共模电感原理作用及如何选型?

发布时间:2022-05-07 10:15
作者:Ameya360
来源:网络
阅读量:3923

  共模电感是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作用。那么,共模电感原理作用及如何选型?本文Ameya360电子元器件采购网将一一为您详细讲解:

共模电感原理作用及如何选型?

  一.什么是共模电感?

  共模电感也叫共模扼流圈,常用于电脑的开关电源中过滤共模的电磁干扰信号。在板卡设计中,共模电感也是起EMI(ElectroMagnetic Interference 电磁干扰)滤波的作用,用于抑制高速信号线产生的电磁波向外辐射发射。

  二.共模电感工作原理

  共模电感工作原理是流过共模电流时磁环中的磁通相互叠加,从而具有相当大的电感量,对共模电流起到抑制作用,而当两线圈流过差模电流时,磁环中的磁通相互抵消,几乎没有电感量,所以差模电流可以无衰减地通过。因此共模电感在平衡线路中能有效地抑制共模干扰信号,而对线路正常传输的差模信号无影响。

  共模电感的滤波电路,La和Lb就是共模电感线圈。这两个线圈绕在同一铁芯上,匝数和相位都相同(绕制反向)。这样,当电路中的正常电流流经共模电感时,电流在同相位绕制的电感线圈中产生反向的磁场而相互抵消,此时正常信号电流主要受线圈电阻的影响(和少量因漏感造成的阻尼);当有共模电流流经线圈时,由于共模电流的同向性,会在线圈内产生同向的磁场而增大线圈的感抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模电流,达到滤波的目的。

  还有一种共模滤波器电感/EMI滤波器电感采用铁氧体磁心,双线并绕,杂讯抑制对策佳,高共模噪音抑制和低差模噪声信号抑制,低差模噪声信号抑制干扰源,在高速信号中难以变形,体积小、具有平衡度佳、使用方便、高品质等优点。广泛使用在抑制电子设备EMI噪音、个人电脑及外围设备的 USB线路、DVC、STB的IEEE1394线路、液晶显示面板、低压微分信号...等。

  三.共模电感作用介绍

  1.EMI滤波器件有很多,有铁氧体磁珠、磁环、三端电容、差模电感、共模电感等,每一种元器件在不同的电路起着重要的作用。对于共模电感也是一种比较有效抑制电磁干扰的元器件之一,特别对于EMI滤波器和各类开关电源产品,因此选择合适的共模电感显得更加重要。

  2.共模电感实质上是一个双向滤波器:一方面要滤除信号线上共模电磁干扰,另一方面又要抑制本身不向外发出电磁干扰,避免影响同一电磁环境下其他电子设备的正常工作。

  3.共模电感的大小会直接影响到EMC性能,主要作用是可以隔离共模信号,衰减外部共模干扰,从而降低对电源的影响。还可以衰减内部共模信号,降低对电网的影响。但是共模电感感量大对低频骚扰的抑制效果好,对高频却可能会变差,而感量小了对低频骚扰抑制效果差。

  四.共模电感该如何选型?

  1.共模电感磁芯种类

  常见的磁芯材料有铁氧体磁芯、磁粉芯和高磁通磁粉芯,其中常用的磁粉芯有铁粉芯、和铁硅铝粉芯。上述磁芯材料中,铁氧体磁芯的形状最为多样,而磁粉芯以及高磁通磁粉芯的形状只有环形这个形状。

  2.共模电感磁芯形状

  共模电感常用的磁芯一般为U型、E型和环形,相对的来说环形的磁性比较便宜,毕竟制作起来非常的容易,也不用考虑绕线正反的问题。而其他形状的磁芯是由双组磁芯组成,并且成型时还要考虑磁芯的配对问题,后期还需要精细打磨,但导磁率相比于封闭的磁芯要低的多。

  3.共模电感磁芯成本及性能

  环形磁芯绕线的成本比较的高,因为其他形状磁芯都有自动化设备在生产,生产成本非常低,而环形磁芯现在大多还是需要手工操作,或者机器在低效率下工作,加工成本高,效率低。

