晶振不起振的问题分析汇总及处理方法

发布时间:2022-07-11 09:26
作者:Ameya360
来源:网络
阅读量:3566

    晶体振荡器的主要用于一种产生周期性振荡电子信号的电子电路或电子设备。振荡器产生的电子信号通常是正弦波或方波,其功能是将直流信号转换为交流信号。晶振在电路中的作用就是为系统提供基本的频率信号,如果晶振不工作,MCU就会停止导致整个电路都不能工作。为帮助大家深入了解,本文Ameya360电子元器件采购网将对晶振不起振的问题分析汇总及处理方法予以汇总。

晶振不起振的问题分析汇总及处理方法

    一、晶振不起振问题归纳

    1、物料参数选型错误导致晶振不起振

    例如:某MCU需要匹配6PF的32.768KHz,结果选用12.5PF的,导致不起振。

    解决办法:更换符合要求的规格型号。必要时请与MCU原厂确认。

    2、内部水晶片破裂或损坏导致不起振

    运输过程中损坏、或者使用过程中跌落、撞击等因素造成晶振内部水晶片损坏,从而导致晶振不起振。

    解决办法:更换好的晶振。平时需要注意的是:运输过程中要用泡沫包厚一些,避免中途损坏;制程过程中避免跌落、重压、撞击等,一旦有以上情况发生禁止再使用。

    3、振荡电路不匹配导致晶振不起振

    影响振荡电路的三个指标:频率误差、负性阻抗、激励电平。

    频率误差太大,导致实际频率偏移标称频率从而引起晶振不起振。

    解决办法:选择合适的PPM值的产品。

    负性阻抗过大太小都会导致晶振不起振。

    解决办法:负性阻抗过大,可以将晶振外接电容Cd和Cg的值调大来降低负性阻抗;负性阻抗太小,则可以将晶振外接电容Cd和Cg的值调小来增大负性阻抗。一般而言,负性阻抗值应满足不少于晶振标称最大阻抗3-5倍。

    激励电平过大或者过小也将会导致晶振不起振

    解决办法:通过调整电路中的Rd的大小来调节振荡电路对晶振输出的激励电平。一般而言,激励电平越小越好,处理功耗低之外,还跟振荡电路的稳定性和晶振的使用寿命有关。

    4、晶振内部水晶片上附有杂质或者尘埃等也会导致晶振不起振

    晶振的制程之一是水晶片镀电极,即在水晶片上镀上一次层金或者银电极,这要求在万级无尘车间作业完成。如果空气中的尘埃颗粒附在电极上,或者有金渣银渣残留在电极上,则也会导致晶振不起振。

    解决办法:更换新的晶振。在选择晶振供应商的时候需要对厂商的设备、车间环境、工艺及制程能力予以考量,这关系到产品的品质问题。

    5、晶振出现漏气导致不起振

    晶振在制程过程中要求将内部抽真空后充满氮气,如果出现压封不良,导致晶振气密性不好出现漏气;或者晶振在焊接过程中因为剪脚等过程中产品的机械应力导致晶振出现气密性不良;均会导致晶振出现不起振的现象。

    解决办法:更换好的晶振。在制程和焊接过程中一定要规范作业,避免误操作导致产品损坏。

    6、焊接时温度过高或时间过长,导致晶振内部电性能指标出现异常而引起晶振不起振

    以32.768KHz直插型为例,要求使用178°C熔点的焊锡,晶振内部的温度超过150°C,会引起晶振特性的恶化或者不起振。焊接引脚时,280°C下5秒以内或者260°C以下10秒以内。不要在引脚的根部直接焊接,这样也会导致晶振特性的恶化或者不起振。

    解决办法:焊接制程过程中一定要规范操作,对焊接时间和温度的设定要符合晶振的要求。

    7、储存环境不当导致晶振电性能恶化而引起不起振

    在高温或者低温或者高湿度等条件下长时间使用或者保存,会引起晶振的电性能恶化,可能导致不起振。

    解决办法:尽可能在常温常湿的条件下使用、保存,避免晶振或者电路板受潮。

    8、MCU质量问题、软件问题等导致晶振不起振

    解决办法:目前市场上面MCU散新货、翻新货、拆机货、贴牌货等鱼龙混杂,如果没有一定的行业经验或者选择正规的供货商,则极易买到非正品。这样电路容易出现问题,导致振荡电路不能工作。另外即便是正品MCU,如果烧录程序出现问题,也可能导致晶振不能起振。

