上海雷卯:耳机接口静电保护方案

发布时间:2024-07-04 09:47
作者:AMEYA360
来源:上海雷卯
阅读量:263

  方案优点:左右声道和MIC信号线上放ESD二极管保护后级芯片,再根据情况增加磁珠滤出杂讯,可以选择3.3V或5V ESD 二极管,可以保证信号完整性的同时,通过静电测试。 满足:IEC61000-4-2,接触放电 30kV,空气放电30kV,ISO10605-2等级4

上海雷卯:耳机接口静电保护方案

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
上海雷卯:Cyberchuck汽车电子48V系统浪涌保护方案
  1.Cyberchuck汽车电子48V系统背景:  自20世纪50年代起,主流乘用车的低压电路都是12伏架构,这实际上是七八十年前的标准,一直沿用到了现在,目前各种雷达、摄像头等感知硬件,更高的算力需求,更高功率的音响,更多的屏幕。再加上各种的电动调节以及加热等的用电设备,给传统的12伏汽车配电总线增加了很多的额外负担,线束越来越粗,重量、成本、空间布置等要求也越来越高,所以提高电压是必然。48伏是一个公认的方向,早期混合动力车曾将电压提升到48V,不过直到特斯拉Cybertruck推出,48V系统才得到更广泛应用。  2.Cyberchuck汽车电子48V系统优势:  (1)提高电力负载:48V系统能提供更高电力负载,使汽车实现更多、更耗电的功能,如自动辅助驾驶感知系统、计算系统、4G/5G传输、线控转向和线控刹车等都需要更高的功率支持。在相同电流条件下,48V系统比12V系统能输出更高功率;相同输出功率时,48V系统能实现更低电流,进而降低功率损耗。  (2)提升工作效率:与传统系统相比,48V系统工作效率更高,降低了功率损耗,并且耐用性和安全性更好。Cybertruck的48V系统让电压提高4倍,所需电流减少到原来的1/4,损失的能量更少,线束产生的热量也会降低,可增加线束使用寿命和安全性,同时允许电气组件响应更快。  (3)优化成本与空间:更低的电流意味着可以使用更轻的线缆,减少了线缆的尺寸和重量,能够节省成本,还能为车辆提供更大的驾乘空间,并且可以装备更多的电池。由于电流与铜材料成本相关,减少电流还能节省大量铜材料。例如,Cybertruck使用48V架构帮助将布线减少了77%,铜需求减少了50%,从而降低整体重量,提高效率收益,每年能为特斯拉节省大约100亿美元的成本  (4)简化整车结构:48V系统可以使整车结构变得更加简洁。比如特斯拉Cybertruck用高速数据总线(以太网)替代了CAN总线,可以用菊花链式方式,连接遗留系统中需要点对点布线运行的大多数组件。  3.上海雷卯向48V系统保护方案迈进  转换到48V系统,对于整个车辆供应链是个庞大的工程,它需要各个厂家的配合执行。在这个电压等级上,各种的车规及元器件都需要重新开发,包括电容、功率器件、线束、线组、马达等等,安全性、可靠性就要持续的来验证。上海雷卯是一家车辆EMC安全保护方案公司,根据这一需求迅速做出反应,将在48V电压系统浪涌保护方案上给予支持。  4.为什么48V电压系统需要做浪涌保护  主要基于以下几个重要原因:  首先,汽车电气系统在运行中会面临各种动态变化。例如,引擎启动瞬间,电池会释放出大电流,这可能引发电压的急剧波动,产生浪涌。  其次,车辆中的电气负载突然切换,如大功率电器的启动或停止,也会导致电流和  电压的瞬间变化,从而引发浪涌现象。  再者,汽车在行驶过程中可能会遭遇外部的电磁干扰,例如雷电、静电放电等,这些都可能在电路中引入高能量的浪涌电压。  另外,现代汽车中的电子设备和控制系统越来越复杂和精密,对电压的稳定性要求极高。48V 电压系统中的敏感电子元件,如各种传感器、控制模块等,如果受到浪涌电压的冲击,可能会出现性能下降、故障甚至永久性损坏,进而影响整个汽车的性能、安全性和可靠性。  最后,随着汽车智能化和电动化的发展,48V 电压系统的应用越来越广泛,其承载的功能也越来越重要,因此更需要有效的浪涌保护措施来确保系统的稳定运行和长寿命  因此,为了保障汽车 48V 电压系统的正常工作,避免电子设备受损,提高汽车的安全性和可靠性,浪涌保护是必不可少的。  5.汽车DC 48V电压系统浪涌保护方案  (1)传统保护方案:采用了MOV+GDT+电感+ TVS  (2) 上海雷卯推荐简化方案: 采用低残压大功率TVS  所用TVS列表  肖特基和PPTC 列表  相比传统方案优势:  (1) 成本低:传统方案用了7颗元件,雷卯简化方案用了3颗元件,降低了成本。  (2) 更耐用:传统方案GDT和MOV 使用次数有限,容易衰损,小更换,增加了维修成本。  (3) 简化方案优势:LM1K58CLV浪涌可以通过 IEC61000-4-5,GB/T17626.5 8/20μs 2KV标准。SM8S58CA用于满足ISO7637-25A/5B测试