  从性能上进行比较,由于磁环的性能比较好,价格也高,磁环大多应用在大功率电源上,如果对体积有要求的小功率电感也是可以采用磁环磁芯。

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
判断电感饱和的方法有哪些
  电感饱和是指电感元件在通电过程中,由于磁场强度达到一定限制而失去对电流的降阻作用,从而导致电感元件性能下降或损坏的现象。本文将探讨判断电感饱和的方法,包括直观观察、测量方法以及电路特性的变化等方面。  1. 直观观察方法  1. 外观检查:通过外观检查电感元件,观察是否有明显变形、膨胀或烧焦等现象,这些都可能是电感饱和的迹象之一。  2. 异常发热:饱和电感在通电时可能会出现异常发热现象,因此观察电感是否产生异常的高温也是一种判断方法。  3. 磁场变化:使用磁场检测仪器,观察电感周围的磁场变化情况,饱和状态下磁场强度变化可能较大。  2. 测量方法  1. 饱和电感电压:测量电感两端的电压随时间变化,当电感达到饱和状态时,电压呈现不同于正常工作状态的变化规律。  2. 饱和电感电流:通过测量电感的电流波形,可以观察电感电流是否达到饱和状态所表现出的特征,如峰值增加或波形剧烈变化。  3. 饱和电感特性曲线:绘制电感的电流-磁通特性曲线,观察其是否存在饱和段,即随着电流增加,磁通增长趋于饱和。  3. 电路特性的变化  1. 频率响应:观察电路的频率响应曲线,饱和状态下电感的频率响应可能会出现畸变或截断现象。  2. 谐振特性:饱和状态下的电感可能影响电路的谐振特性,使得谐振频率发生变化或失真。  3. 功耗变化:饱和电感的存在可能导致电路功耗增加或效率下降,因此观察电路的功耗变化也是判断电感饱和的方法之一。  4. 实验验证  1. 模拟实验:设计合适的模拟电路,通过实验验证电感在不同电流下的工作特性,观察是否存在饱和现象。  2. 数值仿真:利用电路仿真软件进行仿真分析,模拟电感在不同工作条件下的响应,进一步验证是否存在饱和状态。  判断电感饱和的方法包括直观观察、测量方法、电路特性的变化以及实验验证等多个方面。工程师在电路设计和实际应用中需要结合多种方法来准确判断电感是否处于饱和状态,以避免因饱和引起的性能问题和损坏。
2024-09-02 17:43 阅读量:314
电感的作用和工作原理
  今天给大家分享一下关于电感的知识,主要是关于电感的作用以及电感的工作原理。  什么是电感?  电感是一种由线圈组成的无源电气元件,是用于滤波、定时、电力电子应用的两端元件,属于一种储能元件,可以把电能转换成磁能并储能起来。常用字母“L”表示。  在实际中,电感的种类繁多,分类方式也多种多样,这里就不具体讲了。  电感的工作原理  电感就是将导线绕制成线圈形状,当电流流过时,在线圈(电感)两端就会形成较强的磁场。由于电磁感应的作用,会对电流的变化起阻碍作用。  因此,电感对直流呈现很小的电阻(近似于短路),对交流呈现的阻抗较高,其阻值的大小与所通过交流信号的频率有关。  同一电感元件,通过交流电流的频率越高,呈现的阻值越大。  电感的两个重要特性  1、电感对直流呈现很小的电阻(近似于短路),对交流呈现的阻抗与信号频率成正比,交流信号频率越高,电感呈现的阻抗越大;电感的电感量越大,对交流信号的阻抗越大。  2、电感具有阻止电流变化的特性,流过电感的电流不会发生突变,根据电感的特性,在电子产品中常作为滤波线圈、谐振线圈 等。  电感的功能及作用  1、电感的滤波功能  LC滤波电路  在电感滤波中,纹波系数与负载电阻成正比,另一方面,在电容滤波中,它与负载电阻成反比,因此如果将电感滤波与电容结合起来,纹波系数将几乎与负载滤波无关。它也被称为电感输入滤波电路、扼流输入滤波电路、RC滤波电路。  在该电路中,扼流圈与负载串联,为交流分量提供高电阻,并允许直流分量流过负载。负载两端的电容并联连接,过滤掉流过扼流圈的任何交流分量。通过这种方式,就可以得到整流,并通过负载提供平滑的直流电。  电感滤波电路  这种类型也叫做扼流过滤电路,由插在整流器和负载电阻R之间的电感组成。