    9、EMC问题导致晶振不起振

    解决办法:一般而言,金属封装的制品在抗电磁干扰上优于陶瓷封装制品,如果电路上EMC较大,则尽量选用金属封装制品。另外晶振下面不要走信号线,避免带来干扰。

    10、其他问题导致晶振不起振

    二、晶振其他不良问题归纳

    1、频率偏移超出正常值。

    解决办法:当电路中心频率正偏时,说明CL偏小,可以增加晶振外接电容Cd和Cg的值。当电路中心频率负偏时,说明CL偏大,可以减少晶振外接电容Cd和Cg的值。

    2、晶振在工作中出现发烫,逐渐出现停振现象。

    排除工作环境温度对其的影响,最可能出现的情况是激励电平过大。

    解决办法:将激励电平DL降低,可增加Rd来调节DL。

    3、晶振在工作逐渐出现停振现象,用手碰触或者用电烙铁加热晶振引脚又开始工作。

    解决办法:出现这种情况是因为振荡电路中的负性阻抗值太小,需要调整晶振外接电容Cd和Cg的值来达到满足振荡电路的回路增益。

    4、晶振虚焊或者引脚、焊盘不吃锡。

    出现这种情况一般来说引脚出现氧化现象,或者引脚镀层脱落导致。

    解决办法:晶振的储存环境相当重要,常温、常湿下保存,避免受潮。另外晶振引脚镀层脱落,可能跟晶振厂商或者SMT厂商的制程工艺有关,需要进一步确认。

    5、同一个产品试用两家不同晶振厂商的产品,结果不一样。

    出现这种情况很好理解,不同厂商的材料、制程工艺等都不一样,会导致在规格参数上有些许差异。例如同样是+/-10ppm的频偏,A的可能大部分是正偏,B的可能大部分是负偏。

    解决办法:一般来说在这种情况下,如果是射频类产品最好让晶振厂商帮忙做一些电路匹配测试,这样确保电路匹配的最好。如果是非射频类产品则一般在指标相同的情况下可以兼容。

    6、晶振外壳脱落。

    有时晶振在过回流焊后会出现晶振外壳掉落的现象;有些是因为晶振受到外力撞击等原因导致外壳脱落。

    解决办法:SMT厂在晶振过回流焊之前,请充分确认炉温曲线是否满足晶振的过炉要求,一般来说正规的晶振厂商提供的datasheet中都会提供参考值。

    如果是外力因素导致的脱落则尽量避免这种情况发生。

    7、其他不良问题

    三、晶振设计、过程中的建议

    1、在PCB布线时,晶振电路的走线尽可能的短直,并尽可能靠近MCU。尽量降低振荡电路中的杂散电容对晶振的影响。

    2、PCB布线的时候,尽量不要在晶振下面走信号线,避免对晶振产生电磁干扰,从而导致振荡电路不稳定。

    3、如果你的PCB板比较大,晶振尽量不要设计在中间,尽量靠边一些。这是因为晶振设计在中间位置会因PCB板变形产生的机械张力而受影响,可能出现不良。

    4、如果你的PCB板比较小,那么建议晶振设计位置尽量往中间靠,不要设计在边沿位置。这是因为PCB板小,一般SMT过回流焊都是多拼板,在分板的时候产生的机械张力会对晶振有影响,可能产生不良。

    5、在选择晶振的型号及规格参数时,工程师应尽量与晶振大厂商或者专业代理商确认,避免选择的尺寸或者指标不常用,导致供货渠道少、批量供货周期长而影响生产,而且在价格上也会处于被动。