2024-08-28 14:49 阅读量:274
上海雷卯:气体放电管怎样选型
一、 GDT 参数选择步骤  关于GDT的选型上海雷卯EMC小哥引用“AC 220V线路进行2kV线间和4kV线对地的过电压防护”案例来阐述GDT的选型。  1. 续流电压  考虑AC 220V线路工作电压远大于续弧电压15V,因此不能直接只使用GDT进行防护,需要采取其他措施(如串联电阻或使用其他类型的保护器件)来避免续弧现象。  2. 直流击穿电压  直流击穿电压选择多大需根据以下计算得出:线路正常运行电压峰值(交流线路需将有效值转换为峰值)故220V×1.414=311.08V,最小直流击穿电压 min(ufdc)应当大于等于线路正常运行电压峰值 (Up) 的1.8倍则1.8×311.08V=559.944V,可以选择一个接近但不低于560V的直流击穿电压。例如,选择600V的直流击穿电压的GDT。  3. 后级器件耐压值  GDT的脉冲击穿电压需要基于后级电路中元件的耐压能力来确定。后级保护器件的耐压应当大于GDT的脉冲击穿电压,以确保电路安全。这一部分的具体数值需要根据后级电路的设计来决定。  4. 通流容量  首先确认测试波形,一般是8/20us和10/700us 2种波形,通流容量大小选择:假设浪涌电压完全出现在内阻上,则通流容量为 2000V/2Ω = 1000A,为了确保GDT能承受这一级别的浪涌电流,所选GDT的通流容量至少应为1000A。  通过上述步骤,我们可以合理地选择并配置GDT以实现有效的浪涌保护。  二、GDT的应用  通常电源、高速信号等都可以使用GDT浪涌防护, 低电容可以保证信号传输,微信搜索上海雷卯微信公众号内可查看全套的防护方案。摘列示意图如下。  三、GDT的续流问题  当过电压施加于GDT两端时,其两端电压上升至足以引发气体放电,从而导通GDT。随着通过GDT的电流增加,放电状态会从辉光放电过渡到弧光放电。这两种放电状态都需要一定的维持电压才能持续。在过电压消失之后,理想的GDT应该立即断开,以恢复正常的工作状态,然而在实际应用中,如果电路的工作电压高于GDT的续流电压(也称为维持电压),GDT可能会继续导通,形成续流现象。GDT的持续导通会导致电路短路,进而产生较大的电流,最终可能导致GDT或其他电路元件过热甚至损坏。  为了避免上述续流问题,上海雷卯建议采取以下措施之一或结合使用:  1. 串联限流电阻:在GDT与电路之间串联一个适当的电阻,以限制通过GDT的电流,降低续流的可能性。  2. 使用附加保护器件:压敏电阻可以在过电压事件发生时与GDT共同工作,而在正常工作条件下能够确保电路不受GDT续流的影响。  3. 选择具有较高续流电压的GDT,使得在正常工作电压下不易触发续流现象。提高续弧电压,并不是不续流,工作电压足够大,还是会续流,要注意这点。  四、上海雷卯既往客户的案例分析  产品背景:220V AC输入,满足浪涌8/20us和1.2/50us测试标准,差模6kV,共模10kV,绝缘耐压测试1750V,3S实验,但是浪涌共模10kV时,次级电解电容异常。  初始选型问题:初始设计中,考虑到绝缘耐压测试的要求,选择了直流击穿电压高达3600V的GDT。然而,这样的选择导致了残压过高(约5.1kV),这与电路保护的需求产生了冲突。在浪涌测试过程中,次级电解电容器由于残压过高而受到损害。  解决方案 更换GDT:将GDT的直流击穿电压从3600V降低至2500V,以减小残压(大约2.8kV),同时确保它能够承受绝缘耐压测试的要求。更换后的GDT在进行10kV共模浪涌测试时,次级电解电容器未再出现异常,测试通过。  安规测试:在安规测试中,通常要求移除过电压保护器件来进行绝缘耐压测试,以便准确评估线缆和绝缘外壳之间的耐压性能。然而,在某些行业中,如铁路行业,不允许移除保护器件,因为这种做法一般不符合现场实际情况。  结论:在本案例中,通过调整GDT的选择,上海雷卯成功解决了次级电解电容器在共模10kV浪涌测试中出现的问题。同时也综合考虑行业实践与安规标准之间的平衡。通过合理选择保护器件,并根据实际情况进行适当的调整,可以确保电路既符合安全标准又能在实际应用中提供有效的保护。  五、常见场景的浪涌防护GDT用料推荐  上海雷卯专业研发销售ESD,TVS,TSS,GDT,MOV,MOSFET,Zener,电感等产品。雷卯致力于为客户提供高品质产品,以保护电路免受静电干扰和电压波动的影响。雷卯拥有一支经验丰富的研发团队,能够根据客户需求提供个性化定制服务,为客户提供最优质的解决方案。