整流包含交流分量和直流分量。当输出通过电感时,为交流分量提供高电阻,而对直流分量没有电阻。因此整流输出的交流分量被阻断,只有直流分量到达负载。  2、电感的谐振功能  电感通常和电容并联构成LC谐振电路,主要用来阻止一定频率的信号干扰。  天线感应射频信号,经电容Ce耦合到由调谐线圈L1和可变电容CT组成的谐振电路,经L1和CT谐振电路的选频作用,把选出的广播节目载波信号通过L2耦合传送到高频放大器。  图中的黄色圈起来的部分为CT、L1构成的谐振电路进行调谐选台。  3、LC串联、并联谐振电路  LC串联谐振电路  将电感与电容串联,可构成串联谐振电路,如下图所示。  该电路可简单理解为与LC并联电路相反。LC串联电路对谐振频率信号的阻抗几乎为0,阻抗最小,可实现选频功能。电感和电容的参数值不同,可选择的频率也不同。  LC并联谐振电路  电感与电容并联能起到谐振作用,阻止谐振频率信号输入。电感对交流信号的阻抗随频率的升高而变大。电容的阻抗随频率的升高而变小。  电感和电容并联构成的LC并联谐振电路有一个固有谐振频率,即共谐频率。  在这个频率下,LC并联谐振电路呈现的阻抗最大。利用这种特性可以制成阻波电路,也可制成选频电路。  电感的应用  电感的两个主要应用领域是电力电子和射频电路。电感是各种DC-DC转换电路以及LC调谐振荡的射频电路中必不可少的元器件。下面,我将从这两个方面举个例子。  1、DC-DC转换电路  DC-DC转换电路或者开关稳压器用于几乎所有的电子设备中,因为在直流电压的升压和降压期间具有高效率,下面是用于降低直流电压的降压转化器的简化图。  在实际应用中,在一些DC-DC转换电路中也常用晶体管来代替二极管来进行同步整流。  2、射频电路  电感用于各种射频电路,包括滤波器、振荡器等。以下图为例,是连接在单级晶体管放大器的集电极和基极之间的 LC 谐振电路。  放大器是必不可少的,因为 LC 电路本身会由于组件的寄生电阻而产生阻尼振荡。振荡电路中的放大器确保无阻尼振荡。  要选择射频扼流圈,需要选择自谐振频率 (SRF) 接近需要扼流圈的频率的电感。这是因为电感的阻抗在其自谐振频率处最大。  对于LC电路选择电感,自谐振频率要比工作频率高很高,还必须考虑电感的容差,不然会导致频率选择出现不必要的偏移。  当然,电感的应用还有很多,不仅仅只有我说的这些。
2024-07-23 11:14 阅读量:391
如何辨识扁平线立绕电感器损坏故障
  扁平线圈绕电感器是一种常见的电子元件,用于储存能量、滤波和传感等应用。然而,由于长期使用或外部环境因素的影响,扁平线圈绕电感器可能会出现各种故障。本文将介绍如何辨识扁平线圈绕电感器常见的损坏故障。  1.外观检查  在判断扁平线圈绕电感器是否损坏之前,首先可以进行外观检查。以下是一些常见的外观特征,可能表明电感器存在问题:  烧焦气味:如果在接通电源后闻到烧焦的气味,可能意味着电感器已经损坏。  外壳变形:外壳出现明显的破损、变形或脱落,可能表示内部元件受损。  焊点松动:焊接点出现松动或生锈,可能导致电连接不良,影响电感器的正常工作。  2.电性能测试  除了外观检查,还可以通过电性能测试来判断电感器是否损坏。以下是一些常用的测试方法:  电阻测量:使用万用表测试电感器的电阻值。如果电感器的电阻值与规格不符或出现短路,可能表示电感器存在问题。  电感测试:使用LCR表或者示波器测试电感器的电感数值。如果电感值与规格相差悬殊,可能表示电感器绕组出现故障。  绝缘电阻测试:测试电感器的绝缘电阻是否符合标准要求。低绝缘电阻可能导致电感器在高压下损坏。  3.声音和振动测试  有时候,损坏的扁平线圈绕电感器会产生特定的声音或振动。通过听觉和触摸检测可以帮助判断电感器是否存在问题:  嗡鸣声:当电感器损坏时,可能会发出嗡鸣或啸叫声。  振动感知:轻轻晃动电感器或通过手指敲击电感器,观察是否有异常的振动感知。  4.热量测试  正常工作的扁平线圈绕电感器通常会产生一定的热量。通过触摸电感器可以初步判断其工作状态:  过热:如果电感器在正常工作时变得异常炙热,可能表示电感器内部存在故障,需要及时更换。  