IC采购|电子元器件如何高效散热?

发布时间:2023-05-16 10:24
作者:Ameya360
来源:网络
阅读量:2504

  在电子元器件的高速发展过程中,它们的总功率密度不断增大,但尺寸却越来越较小,热流密度因而持续增加,这种高温环境势必会影响电子元器件的性能指标。对此,必须要加强对电子元器件的热控制。如何解决电子元器件的散热问题是现阶段的重点。本文AMEYA360电子元器件采购网主要对电子元器件的散热方法进行了简单的分析。

IC采购|电子元器件如何高效散热?

  电子元器件的高效散热问题,受到传热学以及流体力学的原理影响。电气器件的散热就是对电子设备运行温度进行控制,进而保障其工作的温度以及安全性,主要涉及到散热、材料等各个方面的不同内容。现阶段电子元器件散热主要有自然、强制、液体、制冷、疏导、热隔离等方式。

  自然散热或冷却方式

  自然散热或冷却方式就是在自然的状况之下,不接受任何外部辅助能量的影响,通过局部发热器件以周围环境散热的方式进行温度控制,其主要的方式就是导热、对流以及辐射集中方式,而主要应用的就是对流以及自然对流等方式。

  自然散热或冷却方式主要就是应用在对温度控制要求较低的电子元器件、器件发热的热流密度相对较低的低功耗器材以及部件之中。在密封以及密集性组装的器件中,如果无需应用其他冷却技术,也可以应用此种方式。在一些时候,对于散热能力要求相对较低的情况,也可以利用电子器件自身的特征,适当增加其与临近的热沉导热或者辐射影响,并在通过优化结构优化自然对流,进而增强系统的散热能力。

  强制散热或冷却方式

  强制散热或冷却方式就是通过风扇等方式加快电子元器件周边的空气流动,从而带走热量的一种方式。此种方式较为简单便捷,应用效果显著。在电子元器件中,如果其空间较大使空气更易流动,或者安装一些散热设施,就可以应用此种方式。在实践中,提升此种对流传热能力的主要方式具体如下:要适当增加散热的总面积、要在散热表面产生相对较大的对流传热系数。

  在实践中,增大散热器表面散热面积的方式应用较为广泛。在工程中主要就是通过翅片的方式拓展散热器的表面面积,进而强化传热效果。而翅片散热方式可以分为不同的形式,包括在一些热耗电子器件的表面应用的换热器件,以及空气中应用的换热器件。应用此种模式可以减少热沉热阻,也可以提升其散热的效果。而对于一些功率相对较大的电子器件,则可以应用航空中的扰流方式进行处理,通过对散热器中增加扰流片,在散热器的表面流场中引入扰流,则可以提升换热的效果。

  当然,散热器本身材料的选择跟其散热性能有着直接的关系。目前,散热器的材料主要是用铝经过压铸型加折叠鳍/冲压薄鳍而制成的,铝具有较高的热传导率(198W/mK)和不易氧化的优点。另外,传导率大于200W/mk的AIN陶瓷制成的散热器具有热传导率高、不导电、长期暴露在空气中不会氧化的优点,这种材料已在电子元器件的封装技术和行波管中得到了应用。此外,用硅材料制作热沉在微型系统中也得到了广泛的应用,通过化学加工方法可以在硅材料上得到理想深宽比的微通道。

  液体冷却或散热方式

  对电子元器件应用液体冷却的方式进行散热处理,是一种基于芯片以及芯片组件形成的散热方式。液体冷却主要可以分为直接冷却以及间接冷却两种方式。间接液体冷却方式就是其应用的液体冷却剂不直接与电子元器件接触,而是通过中间的媒介系统,利用液体模块、导热模块、喷射液体模块以及液体基板等辅助装置在发热元器件之间进行热传递。

  直接液体冷却方式也可以称为浸入冷却方式,就是将液体与相关电子元器件直接接触,通过冷却剂并带走热量,主要就是在一些热耗体积密度相对较高或者在高温环境中应用的器件。

  通过制冷进行散热或冷却的方式

  通过制冷进行散热或冷却的方式主要有制冷剂的相变冷却以及Pcltier制冷两种方式,在不同的环境中其采取的方式也是不同的,要综合实际状况合理应用。

  1、制冷剂的相变冷却

  就是一种通过制冷剂的相变作用吸收大量热量的方式,可以在一些特定的场合中冷却电子器件。而一般状态主要就是通过制冷剂蒸发带走环境中的热量,其主要包括了容积沸腾以及流动沸腾两种类型。

