纳芯微推出高抗干扰特性的CAN收发器NCA1145B-Q1

Release time:2025-03-18
author:AMEYA360
source:纳芯微
reading:263

  近日,纳芯微宣布推出汽车级CAN收发器芯片NCA1145B-Q1,新器件凭借业内首屈一指的抗干扰特性,在欧洲权威测试机构IBEE/FTZ-Zwickau的EMC认证中,成功通过所有测试项,是该系同类器件中(xxx1145系列),国产唯一全面通过测试的器件。

  NCA1145B-Q1同时满足大众集团VW80121-3,2023-12标准,纳芯微现可提供相关测试报告,支持汽车制造商简化系统认证流程,加速产品上市。

纳芯微推出高抗干扰特性的CAN收发器NCA1145B-Q1

  CAN收发器芯片是汽车CAN网络的核心部件,用于控制三电系统、制动、转向和安全气囊等关键功能。但汽车系统环境复杂,在三电系统、点火装置、变频器和无线设备中存在各种电磁干扰源,可能影响CAN通信,导致信号错误或系统故障,威胁行车安全。因此,汽车系统设计时必须重视CAN收发器芯片的抗电磁干扰能力,确保通信稳定。

  全面通过IBEE/FTZ-Zwickau认证

  鉴于CAN收发器芯片的EMC性能对汽车行驶安全的关键作用,各地区制定了严格的汽车电子电磁兼容性标准和认证流程,并要求汽车制造商遵循。例如,美国汽车工程师协会(SAE)的J2962标准和欧洲的IBEE/FTZ-Zwickau认证都对汽车电子的EMC性能提出了明确要求。

  其中,IBEE/FTZ-Zwickau认证根据IEC62228-3标准进行,IEC62228-3相较于SAE J2962标准,排除了系统外围电路的影响,更聚焦CAN收发器本身的EMC特性,且要求等级更高,在除欧洲以外的车企中也得到了广泛参考应用。IBEE/FTZ-Zwickau认证包括:发射射频干扰(Emission RF Disturbances), 抗射频干扰(Immunity RF Disturbances),瞬变免疫力(Immunity Transients)和抗静电(Immunity ESD)共四项测试,纳芯微NCA1145B-Q1全部通过。

纳芯微推出高抗干扰特性的CAN收发器NCA1145B-Q1

  值得一提的是,测试中NCA1145B-Q1在器件级DPI(Direct Power Injection,直接射频功率注入)指标上(对应系统级BCI指标,即Bulk Current Injection,大电流注入)表现优异,通信总线在不需要额外配置共模电感滤波的情况下,仍可通过标准要求的最高功率,在保障系统鲁棒性的同时,可帮助用户减少系统外围电路,降低成本。

  支持振铃抑制功能,满足复杂拓扑和提速需求

  振铃是指在CAN总线的通信过程中,由于阻抗不匹配导致的信号反射等原因,使得信号在传输线上多次反射,进而产生的一种振荡现象。振铃现象可能会对CAN总线的通信质量产生负面影响,甚至有可能导致通信失败。

  NCA1145B-Q1采用纳芯微自研的振铃抑制专利,允许工程师在多节点、复杂拓扑情况下有效减少总线中的信号反射,降低振铃现象发生的概率,同时维持系统级≤5Mbps的通信传输速率,使得用户可以在部分应用场景中采用性价比更高的CAN FD而非CAN SIC芯片,在保障车载通信质量的同时,降低物料成本。

  支持特定帧唤醒,延长电动汽车续航里程

  传统的CAN收发器远程唤醒方式是任意帧唤醒,在睡眠模式下,总线上出现一帧有效的远程唤醒请求信号时,总线上所有设定了远程唤醒的收发器都会被唤醒并转至待机模式,从而产生功耗。

  特定帧唤醒是一种更高效的CAN网络唤醒机制,它利用CAN协议的远程帧特性实现节点唤醒。其工作原理是:唤醒节点发送特定远程帧,而睡眠节点仅对该特定帧进行监听。当检测到目标远程帧时,睡眠节点立即激活并恢复通信。这种机制通过减少不必要的帧监听,有效降低了系统功耗和总线负载。NCA1145B-Q1支持在休眠/待机模式下的特定帧唤醒,特定帧唤醒功能有助于使汽车ECU长时间保持在低功耗状态运行,从而降低电动汽车的总功耗,延长续航里程。

  封装和选型

  NCA1145B-Q1现已量产,提供SOP14和DFN14两种封装,支持低至1.8V的VIO;NCA1145B-Q1满足AEC-Q100,Grade 1要求,支持-40°C~125°C的宽工作温度范围;NCA1145B-Q1的直流总线故障保护为±58V,总线共模电压为±30V。