    6、通常不建议用超声波清洗带有晶体振荡器的电路板,以避免共振对晶振造成损坏。

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
GNSS授时与恒温晶振驯服技术的应用
  随着信息技术的飞速演进,卫星导航系统已成为支撑现代社会运转的重要技术基石。电力、通信、金融、交通等关键基础设施领域,日益依赖卫星信号提供的高精度时间与位置信息,以保障系统协同运行和数据一致性。然而,信号遮挡、干扰或失效风险的存在,使得单纯依赖外部信号存在隐患。此时,通过卫星信号进行校准的恒温晶振(OCXO)成为维持系统持续稳定运行的核心部件之一。  一、关键设施对高精度授时的依赖  在各类关键系统中,精确的时间同步已不仅是技术需求,更是安全与稳定的保障。例如:  电网系统:需依靠纳秒级时间同步实现故障定位、相位测量和稳控保护,时间偏差可能导致保护误动或电网失稳。  通信网络:尤其在5G、物联网等低时延场景中,基站间的时间同步直接影响通信质量与频谱效率。  金融交易系统:高频交易、区块链结算等业务依赖精确至微秒级的时间戳,以保障交易的顺序性与不可篡改性。  轨道交通与航空:列车调度、航班导航与空管系统需依赖可靠的时间基准,确保运行安全与效率。  这些应用对时间信号的连续性、准确性与可靠性提出了极高要求,卫星信号虽能提供全球覆盖的精准时频参考,但其信号易受环境影响,必须通过本地高稳时钟设备进行补充与保护。  二、卫星校准型恒温晶振的核心技术要求  为应对卫星信号可能出现的中断或失真,采用卫星信号校准的恒温晶振须满足以下几方面严格的技术条件:  1. 优异的自主守时能力  OCXO在失去外部校准信号后,需依靠自身的高稳定振荡器维持频率输出。其短期与长期频率稳定度必须足够高,确保在信号中断期间系统时间误差控制在允许范围内。  2. 快速捕获与重同步能力  当卫星信号恢复后,OCXO应能迅速重新锁定并校准,减少系统脱离精确时间的窗口。快速收敛算法与低相位噪声设计是实现该能力的关键。  3. 强环境适应性与可靠性  关键设施常部署于户外、机房、地下等多种环境,OCXO须在温湿度变化、振动、电磁干扰等条件下保持性能稳定,具备良好的抗震、散热与防护设计。  4. 支持多系统与抗干扰能力  现代授时模块常兼容GPS、北斗、GLONASS等多个卫星系统,并结合滤波与信号增强技术,提升在复杂电磁环境下的可用性。  三、典型应用场景举例  1. 智能电网时间同步装置  在变电站、调度中心中,搭载OCXO的授时设备作为主时钟或扩展时钟,平时通过卫星信号校准,一旦卫星失锁,仍可依靠OCXO保持时间精度,确保线路差动保护、事件录波等功能的连续性。  2. 通信基站时频供给单元  尤其在偏远地区或室内覆盖场景,卫星信号较弱或不可用,OCXO可为基站提供稳定的本地时钟源,保障载波同步与帧定时,维持网络通信不中断。  3. 金融数据中心时间服务器  金融行业对时间的法律效力和审计追溯要求极高。采用卫星校准OCXO的时间服务器,即使在数据中心无法接收卫星信号时,仍能维持统一、可信的时间基准,支持分布式账本、交易结算等关键业务。  4. 广播电视同步系统  在广播电视发射与传输网络中,多个站点需严格同步以避免信号重叠或中断。OCXO在卫星信号受天气或地理因素影响时,可继续提供同步时钟,保障播出安全。  四、结语  随着国家基础设施数字化、网络化程度的提升,高精度时间同步已成为支撑系统可靠运行的重要“隐形脉络”。卫星校准型恒温晶振通过结合卫星信号的全局准确性与本地振荡的短期稳定性,在信号异常情况下构建起关键的时间冗余屏障。未来,随着北斗系统等自主导航体系的完善,以及物联网、工业互联网等新场景的拓展,该类技术将在更多关键领域扮演不可或缺的角色,为新型基础设施筑牢时间基准的安全防线。
2026-02-02 11:22 阅读量:191
高精度恒温晶振制造工艺深度解析
  恒温晶体振荡器(OCXO)作为精密电子系统的"心脏",其制造过程融合了材料科学、热力学控制和微电子工艺等多领域技术。以下将系统阐述OCXO生产的完整工艺流程及其关键技术要点。  晶体谐振单元精密加工  基材筛选与预处理  选用天然或人造石英晶体作为基础材料,通过X射线衍射技术进行晶向标定,确保晶体轴向精度优于0.01度。采用超声波清洗和化学蚀刻工艺去除表面杂质,为后续加工奠定基础。  精密成型处理  基于目标频率特性,选择适当的切型(如AT切、SC切)。使用金刚石线锯进行初加工,再通过研磨、滚筒、抛光、腐蚀甚至离子束刻蚀完成厚度微调,最终将频率公差控制在±10ppm以内。  电极设备与组装  采用真空镀膜技术在晶体表面沉积金电极,电极厚度均匀性误差需小于5纳米。通过激光修调技术精确调整电极质量负载,实现频率的精细校准。  恒温控制系统集成  热学结构设计  采用多层隔热架构,包含真空层、反射层和导热层。通过有限元分析优化热流路径,使恒温槽内部温度梯度小于0.05℃。  温度控制电路  集成高精度温度传感器(如铂电阻或热敏电阻)与比例-积分-微分控制电路。采用脉宽调制技术驱动加热元件,实现温度稳定性优于±0.01℃。  机械隔振设计  在晶体与外壳之间设置多级减震系统,采用硅橡胶阻尼材料和弹簧悬吊结构,将机械振动敏感度降低至0.1ppb/g以下。  