  在一般状况之下,深冷技术也在电子元器件的冷却中有着重要的价值与影响。在一些功率相对较大的计算机系统中可以应用深冷技术,不仅仅可以提升循环效率,其制冷的数量以及温度范围也较为广泛,整个机器设备的结构相对较为紧凑,循环的效率也相对较高。

  2、Pcltier制冷

  通过半导体制冷的方式散热或者冷却处理一些常规性的电子元器件,具有装置体积小、安装便捷、质量较好、便于拆卸的优势。此种方式也称之为称热电制冷方式,就是通过半导体材料自身的Pcltier效应,使直流电通过不同的半导体材料并在串联的作用之下形成电偶,此时通过在电偶两端吸收热量、放出热量,这样就可以实现制冷的效果。此种方式是一种产生负热阻的制冷技术与手段,其稳定性相对较高,但是因为其成本相对较高,效率也相对较低,因而只在一些体积相对较为紧凑,且对于制冷要求较低的环境中应用。其散热温度≤100℃;冷却负载≤300W。

  通过能量疏导进行散热或冷却的方式

  就是通过传递热量的传热元件将电子器件散发的热量传递给另一个环境中。而在电子电路集成化的过程中,大功率的电子器件逐渐增加,电子器件的尺寸越来越小,这就要求散热装置自身要具有一定的散热条件。因为热管技术自身具有一定的导热性特征和良好的等温性特征,在应用中具有热流密度可变性且恒温特性良好、可以快速适应环境的优势,因而在电子电气设备的散热中应用较为广泛,可以有效的满足散热装置灵活、高效且可靠的特性,现阶段在电气设备、电子元器件冷却以及半导体元件的散热方面中应用较为广泛。

  热管是一种高效率且通过相变传热方式进行热传导的模式,在电子元器件散热中应用较为广泛。在实践中,必须要根据不同种类的要求,对热管进行单独的设计,并通过分析重力以及外力来进行因素的影响来进行合理设计。热管设计过程中,要分析制作的材料、工艺以及洁净度等问题,并严格控制产品质量,对其进行温度监控处理。

  热隔离散热方式

  热隔离就是通过绝热技术进行电子元器件散热和冷却处理。其主要分为真空绝热和非真空绝热两种形式。在电子元器件的温度控制上,主要应用的是非真空类型的绝热处理。而非真空的绝热就是通过低导热系数的绝热材料开展。此种绝热形式也是一种容积绝热的方式,直接受绝热材料厚度因素的影响,而材料导热系数的物理参数也直接影响其绝热效果。

  热隔离方式主要就是影响局部器件的温度,加强控制、组织高温器件以及相关物体产生的升温影响,进而保障整个元器件的可靠性,延长设备的应用寿命。在实践中,因为温度直接影响绝热材料的传热性能,一般温度越高,就需要越多的绝热材料。同时,温度升高也会增加绝热材料中的多孔介质中的内辐射。在应用绝热措施的时候,设备运行时间如果相对较长,其实际的绝热效果则就越差。同时,如果温度升高,就会导致多孔绝热材料自身的总导热系数不断增加。对此,必须要保障绝热材料的整体性能,进而提升应用效果。

  在集成电路的发展过程中,电子元器件的密度与热量密度也在持续增加,其散热问题也逐渐凸显。对此,高质量的散热以及冷却方式可以保障电子元器件的性能指标。在实践中,要综合具体的电子元器件发热功率、自身特性,合理应用不同的散热以及冷却方式与手段,要综合具体的应用场合,合理选择应用方式与手段,进而凸显电子元器件的性能指标。

