统成本,还得以缩小PCB尺寸,实现了系统成本与性能的完美平衡。  EMC性能卓越,缩短设计周期  纳芯微NSUC1500-Q1还提供了针对环境照明的参考设计,在EMC(电磁兼容性)和热性能方面进行了优化。NSUC1500-Q1已经按照CISPR 25:2021标准完成了汽车EMC/EMI各项测试,并以最高等级要求Class 5成功通过测试。其卓越的EMC性能确保了产品在复杂电磁环境下的稳定运行。此外,针对特定应用的参考设计不仅经过精心优化,还充分考虑了客户的实际需求,从而极大缩短了客户的开发周期,为客户节省了宝贵的时间和资源。  Cortex-M3核心,提升可扩展性  纳芯微NSUC1500-Q1采用Arm® Cortex® -M3核心,并在此基础上融入了丰富的可扩展性(包括存储和封装选项),不仅支持灵活的平台设计,也为环境照明应用提供了具有高性价比的解决方案。  NSUC1500-Q1的主要特性  32位ARM® Cortex®-M3  32 KB闪存,2 KB SRAM,2 KB EEPROM,15KB ROM集成UDS引导加载程序  片上高精度晶振,主频为32MHz  35KHz 低功耗和低速时钟  工作电压范围6.0V~28V  4路高精度电流型LED驱动,最高驱动电流达64mA  支持16位独立PWM调光和6位模拟调光  1路12位高精度ADC,采样速率高达1.5Msps  LIN PHY支持LIN2.x标准和SAE J2602  支持多种故障诊断,如LIN诊断、RGB诊断和供电电压监测,支持热关断功能  休眠模式典型功耗20μA  满足AEC-Q100 Grade 1标准  封装:QFN20/SOP8/HSOP8
关键词:
发布时间:2024-12-16 14:09 阅读量:242 继续阅读>>
晶科鑫:有源晶振与固态锂电池:科技界的 “好拍档”
  晶科鑫通过技术创新与管理优化,提升了品牌的影响力和市场竞争力。在国内外市场上,晶科鑫的知名度和客户认可度较高,这使得公司在激烈的市场竞争中占据有利位置。  有源晶振:新能源技术的核心节拍器:  晶振是锂电池的“心脏”,随着北京亦庄首条全固态锂电池量产线的投产,新能源领域迎来了一次技术飞跃。在这一变革中,有源晶振成为了确保电池稳定性和性能的关键技术。晶科鑫实业有限公司的有源晶振,以其高精度和高稳定性,成为新能源、通信、物联网等多个高精度电子领域的优选。  特别是在全固态锂电池的生产中,晶科鑫的3225有源晶振不仅监控电池稳定性,还调节其性能,确保了电池的安全与效率,凸显了晶振在智能设备中的核心作用。  有源晶振:晶科鑫的技术革新 :  晶科鑫的有源晶振产品在全固态锂电池生产线上发挥着不可替代的作用。这些晶振通过精确的频率控制,确保了电池的稳定性和安全性。  晶科鑫的SMD2016系列高基频晶振产品,覆盖76.8MHz、80MHz、96MHz等频率,为WIFI6、WIFI7等高频率应用提供了高稳定性和高可靠性的时钟信号,展现了晶科鑫在晶振技术领域的创新实力。  晶科鑫的低噪高频系列恒温晶振:  晶科鑫在晶振技术方面的最新研发成果,包括低噪高频系列恒温晶振OCXO,特别是频率为100MHz的恒温晶振,采用自产高Q值晶体,具有高可靠性、低相噪-170dBc/Hz、低老化率5ppb/天、精度高100ppb,工作电压5V。  这些创新产品不仅提升了晶振的性能,也进一步巩固了晶科鑫在晶振行业的领先地位。  应用于智能五孔插座和高压储能:  晶科鑫的有源晶振在智能设备中的应用同样引人注目。在智能五孔插座中,有源晶振用于时钟同步,确保插座的定时开关功能准确无误。  在高压储能新项目中,有源晶振则用于监测和控制储能单元的状态,通过提供稳定的时钟信号,实时监测储能单元的充放电状态,并控制充放电过程,确保能量的均衡和优化利用。  晶科鑫晶振的高精度和高稳定性:  晶科鑫SJK有源晶振以其高精度和高频率稳定性的卓越特性,成为市场上的热门选择。公司不仅掌握了MEMS光刻技术等关键核心技术,还拥有kHz、MHz、TSX等多种类型的无源晶体,以及有源晶振TCXO、SPXO、VCXO、OCXO等全系列产品。  晶科鑫引入的全新全自动流水线,极大地增强了产品的生产能力,有效满足了市场对于高精度有源晶振的需求。  总结:  晶振和全固态锂电池是科技界 “黄金搭档”,给电子硬件装上一颗安心的心脏。别再犹豫,选择晶科鑫晶振,就是选择科技前沿的品质保障。选择晶科鑫晶振,就是选择科技前沿的品质保障。
