上海贝岭功率器件助力电摩控制器高效发展

发布时间:2024-11-12 09:31
作者:AMEYA360
来源:上海贝岭
阅读量:258

  一、 概述

  在中国电动两轮车已经成为人们日常生活中必不可少的交通工具。随着电动自行车国家标准的不断改进,电动自行车向着低速、高安全性和长续航里程等方向逐渐演进。与此同时,市场对于高速、智能和长续航的电动轻便摩托车及电动摩托车的热情也不断上升。

  功率MOSFET作为电动两轮车控制器的核心器件,其性能决定了控制器系统的整体效率。上海贝岭作为功率MOSFET市场的主要供应商之一,现推出针对电动轻便摩托车控制器的新产品BLP04N11,该器件针对电摩控制器应用特点,优化器件击穿电压和降低开关及导通损耗,助力客户产品迸发更高峰值性能。

  二、 电动轻便摩托车控制器应用解析

  电动轻便摩托车通常使用锂电池供电,使用电池电压挡位可分为48V、60V及72V,配备的电机额定功率范围在400W~3000W。电动轻便摩托车控制器的核心组成部分之一为功率MOSFET组成的三相全桥逆变电路。逆变电路受MCU的PWM调制及对应的栅极驱动器控制,实现直流到交流的变换,从而驱动无刷电机运转。

上海贝岭功率器件助力电摩控制器高效发展

  图1 电动轻便摩托车控制器拓扑图

  三、 贝岭SGT技术平台及BLP04N11器件特点

  上海贝岭基于上海积塔最新SGT Gen2平台,研发110V SGT MOSFET器件系列产品,在SGT Gen1平台的基础上,进一步优化屏蔽栅结构,加强终端结构,使得器件具有较低的导通电阻和较高的击穿电压。针对电动轻型摩托车控制器应用中高效开关转换和低导通损耗的应用需求,贝岭BLP04N11对应优化效果如下:

  1、低导通电阻Rds(on)

  提高电动轻型摩托车控制器的能效水平的一个方式是降低器件导通损耗。导通电阻Rds(on) 决定了功率MOSFET在导通器期间内的损耗。在使用相同封装的情况下,贝岭器件相较于市场主流同规格产品,具有更低的导通电阻Rds(on) ,导通损耗的降幅可达5%。

上海贝岭功率器件助力电摩控制器高效发展

  2、低FOM值

  提高电动轻型摩托车控制器的能效水平的另一个方式是降低开关损耗。对于相同的驱动电路,较低的栅极电荷使得开关速度加快,以降低开关损耗。性能品质因数Figure of Merit (FOM= Rds(on) × Qg,Rds(on) 导通电阻,Qg栅极总电荷),简称FOM值,是MOSFET的一个重要指标,用于评估性能的优劣。在使用相同封装的情况下,贝岭器件相较于市场主流同规格产品,具有相对较低的FOM值。6.5%的降幅可以提高轻型电摩控制器的整体能效和减少器件的负载,可提高控制器的使用寿命。

上海贝岭功率器件助力电摩控制器高效发展

  3、板级温升表现

  得益于贝岭BLP04N11产品较低的导通电阻Rds(on)和电荷参数,在轻便电摩控制器额定功率1500 W的稳态带载测试中,与市场主流产品相比整体可减少来4~6%的损耗。若在相同输出功率的情况下,贝岭器件低损耗的特点可以提高电动轻型摩托车的续航里程。若在过温保护点不变的情况下,贝岭器件可以允许客户控制器输出更高功率。

上海贝岭功率器件助力电摩控制器高效发展

  4、抗短路能力

  贝岭BLP04N11产品为应对控制器应用中的极端工况,加强器件抗短路能力,可以满足72V锂电电池满电、馈电等不同工作电压下的轻型电摩控制器相间短路的可靠性要求。

上海贝岭功率器件助力电摩控制器高效发展

  四、 贝岭功率器件选型方案

  上海贝岭功率针对电动自行车、电动轻便摩托车、电动摩托车、电动叉车和轻型低速四轮车控制器应用设计有多条SGT产品线,包含70V、85V、100V、110V和150V等电压等级器件,欢迎垂询!具体型号参考表1。

