Samsung Secures IoT Node-to-Cloud

Release time:2017-10-19
author:Ameya360
source:Rick Merritt
reading:1153

  Samsung announced a soup-to-nuts security offering for the Internet of Things. It is part of the Korean giant’s ambitions to carve out a business in chips for IoT end nodes and gateways as well as cloud services that include machine learning.

  As the next step in that direction, Samsung will start shipping a suite of secure IoT products in November. They span modules with a hardware root-of-trust to encryption and authentication of over-the-air software updates, applications, and cloud services.

  “We believe that security will become a strong value proposition in this space and it will only get stronger … [overall,] our strategy is that we want to be an IoT company internally and externally,” said James Stansberry, general manager of Samsung’s Artik IoT group.

  For Samsung, IoT represents an opportunity to sell a wide variety of processors, memories, and connectivity chips integrated into modules. It also is part of a move to court developers to write cloud-based apps that could serve everything from Artik IoT customers to Samsung’s own increasingly connected systems that range from smartphones to refrigerators.

  “It’s a multidimensional play involving devices, mobile, and consumer electronics,” said Stansberry, who joined Samsung a year ago after running the IoT group at Silicon Labs.

  On the semiconductor side, Artik spans a range of chips from integrated ARM Cortex-M microcontrollers to eight-core applications processors. Today, most of the chips inside its modules, first launched in mid-2015, are from third parties — but that will change.

  “In the beginning, there was little Samsung content, but we are gradually replacing chips with Samsung silicon,” he said.

  For example, an end-node module announced in May includes a Samsung three-core ARM chip with integrated Wi-Fi. Another Samsung integrated chip for end nodes will ship early next year, followed by a Samsung gateway processor with connectivity chips from a third party.

  Stansberry would not discuss the size of the IoT group’s business. Its use of Samsung chips “is modest at this point, but the objective is to increase it,” initially focusing on local area connectivity sweet spots such as Bluetooth, Wi-Fi, Thread, and zigbee aimed at homes, factories, and commercial buildings.

  Market watcher IC Insights ranked Samsung as fourth in 2016 microcontroller sales behind NXP, Renesas, and Microchip. The Korean giant had estimated MCU revenues of $1.87 billion, down 14% from $2.17 billion in 2015, partly because of weak demand for smartcard MCUs. Today, most of the company’s MCUs that don’t go into smart cards are used in Samsung’s own systems, it said.

  Samung’s secure modules will use a standalone secure element to support key storage for secure boot and other features. They will use a variety of standards for encryption, authorization, and signed apps. The company is also expected to roll out cloud-based machine-learning services before the end of the year.

("Note: The information presented in this article is gathered from the internet and is provided as a reference for educational purposes. It does not signify the endorsement or standpoint of our website. If you find any content that violates copyright or intellectual property rights, please inform us for prompt removal.")