电子系统优化  振荡电路设计  采用科皮兹或克拉普振荡电路拓扑,精选低噪声有源器件。通过仿真优化偏置点和工作状态,将1/f噪声贡献最小化。  电源管理模块  设计多级稳压和滤波网络,电源抑制比达到80dB以上。采用温度补偿技术,确保供电参数在全温度范围内保持稳定。  电磁兼容设计  在关键电路节点设置屏蔽罩,采用带状线和微波传输线设计,减少电磁辐射和串扰。所有信号线实施阻抗匹配控制。  校准与测试流程  频率校准  在专用恒温实验室中进行频率校准,通过数字锁相环技术将输出频率精度校准至±0.1ppb。采用频率合成技术实现多频点输出。  环境适应性测试  进行-55℃至+105℃的温度循环测试,验证温度稳定性。实施随机振动和机械冲击测试,确保在恶劣环境下性能不退化。  长期可靠性验证  开展持续3000小时的老化试验,监测频率漂移和相位噪声变化。通过阿伦方差分析评估短稳和长期稳定度,确保老化率低于0.1ppm/年。  封装与品质保证  气密封装工艺  采用不锈钢及可伐材料作为外壳基材,通过电阻焊实现氦气泄漏率小于1×10⁻⁸cc/sec的密封等级。内部充填高纯氮气防止氧化。  标准化生产  建立自动化生产线,采用贴片机和回流焊工艺实现高一致性制造。通过统计过程控制监控关键工艺参数。  质量验证体系  执行100%在线测试,包括相位噪声、频率稳定度和功耗等关键指标。基于GJB的要求建立完整的质量追溯系统,确保产品可追溯性。  应用领域拓展  现代OCXO制造技术已能够满足5G通信基站、卫星导航系统、量子计算设备和精密测试仪器等高端应用需求。随着新材料和新工艺的不断涌现,OCXO正朝着更小尺寸、更低功耗和更高稳定度的方向发展。  通过上述系统化的制造流程和严格的质量控制,现代OCXO产品能够提供卓越的频率稳定性和相位噪声性能,为各类精密电子系统提供可靠的时钟基准。
2025-12-05 13:46 阅读量:528
手机中温补晶振(TCXO)的作用
晶振负载范围解析:匹配不当会引发哪些问题
  在电子电路的世界里,晶振犹如精准的时钟心脏,为各类设备提供稳定的时钟信号,确保数据传输、处理和设备运行有条不紊。然而,晶振性能的发挥,与一个关键参数——负载范围紧密相关。  频率偏差与精度损失  晶振的振荡频率与负载电容呈反比例关系,这是由晶振的等效电路特性决定的。当实际负载电容偏离晶振的标称负载电容时,晶振的振荡频率就会发生偏差。在对频率精度要求极高的应用场景,如通信基站、GPS定位设备中,即使是微小的频率偏差,也会导致信号传输错误、数据同步失败等严重后果。  在通信系统中,频率偏差可能造成信道干扰,使接收端无法准确解调信号,导致通话质量下降、数据传输速率降低甚至通信中断。  起振困难与启动异常  晶振正常起振需要满足一定的能量条件和相位条件。负载匹配不当会破坏这两个关键条件,进而导致起振困难。当负载电容过大时,晶振的等效负载加重,需要更多的能量来驱动其振荡,这可能超出驱动电路的能力范围,使晶振无法正常起振。相反,负载电容过小,会导致反馈系数变化,破坏相位平衡条件,同样会引发起振问题。  稳定性下降与信号波动  负载匹配不当还会显著降低晶振的稳定性,使其输出的时钟信号出现波动。温度、电压等外界环境因素的变化,会对晶振的频率产生影响,而负载不匹配会加剧这种影响。在温度变化时,负载电容的容值会随温度发生变化,若负载匹配不当,这种变化会进一步导致频率漂移加剧,使晶振的频率温度特性恶化。  在电压波动的情况下,负载不匹配会使晶振的频率电压特性变差,导致输出频率不稳定。这种稳定性下降会影响设备中其他电路的正常工作,特别是在高速数字电路中,时钟信号的不稳定可能引发时序错误,造成数据误读、误写,导致系统崩溃。  寿命缩短与可靠性降低  长期处于负载不匹配的工作状态,晶振内部的石英晶体和电路元件会承受额外的应力和损耗,从而加速老化,缩短晶振的使用寿命。此外,负载不匹配引发的各种问题,如频率偏差、起振困难和稳定性下降,会增加设备维护和故障排查的难度,降低整个系统的可靠性。在工业控制、航空航天等对设备可靠性要求极高的领域,晶振的过早失效可能引发严重的安全事故和经济损失。  晶振负载范围的正确匹配是确保晶振正常工作和设备稳定运行的关键。工程师在设计电路时,必须充分考虑晶振的负载范围,选择合适的负载电容,并进行精确的电路设计和调试,以避免因负载匹配不当引发的各种问题。只有这样,才能充分发挥晶振的性能优势,为电子设备提供稳定可靠的时钟信号,保障设备的高效运行。
2025-11-06 13:26 阅读量:511
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
MC33074DR2G onsemi
型号 品牌 抢购
IPZ40N04S5L4R8ATMA1 Infineon Technologies
ESR03EZPJ151 ROHM Semiconductor
BP3621 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
TPS63050YFFR Texas Instruments
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码