  平台化IP,赋能全面的接口产品布局

  纳芯微在通信接口领域布局已久,通过平台化IP和自研专利的协同,实现了快速的产品迭代,并在CAN/LIN/RS485/I2C接口等方面完成了全面的产品布局。

  技术层面,纳芯微基于对系统应用的深厚理解,在EMC增强的CAN/LIN接口技术、专有协议接口技术、高速接口技术等方面不断突破,达到业内领先的水平。以EMC为例,纳芯微全面通过IBEE/FTZ-Zwickau的EMC认证的器件还包括CAN FD收发器NCA1044-Q1,NCA1057-Q1,以及CAN SIC收发器NCA1462-Q1。


("Note: The information presented in this article is gathered from the internet and is provided as a reference for educational purposes. It does not signify the endorsement or standpoint of our website. If you find any content that violates copyright or intellectual property rights, please inform us for prompt removal.")

Online messageinquiry

reading
纳芯微发布双通道电流检测放大器NSCSA285,赋能工业与能源管理
  近日,纳芯微发布全新高精度双通道电流检测放大器NSCSA285系列。NSCSA285系列凭借高达76V的宽共模电压范围、±12μV的超低输入偏移电压及140dB的直流共模抑制比(CMRR),具备高精度、强抗干扰、低功耗与快速响应、以及灵活适配等特性,在工业4.0和新能源技术发展需求下,满足通信设备、工业自动化、能源管理及智能电网等应用场景高精度、高可靠的电流检测需求。  NSCSA285系列可广泛应用于通信设备领域中5G基站电源管理和服务器背板电流监测,工业自动化领域的电机驱动器与PLC电流闭环控制,能源管理场景下的光伏逆变器MPPT跟踪和储能系统SOC估算。在智能电网领域亦能满足智能电表与充电桩电流检测的严格要求。  高精度,低温漂,横扫测量误差  面对微弱电流信号易受环境噪声干扰、测量误差难以控制的挑战,NSCSA285系列凭借0.05%典型增益误差与±12μV最大输入偏移电压,实现全温区(-40℃~125℃)±0.5%的精度保障。同时,150nV/℃的超低温漂特性显著提升了在复杂温度环境下的测量稳定性,满足工业级应用对长期可靠性的严格要求。  宽共模,强抗扰,护航系统稳定  在复杂电磁环境与宽电压动态范围应用场景下,NSCSA285系列展现出卓越的抗干扰能力。其3V~76V的宽共模输入范围直接兼容工业高压场景,140dB的直流共模抑制比(CMRR)与91dB@10kHz的交流CMRR,可有效抑制共模噪声,确保系统在多变工况下仍能保持信号的高度完整性与稳定性。  双通道,多封装,适配灵活设计  为进一步提升系统设计灵活性,NSCSA285系列提供四档增益配置,适配不同分流电阻需求,并集成两路独立检测通道,支持多节点同步监测,简化系统设计复杂度。其3mm×3mm MSOP8小型封装与引脚兼容设计,不仅大幅优化系统体积与成本,更简化了产品升级路径,为客户提供便捷的设计体验。  低功耗,快响应,坚持长期管理  在能效管理方面,NSCSA285系列同样表现出色。其典型静态电流仅600μA,显著降低系统能耗。同时,NSCSA285系列拥有90kHz带宽与0.6V/μs压摆率,确保高速电流监测与瞬态响应能力,在应对复杂动态负载时表现尤为出色。  此外, NSCSA285系列满足工业级可靠性标准,通过HBM ±3500V与CDM ±2000V ESD防护测试,工作温度覆盖-40℃至+125℃,并通过MSL1级湿度敏感认证,确保产品在严苛环境下的长期稳定性与可靠性。
2025-04-10 11:47 reading:150
纳芯微发布全新车规级双向电流检测放大器NSCSA240-Q1系列