Online messageinquiry

reading
[News] Samsung Fails to Secure Qualcomm’s 3nm Orders for the Coming Year, Dual Foundry Strategy Postponed
  According to TechNews’ report, TSMC and Samsung fiercely compete in the semiconductor foundry sector. Earlier market reports suggested that Qualcomm’s Snapdragon 8 Gen 4 mobile processor might adopt a dual-foundry strategy with TSMC and Samsung manufacturing simultaneously.  However, according to the latest industry information, due to Samsung’s conservative expansion plan for next year’s 3nm production capacity and unstable yields, Qualcomm has officially canceled the plan to utilize Samsung for next year’s processors. The dual-sourcing model is now postponed until 2025.  Samsung began mass production of its first-generation 3nm GAA (SF3E) process at the end of June last year, marking Samsung’s initial use of the innovative GAA architecture for transistor technology. The second-generation 3nm process, 3GAP (SF3), will utilize the second-generation MBCFET architecture, optimizing it based on the foundation of the first-generation 3nm SF3E. It is expected to enter mass production in 2024.  The dual-foundry strategy for Qualcomm was initially leaked by the reputable source Revegnus via the X platform (formerly Twitter). It was mentioned that the Snapdragon 8 Gen 4 processor would adopt TSMC’s 3nm (N3E) process, while Samsung’s 3GAP process would be used for the Snapdragon 8 Gen 4 supplying Samsung’s Galaxy series smartphones. Other sources suggested that due to limited capacity at TSMC’s 3nm production, Qualcomm had to seek Samsung as an alternative chip foundry.  As a result, Qualcomm originally anticipated dual-foundry production with both TSMC and Samsung in 2024, with hopes of being the first customer for the 3GAP process. However, considering Samsung’s conservative 3nm production capacity plan for next year and the instability in yields, Qualcomm decided to scrap the plan and exclusively rely on TSMC, pushing the dual-foundry strategy to 2025.  Currently, TSMC’s 3nm process technology capacity is on the rise, with expectations that by the end of 2024, monthly production capacity will reach 100,000 wafers, and the revenue contribution will increase from the current 5% to 10%.
2023-12-01 14:48 reading:2236
Samsung cuts NAND flash memory production
Samsung is developing next-generation memory chips for large-scale AI applications such as ChatGPT
  The large-scale application of ChatGPT and other AI chatbots will not only improve the application experience of introducing related technologies, but also bring new development opportunities to several fields, memory chip is one of them. Ameya360 reports that Samsung Electronics is exploring business opportunities by developing customized next-generation memory chips for large AI applications, such as ChatGPT, which is gaining popularity around the world.  The actual impact of ChatGPT on the chip circuit is mainly shown as follows: ChatGPT is based on Transformer technology. With the continuous iteration of the model and the increasing number of layers, the demand for computing power is increasing. Secondly, the three conditions for the operation of ChatGPT, namely, training data + model algorithm + computing power, require large-scale pre-training on the basic model. After three iterations of ChatGPT, the number of references increased from 117 million to 175 billion, and the amount of training increased significantly.  The New Computing business team of Samsung's memory business division is developing a customized next-generation memory for large-scale AI related to ChatGPT. The new computing business team, headed by Kim Jin-hyeon, is known to be a pioneer In the development of a business within the storage business division. Previously, the team focused on the development of Processing In Memory; PIM). Pims can not only store data, but also integrate and calculate data in memory, which can improve the efficiency of data processing and power consumption. Therefore, PIMs are suitable for AI.  In addition, some semiconductor industry insiders pointed out that although traditional AI chips occupy the mainstream at present and AI-dedicated chips are booming, they have met their physical limits, and the future of AI chips may be quantum chips.  Park Seong-soo, a senior researcher at the Quantum Technology Research Center at the Electronics and Communications Research Institute, said ChatGPT can also be used with a lot of computing resources, but if combined with future quantum computers, it will become a more intelligent artificial intelligence.  According to Gartner's report, total global semiconductor revenue in 2022 was approximately $601.7 billion, an increase of 1.1% year-on-year. Samsung's market share was 10.9 per cent. The ChatGPT scandal has created a new opportunity for Samsung to develop memory chips.
2023-02-21 11:26 reading:3913
Samsung Electronics Establishes LCA Verification on Product Carbon Footprint of Its Semiconductor Business
  Samsung Electronics Co. Ltd’s Life Cycle Assessment (LCA) on the product carbon footprint of its semiconductor business has achieved verification from DNV.  LCA is a methodology for assessing environmental impacts throughout the lifecycle of commercial products, processes, or services, by quantifying the amount of energy, materials, and waste discharge. In detail, on its semiconductors’ carbon footprint, Samsung’s LCA covers raw material extraction to chip manufacturing, assembling, and testing. Its results are in accordance with ISO 14040, ISO 14044 and ISO 14067 to ensure credibility and transparency.  The carbon footprint is commonly used by Samsung and its customers to recognize the environmental impact across all phases of Samsung’s semiconductor products, and can be used as a metric to track and reduce carbon emissions.  “Since 2019, we have been actively mobilizing efforts to measure and reduce the carbon emissions of our key memory and logic solutions,” said Dooguen Song, Executive Vice President of the Environment, Health and Safety (EHS) Center at Samsung Electronics. “By leveraging LCA, we will be able to support our customers to achieve their carbon neutrality, as well as becoming more transparent on the environmental impact of the semiconductors we produce worldwide.”  “As a global expert in energy and environmental certification, DNV is pleased to have partnered with and to congratulate Samsung on successfully establishing its reliable LCA.” said JangSup Lee, CEO of DNV Business Assurance Korea. “Together with global business leaders like Samsung, we will continue to take part in creating a more sustainable environment in the future.”  Since 2019, 37 of Samsung’s semiconductor products received carbon footprint accreditation from the Carbon Trust and UL, 6 of its memory products certified for carbon reduction from Carbon Trust. Samsung’s eco-conscious product portfolio includes DRAM, SSD, embedded storage, mobile SoC, mobile Image Sensor, automotive LED packages.  Leveraging its LCA established at the end of last year, Samsung will quantify the carbon footprints of chips manufactured across all of its global manufacturing, testing and assembly locations in Korea, China, and the U.S.  With sustainability at its core, Samsung will expand its LCA to include water and resource footprints to provide a more comprehensive assessment that will ultimately reduce the environmental impact of various applications such as mobile and wearables, data centers, consumer electronics, automotive, communications and more.
2023-02-13 15:12 reading:3444
  • Week of hot material
  • Material in short supply seckilling
model brand Quote
CDZVT2R20B ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
MC33074DR2G onsemi
TL431ACLPR Texas Instruments
model brand To snap up
BP3621 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
STM32F429IGT6 STMicroelectronics
TPS63050YFFR Texas Instruments
ESR03EZPJ151 ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 weixin Service Account AMEYA360 weixin Service Account
AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code