5.实际应用案例  以下是一些典型应用场景中的扁平线圈绕电感器损坏案例:  短路:电感器绕组间发生短路,导致电路短路。  失效:长期过载工作使得电感器内部绕组断裂或烧毁。  漏磁:绕组间绝缘损坏,导致电感器减少磁感应能力,影响电感器性能。  震动损坏:在电感器频繁振动的环境下,可能导致绕组间接触不良或元件脱落。  6.故障预防和解决方法  为了避免扁平线圈绕电感器的损坏,可以采取以下预防措施:  合理选型:选择符合实际需求的电感器,以免超负荷工作。  正常使用:按照规定的电压、电流范围使用电感器,避免过载操作。  保护措施:在电路中添加保护元件,如过流保险丝、过压保护器等,以保护电感器安全运行。  当发现扁平线圈绕电感器存在故障时,可以采取以下解决方法:  更换电感器:对于严重损坏的电感器,最有效的解决方法是直接更换为新的电感器。  修复维护:对于部分轻微损坏的电感器,可尝试进行焊接接触、替换绕组等修复维护措施。  检查周边设备:有时电感器故障可能由其他设备问题引起,因此需要检查周边设备是否存在异常。  通过外观检查、电性能测试、声音和振动测试以及热量测试等方法,可以有效地判断电感器是否损坏,并采取相应的预防和解决措施。在日常维护和使用过程中,要注意保护电感器,避免过载操作,延长其使用寿命。只有在及时发现并处理电感器故障,才能确保电子产品和电路的正常运行,提高设备的可靠性和稳定性。
2024-04-18 13:11 阅读量:717
如何辨别色环电感器的好坏
  色环电感器是一种广泛应用于电子设备和电路中的传感器元件,用于检测电磁场并转换为电信号。本文AMEYA360将介绍如何通过外观、参数检测以及功能测试等方法来判断色环电感器的品质。  1.外观检查  1.1 色环编码:首先,可以通过观察色环编码来初步判断色环电感器的型号和规格。不同的编码方式代表着不同的特性和工作原理,熟悉这些编码可以帮助我们更好地理解电感器的性能。  1.2 外壳质量:其次,检查色环电感器的外壳质量。一个优质的电感器通常会采用高品质的材料制成,外壳表面光滑、无明显划痕或损伤,连接部分焊点牢固,没有松动或变形。  2.参数检测  2.1 电感值:电感值是衡量电感器性能的重要参数之一。使用万用表等测试工具测量电感器的电感值是否符合规范,如果与标称值相差过大,则可能存在质量问题。  2.2 阻抗匹配:阻抗匹配是影响电感器工作效果的关键因素之一。通过测试电感器的输入输出端口阻抗是否匹配,可以判断其在电路中的稳定性和性能。  3.功能测试  3.1 频率响应:对色环电感器进行频率响应测试,检测其在不同频率下的响应情况。一个良好的色环电感器应该具有稳定的频率响应特性,能够在广泛的频率范围内正常工作。  3.2 磁场感应:利用外部磁场源,测试电感器对磁场的感应效果。通过观察输出信号的变化,判断电感器是否能准确感知并响应周围磁场的变化。  4.现场测试  4.1 安装调试:将色环电感器安装到实际电路中,进行调试和测试。通过实际工作环境下的运行情况,观察电感器的输出是否稳定、准确,以及是否受到其他干扰。  4.2 效果评估:根据实际测试结果,对色环电感器的品质进行评估。考虑到其在电路中的整体表现、稳定性以及适应性等方面,综合判断电感器的好坏程度。  通过以上方法,我们可以辨别色环电感器的好坏,确保选择到符合需求的高品质产品。仔细检查外观、测量关键参数、进行功能测试以及现场调试,都是判断电感器品质的有效方式。只有选购到可靠的色环电感器,才能保证电路的正常运行和性能稳定,为各类电子设备的使用提供保障。
2024-04-18 11:58 阅读量:429
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
型号 品牌 抢购
ESR03EZPJ151 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
BP3621 ROHM Semiconductor
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。