 上海贝岭功率器件助力电摩控制器高效发展

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
上海贝岭荣获“年度功率半导体/驱动器”奖项
  11月5日,上海贝岭市场工业市场经理冒晶晶受邀参加由全球技术信息集团 ASPENCORE举办的“IIC SHENZHEN-国际集成电路展览会暨研讨会”。会议中,上海贝岭工业市场经理冒晶晶进行了 “功率器件助推上海贝岭积极融入新能源赛道”的主题演讲并与出席会议的各大半导体行业专家及相关产业嘉宾进行了交流学习。  此次会议中,上海贝岭凭借第7代750V 275A 沟槽栅场阻止结构IGBT芯片(BLQG275T75F)荣获“年度功率半导体/驱动器”奖项。  BELLING  产品推荐  BLQG275T75F产品基于贝岭Trench-FS Gen7 技术平台,具有正向压降小、开关速度快,开关损耗低、高可靠性等特点。采用第七代微沟槽栅技术,优化了导通压降和开关损耗,实现更好的输出特性及高可靠性。采用优化的多层场截止技术,改善了器件在不同母线电压和栅电阻下的短路表现。采用优化的结终端技术,实现175℃的最高工作温度、高可靠性以及强鲁棒性。  该芯片完成全面的车规认证,特别为工作频率在5 至20kHz的硬开关电路设计,主要面向新能源汽车应用市场。该芯片针对电动汽车驱动应用特点特别优化损耗分布,优化正温度系数,使得该芯片易于并联使用,保证了产品的易拓展性,可通过不同封装形式满足不同功率等级的应用。  应用:以TO-247PLUS 单管封装可广泛应用于最高40kW的汽车主驱逆变器,适合A0级和A00级纯电动汽车。以HPD等形式的750V IGBT功率模块可广泛应用于最高120kW的汽车主驱逆变器,适合A级纯电动及混合动力汽车。
2024-11-11 16:48 阅读量:185
上海贝岭650V/80A IGBT助力高效率逆变焊机设计
  一、引言  逆变焊机作为一种先进的焊接设备,在现代工业中占据了重要的地位。与传统的变压器式焊接设备相比,具有诸多优点,如:  高效节能  由于逆变焊机的工作频率很高(通常在20kHz~100kHz),因此它能更有效地利用电能,减少能量损失。  轻便便携  相比传统焊机,逆变焊机体积小、重量轻,易于携带。  焊接性能好  逆变焊机能提供更稳定的电弧,减少飞溅,提高焊接质量。  可调节性强  用户可以根据不同的焊接材料和厚度来调整焊接参数,灵活性更高。  如图1所示,逆变焊机工作原理是先将电网提供的工频交流电转变为直流电,然后通过电子开关(IGBT/MOSFET)将直流电逆变成高频交流电,最后通过整流得到适合焊接工艺要求的电流和电压。  图1 逆变焊机工作方框图  二、逆变焊机拓扑介绍  逆变焊机主电路拓扑已经较为成熟,主要的拓扑有双管正激式、推挽式、半桥式、全桥式等。  图2.1为半桥式拓扑结构。该拓扑由两个功率管组成桥式电路,其对称交替导通有利于变压器完全复位,磁芯利用率高,输出响应快,且半桥分压电容器的存在能够较好抗磁偏。该拓扑广泛应用于中小功率逆变焊机。但在相同功率下,半桥式功率管要承受更大的电流。  图2.2为全桥式拓扑结构。该拓扑由四个功率管组成桥式电路,主要应用于大电流、大功率场合,变压器磁芯利用率高,成本也相应较高。  三、逆变焊机IGBT损耗分析  目前市面上大部分逆变焊机采用的为硬开关电路,电路拓扑如图2.1和2.2,通过测试分析,该应用场景IGBT器件的损耗主要来源于以下四个部分,如图3.1所示:  1、IGBT器件内部合封二极管续流和反向恢复过程损耗Ediode  2、IGBT开启损耗Eon  3、IGBT通态损耗Econ  4、IGBT关断损耗Eoff  如图3.2所示,逆变焊机硬开关应用中,关断损耗Eoff占比最大,其次为导通损耗Econ。  图3.2 IGBT损耗占比  四、上海贝岭650V/80A IGBT产品优势  为适应逆变焊机客户大电流IGBT单管需求,上海贝岭研发推出650V/80A IGBT单管BLG80T65FDK7,助力高效率逆变焊机设计。该器件具有开关速度快、关断损耗小、导通电压低等特点,可满足客户高效率设计要求。  4.1、器件技术  上海贝岭650V/80A IGBT产品BLG80T65FDK7采用了第七代微沟槽多层场截止IGBT技术,进行了特殊工艺控制,优化了VCE(sat)和Eoff参数,提升了产品的可靠性。  4.2、饱和压降VCE(sat)  逆变焊机中IGBT的导通损耗占总损耗比例较大,影响导通损耗的主要参数为VCE(sat),常温下贝岭BLG80T65FDK7导通压降比竞品低12%,导通损耗比竞品更低。  4.3、关断损耗Eoff  BLG80T65FDK7具有较小的寄生电容,这保证了器件有更高的开关速度,开关频率高达50kHz以上,如图4.2所示,通过测试IGBT的损耗,BLG80T65FDK7关断损耗比竞品低5%。  4.4、系统优势  IGBT开关频率的提高还可以显著提升逆变焊机对电流的控制精度,同时器件损耗的减小,可在大功率输出工况下提升焊机的工作效率,显著降低正常工作时IGBT器件的温升。上海贝岭BLG80T65FDK7基于优异的器件设计,为逆变焊机系统顺利通过温升、输出短路等测试提供了保障。如图4.3,常温自然散热情况下,贝岭BLG80T65FDK7和竞品壳温基本一致,满足客户的需求。  五、上海贝岭功率器件选型方案  上海贝岭功率器件产品线齐全,包含MOSFET、IGBT等系列产品,为逆变焊机主逆变和辅助电源设计提供助力,具体型号参考表1:
2024-09-26 10:36 阅读量:410
上海贝岭800V车载PTC加热器驱动解决方案
  一、概述  随着新能源汽车对800V平台技术的大量应用,汽车各高压部件就随之提出了由400V向800V切换的需求。高压PTC (Positive Temperature Coefficient)加热器作为汽车热管理系统中重要的一环,对电池、电机、电控等部件进行温度控制和管理,从而确保其能适应多样化的外部条件,使各部件能工作在最佳温度区间,提高新能源汽车的性能与安全性。  二、车载PTC工作原理及拓扑结构  PTC热敏电阻是一种基于正温度系数的特殊半导体陶瓷材料的电阻,其温度-阻值曲线如图1所示:在室温下,器件电阻值相对较低;当电流流经PTC电阻时,其产生的能量会使PTC电阻升温;当器件温度超过居里温度时,PTC阻值会迅速增大,回路电流会相应减小。从而可实现PTC温度维持在一定范围内。  图1 PTC 电阻值-温度曲线  图片来源:汽车热管理研发  高压PTC模块的常用典型拓扑如图2所示:输入高压电由电池包取电,通过滤波后为PTC组件供电,低压部分由反激电路实现高低压隔离,功率回路通常采用并联分离驱动的方案。以图2为例,4路PTC组件代表四种工作模式,根据不同的功率需求选择开启通道数。霍尔电流传感器检测母线电流,水温传感器用以检测换热液温度以调节PTC加热器占空比实现恒温控制。  三、贝岭BLG40T120FDL5产品介绍  针对高压PTC应用,上海贝岭推出1200V 40A IGBT产品BLG40T120FDL5-F。采用第二代微沟槽多层场截止技术,优化了导通压降和开关损耗,实现了更好的输出特性。  图3工艺特点  BLG40T120FDL5合封全电流FRD,减少了电路设计时的元器件数量,提高了整体可靠性。  图4 封装内部示意图  为高压PTC应用提供更优的散热性能与绝缘性能,上海贝岭BLG40T120FDL5采用TO247封装。  图5 BLG40T120FDL5-F封装外观  四、贝岭BLG40T120FDL5性能优势  1、通态压降Vce(sat)  对于PTC应用而言,其较低的频率导致了器件的通态损耗在总损耗中的占比提高,为了降低损耗带来的温升,确保器件可工作在安全的温度范围,低通态压降Vce(sat)是评估IGBT器件的一个重要指标。上海贝岭BLG40T120FDL5拥有较低的导通压降,在该类应用中展现出更出色的性能。  2、漏电流 Ices  PTC应用中IGBT工作环境会高达125℃左右,上海贝岭BLG40T120FDL5有助于在高温环境中降低漏电流,在PTC复杂的应用场景下,在阻断状态具更低的自热,更低的结温,因而可靠性更高。  3、向偏置安全工作区RBSOA  RBSOA反映了IGBT器件在关断过程中CE在承受反向电压时能够安全关断的安全工作区域。在实际应用中,由于PTC的温度特性,会在居里温度附近开启时产生较大的电流,为保证PTC加热器的可靠运行,需要器件有3~4倍额定电流的安全工作区域。  图8中CH1通道为栅极波形,CH2为CE间电压波形,CH4为Ic电流波形,室温下BLG40T120FDL5关断电流可达236.6A。  图8 BLG40T120FDL5室温下的最大关断电流波形  4、短路时间SCWT  在车载高压PTC应用中,设置短路保护时同样需要考虑PTC的温度特性,为避免居里温度开启时低电阻导致的大电流触发保护机制,因此保护电流设定会偏大,并且短路保护时间达到6us以上。  图9为BLG40T120FDL5在800V高压下的短路波形,CH1通道为栅极波形,CH2为CE间电压波形,CH4为Ic电流波形。在800V母线电压下,BLG40T120FDL5短路耐受时间达12us。  图9 BLG40T120FDL5在800V高压下的短路波形  五、贝岭器件选型方案  表1 功率器件选型列表  贝岭功率器件产品线齐全,包含MOSFET、IGBT等系列产品,为高压PTC加热器设计提供助力!
2024-09-09 13:25 阅读量:474
上海贝岭直流充电桩电源模块功率器件解决方案