2024-08-01 10:46 阅读量:341
上海雷卯:CAN BUS芯片静电浪涌击穿整改方案
  Canbus芯片静电浪涌击穿整改方案  在现代电子系统中,CAN Bus(Controller Area Network Bus,控制器局域网络总线)作为一种常用的通信协议,标准CAN通常指的是CAN 2.0A和CAN 2.0B协议,其最大通讯速率为1Mbps。而高速CAN通常指的是CAN FD(CAN Flexible Data-rate)协议,大家都知道工作环境中可能面临静电放电(ESD EOS)的威胁,因此在CAN BUS电路中工程师们都放置ESD二极管以作静电浪涌防护用,但还会出现IC被静电浪涌打坏,造成不能正常工作,这是什么原因?  一.放置ESD二极管为什么后端还会损坏的原因  上海雷卯EMC小哥根据自己多年ESD 器件选型整改经验分析如下:  1.静电放电浪涌能量过大:如果遇到的静电放电能量超出了防静电二极管的承受能力,仍可能有部分能量传导到器件上,导致器件烧毁。所以各个ESD器件的抗浪涌能力不相同,尽可能复现浪涌水平,并评估选择合适器件。  2. 钳位电压VC 过高 ,超过了后端IC 的承受电压范围,因此导致损坏,这种情况非常普遍。  3. 布线或接地问题:CAN 总线的布线不合理,例如线路过长、走线过于靠近干扰源,或者接地不良,都可能导致静电无法及时有效地通过二极管泄放,从而对器件造成损害。  以上三种情况比较常见。因此,选择合适的静电保护器件至关重要,正确选择 CAN Bus 静电保护器件不仅能够保障系统的稳定运行,还能有效延长设备的使用寿命,降低维护成本。  二.如何选择更好的CAN BUS静电保护器件  第一、CAN Bus 工作的电气特性需深入了解。CAN Bus 通常在特定的电压范围内工作,比如常用的24V,因此所选的静电保护器件必须能够在这个电压范围内正常运行。这要求我们对 CAN Bus 标准的工作电压、信号幅度、传输速率等参数有清晰的认识。  第二、静电防护等级是选择静电保护器件的关键指标。确保所选器件能够提供足够高的静电放电(ESD)防护能力,以应对可能出现的静电冲击。常见的防护等级标准如 IEC 61000-4-2 等。一般来说,防护等级越高,器件对静电的抵御能力就越强。  第三、电容值也是一个不容忽视的因素。由于 CAN Bus 对信号完整性要求较高,静电保护器件的电容值如果过大,可能会导致信号失真、延迟增加等问题,从而影响通信质量。因此,应优先选择电容值较低的保护器件,以最大限度地减少对 CAN Bus 信号传输的影响。  第四、工作电压和钳位电压也是重要的考量参数。静电保护器件的工作电压应大于等于 CAN Bus 正常工作时的电压24V,以确保在正常工作条件下器件不会误触发。同时,钳位电压应足够低,以便在静电放电发生时能够迅速将过高的电压限制在安全范围内,从而保护后端的电路元件。  了解到上面这几个关键点后,在选择CAN BUS 防静电ESD二极管时我们就会做出正确的选择。  三.常见几种CAN BUS静电二极管参数比较  以下是CAN BUS 总线ESD保护电路及常见的知名品牌CAN BUS 静电二极管几种型号参数列表  我们对这个表来进行详细观察,发现有几点不同:IEC 61000-4-2防静电能力,功率,VB,VC IPP, Cj 。  在此特别把上海雷卯的三款低钳位电压(表中VC) CAN BUS 静电二极管放入表中做比较:SMC24XQ,SMC24LVQ,SMC24HQ。  ·根据前面分析我们知道 要选择静电高的比低的好,上海雷卯的三款SMC24系列都是30KV, 达到静电防护最高级。  ·防静电能力:上海雷卯的SMC24XQ,SMC24LVQ,SMC24HQ关键是低VC ,三款VC 都在32V-34V 之间,是这些列表里面最低的VC值,这是选择ESD二极管的最重要参数。  ·钳位电压VC: 上海雷卯SMC24低VC系列三款电流有5A , 10A,13A 可以根据实际电路情况选择,当然电流越大越好,另外推出低箝位电压,VC的产品。  ·结电容 Cj : 也是表里最低的,5PF,15PF ,不影响信号传输,完全可以保证信号完整性。  ·下面对其中一款SMC24LVQ测试图做展示。
2024-07-31 09:08 阅读量:287
上海雷卯:【充电桩浪涌保护方案】是保障充电设施安全稳定运行的关键!