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
机构:电子元器件行业下半年全面复苏!
  随着电子产品销售增加、库存稳定和产能增加,全球半导体制造业今年第一季出现改善迹象,今年下半年预计将成长强劲。  近日,知名半导体行业研究机构国际半导体产业协会(SEMI)发布最新报告指出,有多项指标显示全球半导体制造业景气好转,包括电子产品销售升温、库存回稳、晶圆厂已装机产能提高等,加上AI边缘运算需求提升,预估全球半导体产业下半年有望全面复苏。  SEMI给出的数据指标如下:  电子产品销售额方面,2024年第一季度较去年同期增加1%、2024年第二季将同比增长5%;  芯片销售额上,2024年第一季度同比提升22%、第二季在高效能运算(HPC)芯片出货量攀升和内存订价继续往上等助力推波助澜下,可望大涨21%。  芯片库存方面,大家的库存水平到2024年第一季度已趋于稳定,第二季也将持续有所改善。  晶圆厂产能上,已安装总产能成长幅度不断推升,季产超过4,000 万片晶圆(约当12吋晶圆),2024年第一季成长1.2%,第二季也有1.4%的成长。其中,中国大陆持续稳坐全球产能成长最高地区,然而晶圆厂稼动率,特别是成熟节点仍令人担忧,2024年上半年未见恢复迹象。  半导体资本支出与晶圆厂稼动率走向一致,较趋保守,并延续2023年第四季较年减17%的跌势,2024年第一季下滑11%,要到第二季才会出现0.7% 些微反弹成长。 内存相关资本支出则相对走强,较非存储器部门略高,成长幅度可达8%。  TechInsights市场分析总监Boris Metodiev则指出:“今年上半年半导体需求好坏参半,生成式AI需求激增,带动内存和数字芯片市场反弹,与此同时,模拟、离散和光电则因消费市场复苏缓慢,以及汽车和工业市场需求下降而稍加拉回修正。”  同时,Metodiev也预测AI边缘运算将持续扩展、提振消费者需求,全球半导体产业今年下半年可望全面复苏。同时,汽车和工业市场在利率持续下降(推升消费者购买力)和库存减少带动下,今年后半也将恢复成长。  另外,摩根大通(近日在名为《2024年第1季半导体产业监控》(SMM)研究报告中指出,晶圆代工厂的库存去化将于今年下半年结束,产业景气度将在2025年普遍复苏,甚至会在2025 年更加强劲。  根据其分析,今年第一季景气落底,加上AI需求持续增加、非AI需求逐渐回升。更重要的是急单开始出现,包括大尺寸面板驱动IC(LDDIC)、电源管理IC(PMIC)、WiFi 5和WiFi 6芯片等,都清楚地显示晶圆代工产业已经摆脱谷底,正在走向复苏。  值得注意的是,该报告表示,中国大陆晶圆代工厂产能利用率恢复速度较快,因无厂半导体公司较早开始调整库存,经过前六季积极去库存后,库存正逐渐正常化。
2024-05-20 15:19 阅读量:491
2023年度中国本土电子元器件分销商营收排名出炉!
2024-05-14 10:03 阅读量:520
采购电子元器件要注意哪些参数
  电子元器件是现代电子产品的基础组成部分,其品质和性能直接影响着整个电子产品的质量和性能。因此,在采购电子元器件时,需要注意一些重要的参数,以确保所采购的元器件符合产品的设计要求,并能够稳定可靠地工作。  以下是一些需要注意的参数:  1. 封装类型  电子元器件的封装类型是指元器件的外形和尺寸,不同的封装类型对应着不同的安装方式和适用场景。常见的封装类型有DIP、SMD、BGA等,不同的封装类型适用于不同的电路板设计和组装方式,需要根据具体的产品要求选择合适的封装类型。  2. 工作温度范围  电子元器件的工作温度范围是指元器件可以正常工作的温度范围,超出该范围可能会导致元器件性能下降或者损坏。因此,在采购电子元器件时,需要根据产品的工作环境和要求选择合适的工作温度范围。  3. 额定电压和电流  电子元器件的额定电压和电流是指元器件可以承受的最大电压和电流,超过该值可能会导致元器件损坏或者发生故障。因此,在采购电子元器件时,需要根据产品的电源和电路设计要求选择合适的额定电压和电流。  4. 