关键词:
发布时间:2024-12-16 14:06 阅读量:347 继续阅读>>
绕线电阻和金属膜电阻有什么区别
  绕线电阻和金属膜电阻是常见的两种电阻器件类型,其工作原理、结构特点以及性能参数各有不同。  1. 结构及制造工艺  绕线电阻  结构:绕线电阻通常由绝缘材料包裹的金属电阻丝绕成螺旋状的线圈构成。  制造工艺:制造绕线电阻需要先选择合适的电阻丝材料,然后通过机械或自动化设备将电阻丝绕制成螺旋状。  金属膜电阻  结构:金属膜电阻的电阻层是由一层金属薄膜沉积在陶瓷或玻璃基底上形成的。  制造工艺:金属膜电阻的制造过程主要包括真空蒸发或溅射等技术,将金属薄膜均匀沉积在基底表面。  2. 温度系数  绕线电阻  温度系数:绕线电阻的温度系数通常较高,对温度变化敏感。  金属膜电阻  温度系数:金属膜电阻的温度系数相对较低,具有较好的温度稳定性。  3. 精度和稳定性  绕线电阻  精度:绕线电阻的精度一般较低,随着使用时间增长会出现漂移现象。  稳定性:受温度等外部环境因素的影响较大,稳定性较差。  金属膜电阻  精度:金属膜电阻的精度通常较高,稳定性较好,可以提供比较准确的电阻值。  稳定性:受外部环境影响较小,使用寿命较长。  4. 频率响应  绕线电阻  频率响应:绕线电阻的频率响应受到电感的影响,在高频电路中可能存在较大的误差。  金属膜电阻  频率响应:金属膜电阻的频率响应较好,在高频电路中具有较好的稳定性和精度。  5. 尺寸和功率承受能力  绕线电阻  尺寸:绕线电阻通常体积较大,占据较多空间。  功率承受能力:相对较高,适用于需要承受高功率的电路。  金属膜电阻  尺寸:金属膜电阻通常体积较小,适合紧凑的电路设计。  功率承受能力:金属膜电阻的功率承受能力相对较低,适用于低功率应用场景。  6. 成本和适用领域  绕线电阻  成本:绕线电阻的制造成本相对较低。  适用领域:主要应用于一些对精度要求不高、功率较大的场合。  金属膜电阻  成本:金属膜电阻的制造成本较高。  适用领域:由于其高精度、稳定性和频率响应特点,金属膜电阻被广泛应用于需要高精度电阻值、稳定性和频率响应的领域,如精密仪器、通信设备等。  绕线电阻和金属膜电阻作为两种常见的电阻器件,在电子领域中具有各自独特的特点和应用优势。通过本文对比分析,我们可以看到它们在结构、温度系数、精度稳定性、频率响应、尺寸功率承受能力以及成本适用领域等方面存在明显差异。因此,在实际电路设计和选择电阻器件时,需要根据具体需求和应用场景综合考虑这些差异,选择最适合的电阻器件类型,以确保电路性能和稳定性达到最佳状态。
关键词:
发布时间:2024-12-13 10:37 阅读量:424 继续阅读>>

跳转至

/ 837

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
BD71847AMWV-E2 ROHM Semiconductor
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
型号 品牌 抢购
TPS63050YFFR Texas Instruments
ESR03EZPJ151 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
STM32F429IGT6 STMicroelectronics
BU33JA2MNVX-CTL ROHM Semiconductor
BP3621 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。

请输入下方图片中的验证码:

验证码