       在当今新能源汽车蓬勃发展的时代,充电桩作为电动汽车的“加油站”,其重要性不言而喻。然而,由于其复杂的电气环境和暴露于户外的特点,充电桩容易受到浪涌的影响。浪涌可能来自雷电、电网故障、大功率设备的启停等,对充电桩的电子设备和储能系统造成严重损害。因此,设计一套有效的浪涌保护方案是保障储能充电桩安全可靠运行的关键。  一 、浪涌来源及危害  充电桩浪涌来源主要有:  1. 雷电:直接雷击或附近雷击产生的强大电磁场会在充电桩的线路上感应出高电压和大电流浪涌。  2. 电网故障:如短路、开关操作、电网电压波动等,可能导致瞬时过电压。  3. 设备启停:大功率设备(如电动机、变压器等)的启动和停止会引起线路中的电流和电压突变,产生浪涌。  浪涌可能导致以下危害:  1. 损坏充电桩的充电模块、控制单元、通信设备等,影响正常充电功能。  2. 对储能系统中的电池管理系统(BMS)、电池组造成损害,降低电池寿命和性能。  3. 引发火灾、爆炸等严重安全事故。  给予以上原因,若不加以有效防护,将对充电桩及其连接的电动汽车造成严重损害。因此,制定一套科学合理的充电桩浪涌保护方案至关重要。  二、保护方案设计原则  1. 多层次防护:采用分级保护策略,从电源进线到设备端口,逐步降低浪涌能量和电压。  2. 快速响应:保护器件应具有快速的响应时间,能够在浪涌出现的瞬间动作。  3. 足够的通流容量:能够承受可能出现的最大浪涌电流,确保不被击穿。  4. 低残压:在泄放浪涌电流后,应尽量降低输出端的残余电压,保护后端设备。  三、具体保护措施  首先,在充电桩的电源入口处,应安装高性能的浪涌保护器(SPD)。这类保护器通常由气体放电管GDT、压敏电阻MOV和大功率瞬态电压抑制二极管(TVS)等元件组成GDT够承受较大的浪涌电流,在浪涌来临时迅速导通,将大部分能量泄放至大地;MOV则具有较快的响应速度,能在微秒级时间内限制电压的上升;大功率TVS二极管则以其极快的响应速度(纳秒级)和精准的电压钳位能力,对残余的浪涌进行进一步抑制,确保后端电路的安全。  这三类器件是充电桩防浪涌主要器件,也是上海雷卯的优势器件,GDT 和MOV 之前博客已介绍,此次主要介绍大功率蓝宝宝 BPSS。  四、大功率 TVS 蓝宝宝  通常指的是蓝宝宝浪涌抑制器,这是一款超大功率的 TVS 二极管(瞬态电压抑制二极管)。它具有超强的浪涌吸收能力和抑制电压能力,在实际应用中通常并接在电路中,既能解决雷击大浪涌问题,又能对静电起到超强的防护效果。  其主要优势包括:  ·浪涌吸收能力强:最大 Ipp 可达到20KA。  ·系列全:例如有 1KA、2KA、3KA、6KA、10KA、16KA、20KA 等系列。  ·响应速度快(微秒级),可保护设备免受损害。  ·漏电流lr小,减少发热。  ·具有低斜率电阻。  ·高效能耗,有助于降低能源成本。  ·有多种封装尺寸供选择。  ·支持极低电压。  ·稳定可靠、寿命更长、体积更小。  五、充电桩选用TVS蓝宝宝型号
2024-07-26 09:03 阅读量:294
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
RB751G-40T2R ROHM Semiconductor
TL431ACLPR Texas Instruments
CDZVT2R20B ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
MC33074DR2G onsemi
型号 品牌 抢购
IPZ40N04S5L4R8ATMA1 Infineon Technologies
TPS63050YFFR Texas Instruments
BP3621 ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
BU33JA2MNVX-CTL ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。