  一、概述  随着新能源汽车的深度普及,用户对公共充电设施的便利性、安全性、智能化程度等方面均提出了更高要求。公共直流充电桩向着更大功率、更高功率密度、更智能化等方向快速演进,作为直流充电桩的核心部件,充电桩电源模块的功率等级和功率密度亦不断提升,从20kW/30kW逐步提高至40kW/50kW及以上,为用户提供更安全、快速的充电服务。  二、直流充电桩电源模块工作原理及拓扑结构  直流充电桩的系统结构如图1所示:包括电源模块、控制系统、用户界面、充电线缆等部件。其中电源模块的主要功能是实现电能转换,将电网侧的交流电转换为适合用户需求的直流电,确保稳定、高效地输出。  图1 直流充电桩系统组成框图  直流充电桩电源模块典型结构如图2所示:主要由两级结构组成,包括前级的AC/DC环节,实现功率因数校正,降低谐波,提升电能质量;后级的DC/DC环节,实现宽范围的直流电压输出,满足不同类型电池的充电需求。  三相维也纳PFC是直流充电桩电源模块中AC/DC变换器的常用拓扑,如图3所示。电路通过控制Sa、Sb、Sc的通断,来控制PFC电感的充放电。由于 PFC变换器的PF值接近1,可认为电感电流和输入电压同相,三相平衡,各相差120度。  三相PFC变换器每相包括一个双向开关,双向开关由共源极的开关管相连接,两个开关管共用一个驱动信号,不存在桥臂直通问题,无需设置死区时间,降低了控制和驱动的难度,具有工作效率高、器件电压应力低的优点。  三、贝岭BLG80T65FDK7产品介绍  针对直流充电桩电源模块应用,上海贝岭推出80A /650V IGBT产品BLG80T65FDK7。80A/650V IGBT工艺平台采用第三代微沟槽多层场截止技术,优化了饱和压降和开关损耗,适用于50kHz及以上的高频应用,利于提升系统的功率密度和效率。其工艺特点如图4所示。  图4 BLG80T65FDK7-F工艺特点  BLG80T65FDK7合封全电流FRD,针对三相维也纳PFC电路的特点,通过优化合封二极管的VF值,降低二极管的通态损耗,提升变换器的工作效率。其实物图如图5所示。  图5 BLG80T65FDK7-F实物图  四、贝岭BLG80T65FDK7性能优势  1、饱和压降Vce(sat)  对三相维也纳PFC拓扑结构而言,功率器件的通态损耗是其总损耗中占比较大的一个损耗源,降低开关器件的通态损耗是提升变换器工作效率的一个有效手段。作为评估IGBT性能的一个重要指标, 在器件允许的工作温度范围内,BLG80T65FDK7拥有较低的饱和压降,可有效降低IGBT的通态损耗。其Vce(sat)-温度变化曲线如图6所示。  图6 Vce(sat)随温度变换曲线  2、开关损耗  为减小磁性元器件的体积,提升变换器的功率密度,三相维也纳PFC应用中IGBT的开关频率一般高于50kHz。BLG80T65FDK7在全电流范围内均具备较低的开关损耗,在高频应用场景中,具备更优异的性能。开关损耗对比如图7所示,与竞品相比,BLG80T65FDK7的Eon/Eoff/Etotal值分别下降了约6.7%/6.8%/6.8%。  3、反向恢复能力  Qrr体现了二极管的反向恢复能力。Qrr值低,峰值电流更低,尖峰持续时间更短,因而振铃/谐振减少,利于减少EMI,同时,可进一步提高效率。如图8所示,与竞品相比,BLG80T65FDK7的Qrr值下降了约18%。  4、产品竞争力  基于直流充电桩电源模块的应用需求,BLG80T65FDK7综合考虑器件的各项参数,重点对IGBT的饱和压降、开关损耗及合封二极管的反向恢复能力和VF值进行优化。参数对比如图9所示,同比于竞品器件,重点参数具备优势,可以更好发挥器件性能,助力提升变换器的工作效率和系统的功率密度。  五、贝岭功率器件选型方案  上海贝岭功率器件产品线齐全,包含MOSFET、IGBT等系列产品,为直流充电桩电源模块设计提供助力,欢迎垂询!具体型号参考表1。  表1 功率器件选型列表  贝岭拥有完善的电源管理、信号链等系列产品可供选择,助力更完全、可靠的充电桩设计和应用。具体型号参考表2。
2024-09-09 13:08 阅读量:580
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
MC33074DR2G onsemi
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
型号 品牌 抢购
IPZ40N04S5L4R8ATMA1 Infineon Technologies
ESR03EZPJ151 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
BP3621 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
TPS63050YFFR Texas Instruments
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。