频率响应  电子元器件的频率响应是指元器件对于不同频率的电信号的响应能力,不同的元器件对于不同频率的信号有着不同的响应能力。因此,在采购电子元器件时,需要根据产品的信号处理要求选择合适的频率响应范围。  5. 稳定性  电子元器件的稳定性是指元器件在长期使用过程中的性能稳定程度,不同的元器件对于温度、湿度、振动等因素的稳定性有着不同的要求。因此,在采购电子元器件时,需要选择具有良好稳定性的元器件,以确保产品的长期稳定运行。  总结,采购电子元器件需要注意的参数包括封装类型、工作温度范围、额定电压和电流、频率响应和稳定性等。在选择元器件时,需要根据产品的具体要求和设计要求选择合适的元器件,以确保产品的质量和性能。
2024-04-28 09:17 阅读量:622
电子元器件如何实现CPU的运算
  我们都知道,人类进行运算的本质是查表,并且我们存储的表是有限的。计算机也是查表吗?答案是否定的。本文来说说CPU是如何计算1+1的,另外关于CPU加法的视频请移步此处,CPU如何进行数字加法。CPU是一块超大规模的集成电路,而集成电路是由大量晶体管等电子元件封装而成的。  所以,探究计算机的计算能力,先要从晶体管的功能入手。  晶体管如何表示0和1  第一代计算机使用的是电子管和二极管等元件,利用这些元件的开关特性实现二进制的计算。  然而电子管元件有许多明显的缺点。例如,在运行时产生的热量太多,可靠性较差,运算速度不快,价格昂贵,体积庞大,这些都使计算机发展受到限制。于是,晶体管开始被用来作计算机的元件。  晶体管利用电讯号来控制自身的开合,而且开关速度可以非常快,实验室中的切换速度可达100GHz以上。  第二代电子计算机时代,使用了晶体管以后,电子线路的结构大大改观。  1947年贝尔实验室的肖克利等人发明了晶体管,又叫做三极管。下图是晶体管的电路符号。需要说明的是,晶体管有很多种类型,每种类型又分为N型和P型,下图中的电路符号就是一个PNP三极管,要判断三极管类型请移步,PNP与NPN两种三极管使用方法。  三极管电路有导通和截止两种状态,这两种状态就可以作为“二进制”的基础。从模电角度来说晶体管还有放大状态,有关内容请移步:告别三极管放大状态的泥潭。但是我们此处考虑的是晶体管应用于数字电路,只要求它作为开关电路,即能够导通和截止就可以了。  如上图所示,当b处电压>e处电压时,晶体管中c极和e极截止;当b处电压  这只是一个简化说明,实际上从模电角度分析,导通和截止的要求是两个PN节正向偏置和反向偏置,还要考虑c极电压。但在实际的数字电路中,e极电压和c极电压一般恒定,要么由电源提供、要么接地,所以我们可以简单记为“晶体管电路的通断就是由b极电压与恒定的e极电压比较高低决定”。  就上面这个三极管管而言,高电平截止,低电平导通。假如此时,我们把高电平作为“1”,低电平作为“0”。那么b极输入1,就会导致电路截止,如果这个电路是控制计算机开关机的,那么就会把计算机关闭。这就是机器语言的原理。  实际用于计算机和移动设备上的晶体管大多是MOSFET(金属-氧化物半导体场效应晶体管),它也分为N型和P型,NMOS就是指N型MOSFET,PMOS指的是P型MOSFET。MOS管基础内容请移步这里,MOS管基本认识。注意MOS中的栅极Gate可以类比为晶体管中的b极,由它的电压来控制整个MOS管的导通和截止状态。  NMOS管与PMOS管电路符号如下图:  NMOS在栅极高电平的情况下导通,低电平的情况下截止。所以NMOS的高电平表示“1”,低电平表示“0”;PMOS相反,即低电平为“1”,高电平为“0”。到了这个时候,你应该明白“1”和“0”只是两个电信号,具体来说是两个电压值,这两个电压可以控制电路的通断。  门电路  一个MOS只有一个栅极,即只有一个输入;而输出只是简单的电路导通、截止功能,不能输出高低电压信号,即无法表示“1”或“0”,自然无法完成计算任务。此时就要引入门电路了(提示:电压、电平、电信号在本文中是一回事)。  门电路是数字电路中最基本的逻辑单元。它可以使输出信号与输入信号之间产生一定的逻辑关系。门电路是由若干二极管、晶体管和其它电子元件组成的,用以实现基本逻辑运算和复合逻辑运算的单元电路。