  纳芯微发布全新车规级双向电流检测放大器NSCSA240-Q1系列,专为汽车高压PWM系统打造解决方案。该系列攻克PWM系统中高频瞬态干扰难题,为汽车电子转向(EPS)、电机驱动等场景提供高可靠电流监测方案,满足AEC-Q100车规级可靠性标准。  随着汽车电动化与智能化加速渗透,高精度电流检测已成为电动助力转向、电机控制等关键系统的核心需求。复杂的车载环境也带来了三大挑战:  ◆ 高压瞬态干扰:PWM系统高频开关导致共模电压剧烈波动,常规放大器输出信号易失真;  ◆ 精度要求攀升:微弱电流信号需在宽温区(-40℃~125℃)保持±0.1%测量精度;  ◆ 空间制约:系统小型化趋势要求器件在有限面积内实现双通道独立检测。  NSCSA240-Q1系列集成增强型PWM抑制技术,支持双向电流检测,凭借-4V至80V超宽共模输入范围、±5μV典型输入偏移电压及135dB直流共模抑制比(CMRR),有效应对PWM系统瞬态干扰难题,为汽车的多个核心领域提供高可靠电流监测方案。  抗瞬态干扰:应对高压PWM环境,信号稳定可靠  在PWM系统中,高频开关引发的共模电压剧烈波动常导致传统放大器输出信号失真。NSCSA240-Q1系列通过增强型PWM抑制技术,有效实现抗瞬态干扰:  ◆ 90dB@50kHz交流共模抑制比(AC CMRR):有效抑制ΔV/Δt瞬态干扰。  ◆ 独特的PWM瞬态衰减设计:可将输出信号扰动降低80%,在80V共模电压瞬变条件下,恢复时间小于10μs。  ◆ 450kHz至600kHz的带宽(随增益变化):使其在支持高速过流保护的同时,也能精准捕捉低频PWM信号,为汽车电子转向、电机驱动等场景提供强抗干扰能力与信号稳定性。  ◆ -4V至80V共模输入范围:NSCSA240-Q1系列拥有宽动态范围和强鲁棒性,可兼容12V、24V和48V等不同车载电气架构,确保系统能够稳定运行并有效应对各种电气环境。  ◆ 提供±2000V的ESD防护(HBM/CDM):保障系统免受外部电气干扰的影响,为系统稳定性提供有力支持。  车规标准:±5μV超高精度,精准监测微弱电流波动  面对汽车电子环境对电流检测精度日益严苛的要求,NSCSA240-Q1系列展现出卓越的测量稳定性:  ◆ 输入偏移电压典型值仅为±5μV,最大偏移不超过±25μV;  ◆ 0.05%的典型增益误差,实现在宽温区(-40℃至125℃)内实现±0.1%的测量精度,在苛刻环境下的展现出测量的高可靠性。  ◆ 通过AEC-Q100认证,满足严格的车规标准,确保在复杂车载环境中的长期稳定工作。  灵活适配:多种封装形式,适配设计需求  随着汽车电子系统向小型化与集成化方向发展,NSCSA240-Q1系列在设计上充分考虑了空间优化需求:  ◆ 提供20V/V、50V/V、100V/V、200V/V四档增益选项,广泛适配10mΩ至0.1mΩ的分流电阻,实现灵活电流检测。  ◆ 支持4.9mm×3.91mm SOIC8与3mm×4.4mm TSSOP8两种封装形式,可灵活融入空间受限的电机控制器PCB布局,助力设计人员在有限空间内完成系统优化。
2025-04-10 11:36 reading:151
纳芯微:使用高可靠性隔离放大器NSI1400x进行电流采样电路设计
  在高压工业应用场景中,隔离采样技术能够保护低压电路免受高压电源电路故障的影响,同时确保不同电压域之间维持通信,从而显著提高系统可靠性。  NSI1400是一款基于纳芯微电容隔离技术的高性能隔离放大器,其输出与输入相互隔离。该产品已广泛应用于分流电流监测、电机驱动、不间断电源、光伏逆变器等多个领域。为了帮助客户简化设计流程,本应用指南介绍了如何根据客户的电流采样需求使用NSI1400。  1. 典型应用电路  NSI1400隔离放大器非常适合用于高压应用场景中的分流电阻式电流采样,比如电机驱动。典型的应用电路如图1所示。  分流电阻Rsense两端的电压通过RC滤波器(RFLT和CFLT)施加到NSI1400的差分输入端。为了实现输入开关电容电路的电荷缓冲(参见2.1节“采用开关电容电路的模拟输入”了解更多详细信息),必须增加大于330pF的滤波电容,并确保其位置尽可能靠近NSI1400,以提升在高噪声应用场景中的性能。  隔离放大器的差分输出通过基于运算放大器的电路转换为单端模拟输出。建议在OUTP和OUTN引脚上添加大于1kΩ的电阻,以防止输出过流。模数转换器(ADC)通常在后端接收这个单端模拟输出信号,并将其转换为数字信号,以便控制器进行处理。  2. 输入调理电路  在NSI1400的应用中,如果输出误差(比如,增益误差或输入失调电压)异常地超出数据表规定的规格,这可能归咎于输入调理电路设计不当。本节将根据NSI1400的开关电容模拟输入电路和抗混叠原理,介绍NSI1400应用的推荐输入调理电路。  2.1 采用开关电容电路的模拟输入  作为NSI1200/NSI1300的迭代升级产品,NSI1400在输入架构方面进行了优化,旨在减少由输入偏置电流引起的采样误差。然而,这种架构变化对输入滤波电容的选择提出了新的要求(建议大于330pF)。如果设计不当,可能会导致采样误差增加。为了更好地帮助客户理解,下面将详细解释NSI1400的输入架构。  NSI1400的模拟输入是基于二阶Σ-Δ调制器的开关电容电路。模拟输入的等效电路如图2所示。内部电容CIND通过周期性开关动作以12MHz的内部时钟频率fCLK连续充放电,实现输入信号数字化。在充电阶段,S1闭合,S2断开,CIND充电至输入差分电压。在放电阶段,S1断开,S2闭合,CIND放电至GND1+0.9V的电压水平。根据等效电路,可以按下面的公式计算输入电阻RIND:  当电容性负载切换到输入端时,由于电荷重新分配,输入信号幅度会暂时下降。输入源尝试纠正这种情形,同时由于较长输入线路表现出类似电感的特性,这个过程中可能会出现过度振铃现象。为了解决这个问题,每个输入端增加外部电容器可以帮助提供采样过程中产生的电流尖峰。选用容量大于330pF的外部电容器(图1所示CFLT,也作为滤波电容)是提高瞬态电荷供应能力的一种方法。输入电容器应尽可能靠近NSI1400放置,以抑制振荡并确保采样精度。  2.2 抗混叠原理  采样系统能够以高精度处理的最高频率信号称为其奈奎斯特极限。采样率必须大于或等于输入信号最高频率的两倍。如果输入信号频率超过奈奎斯特频率,通带中会产生冗余或有害信号,这种现象称为混叠。图3阐明了信号混叠机制。例如,采样率fs为1MHz,采样信号带宽为fs的一半,即500kHz(奈奎斯特频率)。在采样过程中,频率为fin(fin>fs/2)的输入信号会镜像至通带中,成为频率为fs-fin的错误混叠信号。在实际应用场景中,通常设置更高的采样率,以提供一定的裕量并减少滤波需求。  除了满足输入信号频率低于奈奎斯特极限的要求,采样系统的输入信号通常包含频率超过奈奎斯特频率的高频噪声。这些噪声会混叠到通带成为干扰信号。因此,需要在采样系统输入端设置抗混叠滤波器,从而在采样前滤除高频噪声,避免噪声混叠。选择的滤波器应考虑截止频率可以消除采样输入的高频噪声或至少将其衰减至不会对采样信号产生明显影响的程度。  NSI1400是一个采样频率为12MHz的采样系统。为了防止混叠到通带内的高频噪声,抗混叠滤波器的截止频率不超过6MHz。  2.3 输入滤波器设计  NSI1400的输入调理滤波器设计考虑了电荷缓冲需求、抗混叠、输入信号频率和系统带宽等因素,如图1所示。  为了满足输入开关电容电路的电荷缓冲需求,滤波电容器的容量需大于330pF。表1列出了在不同输入滤波电容条件下,NSI1400的增益误差测量结果。根据规格书指标,增益误差在±0.3%以内。因此,需要选择容量大于330pF的滤波电容器,而容量大于1nF的滤波电容器更佳。  针对存在高频干扰应用的抗混叠需求,抗混叠滤波器的截止频率不超过6MHz,如第2.2节所示。  位于INN和INP引脚之间的电容器用于滤除差分噪声,称为差分电容器Cdiff。位于INN/INP引脚与GND1之间的电容器用于滤除共模噪声,称为共模电容器Ccm。为了减少不同输入引脚的共模电容误差影响,建议Cdiff值至少是Ccm值的10倍。这可以防止由于元件容差导致共模噪声被转换为差分噪声。如果系统的共模噪声在可接受范围内,则无需设置Ccm。客户可以根据自身需求调整滤波器的设计。共模噪声滤波器和差分噪声滤波器的截止频率如下所示:
2025-04-07 15:07 reading:195
纳芯微NSI22C1x隔离式比较器荣获工控网工业芯
  • Week of hot material
  • Material in short supply seckilling
model brand Quote
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
MC33074DR2G onsemi
TL431ACLPR Texas Instruments
CDZVT2R20B ROHM Semiconductor
model brand To snap up
IPZ40N04S5L4R8ATMA1 Infineon Technologies
STM32F429IGT6 STMicroelectronics
ESR03EZPJ151 ROHM Semiconductor
BP3621 ROHM Semiconductor
TPS63050YFFR Texas Instruments
BU33JA2MNVX-CTL ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 weixin Service Account AMEYA360 weixin Service Account
AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code