这里只介绍最基础的门电路:与门、或门、非门、异或门。  1 与门  与门电路是指只有在一件事情的所有条件都具备时,事情才会发生。  下面是由MOS管组成的电路图。A和B作为输入,Q作为输出。  例如A输入低电平、B输出高电平,那么Q就会输出低电平;转换为二进制就是A输入0、B输出1,那么Q就会输出0,对应的C语言运算表达式为0&&1=0。  2 或门  或门电路是指只要有一个或一个以上条件满足时,事情就会发生。  下面是由MOS管组成的电路图。A和B作为输入,Q作为输出。  例如A输入低电平、B输入高电平,那么Q就会输出高电平;转化为二进制就是A输入0、B输出1,那么Q就会输出1,对应的C语言运算表达式为0||1=1。  3 非门  非门电路又叫“否”运算,也称求“反”运算,因此非门电路又称为反相器。下  面是由MOS管组成的电路图。非门只有一个输入A,Q作为输出。  例如A输入低电平,那么Q就会输出高电平;转换为二进制就是A输入0,那么Q就会输出1;反之A输入1,Q就会得到0,对应的C语言运算表达式为!0=1。  4 异或门 异或门电路是判断两个输入是否相同,“异或”代表不同则结果为真。即两个输入电平不同时得到高电平,如果输入电平相同,则得到低电平。  下面是由MOS管组成的电路图。A和B作为输入,Q作为输出。  例如A输入低电平、B输入高电平,那么Q输出高电平;转换为二进制就是A输入0,B输出1,那么Q就会输出1,对应的C语言运算表达式为0^1=1。  通过这些门电路,我们可以进行布尔运算了。  半加器和全加器  通过门电路,我们可以进行逻辑运算,但还不能进行加法运算。要进行加法运算,还需要更复杂的电路单元:加法器(加法器有半加器和全加器)。加法器就是由各种门电路组成的复杂电路。  假如我们要实现一个最简单的加法运算,计算二进制数1+1等于几。我们这时候可以使用半加器实现。半加器和全加器是算术运算电路中的基本单元,它们是完成1位二进制相加的一种组合逻辑电路;这里的1位就是我们经常说的“1byte=8bit”里的1bit,即如果我们想完成8位二进制的运算就需要8个全加器 。半加器这种加法没有考虑低位来的进位,所以称为半加。下图就是一个半加器电路图。  半加器由与门和异或门电路组成,“=1”所在方框是异或门电路符号,“&”所在方框是与门电路符号。这里面A和B作为输入端,因为没有考虑低位来的进位,所以输入端A和B分别代表两个加数。输出端是S和C0,S是结果,C0是进位。  比如,当A=1,B=0的时候,进位C0=0,S=1,即1+0=1。当A=1,B=1的时候,进位C0=1,S=0,即1+1=10。这个10就是二进制,换成十进制就是用2来表示了,即1+1=2。到了这里,你应该明白了晶体管怎么计算1+1=2了吧。  然后我们利用这些,再组成全加器。下面是一个全加器电路图,同样只支持1bit计算。Ai和Bi是两个加数,Ci-1是低位进位数,Si是结果,Ci是高位进位数。  如果我们将4个加法器连接到一起就可以计算4位二进制,比如计算2+3,那么4位二进制就是0010+0011,下表就是利用加法器计算的值。和普通加法一样,从低位开始计算。加数A代表0010,B代表0011。  结果Si:0101,就是十进制5,加法器实现了十进制运算2+3=5。  结语  现在我们可以想到,CPU的运算单元是由晶体管等各种基础电子元件构成门电路,在由多个门电路组合成各种复杂运算的电路,在控制电路的控制信号的配合下完成运算,集成的电路单元越多,运算能力就越强。
2024-03-04 10:55 阅读量:1917
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
MC33074DR2G onsemi
TL431ACLPR Texas Instruments
CDZVT2R20B ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
型号 品牌 抢购
BP3621 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。