ROHM:AI将耗尽全球电力?解决AI数据中心电力难题的功率半导体

发布时间:2025-11-05 14:18
作者:AMEYA360
来源:ROHM
阅读量:556

ROHM:AI将耗尽全球电力?解决AI数据中心电力难题的功率半导体

  AI的惊人发展为社会带来巨大变革,同时也凸显出一个严峻课题——支撑其运转的数据中心,电力消耗量正急剧攀升。

  为解决这一电力难题、助力日本引领AI时代,日本经济产业省正大力推进名为“瓦特·比特构想”的国家战略,旨在实现超节能型数据中心并在全国进行优化布局。

  通过“瓦特·比特协同官民座谈会”等平台,日本经济产业省正联合电力、通信、数据中心、半导体等各行业力量,全力推动这一构想的实现。

  目录

  1. AI是否将耗尽全球电力?

  2. 可再生能源在数据中心领域的应用

  3. 服务器机柜会持续增加吗?

  4. 当前的电源系统还能满足需求吗?

  5. 满足下一代AI数据中心要求的功率半导体是什么样的?

  6. 总结

  产品介绍、详细信息、其他链接等

  1. AI是否将耗尽全球电力?

  以ChatGPT为代表的生成式AI迅速普及,直接导致数据中心的电力消耗激增。复杂的AI模型在训练与推理过程中需要庞大的计算资源,而这些资源由24小时不间断运转的数据中心高性能服务器提供支撑。

  电力消耗的急剧增加不仅加重了地区环境的负荷,从稳定供电的角度来看也引发了担忧。展望AI的进一步发展,传统的电力供应体系正逐渐显现出局限性。

  在这种背景下,亟待解决的课题可归纳为三点:“节能化”“可再生能源的利用”“数据中心的区域分散布局”。要实现可持续社会,必须摆脱对化石燃料发电的依赖,将太阳能、风能等可再生能源发电视为电力供应的必要方式。

ROHM:AI将耗尽全球电力?解决AI数据中心电力难题的功率半导体

  2. 可再生能源在数据中心领域的应用

  如今,作为社会重要基础设施的数据中心正迎来重大转型期。

  此前,受低延迟通信需求驱动,“城市型数据中心”多集中建设于东京等大都市圈,为金融、医疗健康、边缘计算等对高速且低延迟的数据访问有要求的服务提供支撑。但随着AI普及带来的用电量增加,以及从大规模灾害时的业务连续性(BCP)角度考量,近年来数据中心向郊区分散的趋势加速。

  “郊外型数据中心”易于确保广阔土地,适合引入太阳能、风能等可再生能源。此外,在电网容量充裕的地区可期待稳定供电;在气候凉爽、水源丰富的地区,冷却效率也会提升,进而降低运营成本。因此,郊外型数据中心在云托管、备份、灾害恢复系统、大规模存储等领域的应用不断推进。

ROHM:AI将耗尽全球电力?解决AI数据中心电力难题的功率半导体

  3. 服务器机柜会持续增加吗?

  无论是难以确保场地的“城市型”数据中心,还是易于获取广阔土地的“郊外型”数据中心,其服务器安置空间都存在局限。

  因此,当前用于存放服务器的机柜,正朝着能高效容纳更多高性能服务器的“高密度AI服务器机柜”方向演进。

  相较于数据中心整体服务器机柜总数的大幅增长,未来更可能呈现“高密度化”趋势:通过增加单个机柜中搭载的CPU、GPU及其他功能板卡,在有限空间内大幅提升单机柜计算能力,从而释放最大性能。

  形象地说,即便外观相同的服务器机柜,其内部的容纳能力也可能提升数倍。

ROHM:AI将耗尽全球电力?解决AI数据中心电力难题的功率半导体

  这种高性能化、高密度化对电力供应机制提出了重大变革需求。传统的多级电力转换存在较大功率损耗,已难以实现高效供电。因此,未来将推进减少电力转换步骤、推进高压直流(HVDC)等技术革新,而SiC和GaN功率半导体的有效利用也将变得不可或缺。以ROHM为代表的各企业,正致力于相关技术研发,为这一电源系统的重大变革提供支持,助力数据中心实现整体节能与高性能化。

  4. 当前的电源系统还能满足需求吗?

  高性能AI服务器(尤其是GPU)的功耗急剧增加,正迫使现有数据中心的电源架构(供电设计)进行根本性重构。原因在于,当前的多级电力转换存在较大转换损耗,已难以实现高效供电。

  当前数据中心的供电流程为:高压交流电(AC)输入后,通过多台变压器和整流器逐步降压,最终转换为服务器所需的低压直流电(DC)。但是,这种多级转换会在每个步骤产生功率损耗,导致效率下降。

  为此,数据中心未来将以电力转换效率提升和可靠性提升为目标,推进以下变革:

  · 减少电力转换步骤

  目前已出现整合多个转换步骤的趋势,例如从高压交流电(AC)直接转换为直流电(DC),或从高压直流电一次性降压至服务器所需电压。通过大幅减少电力转换步骤,可将转换损耗降至最低水平,提升系统整体效率并降低故障风险。

ROHM:AI将耗尽全球电力?解决AI数据中心电力难题的功率半导体

  · 支持高压输入/高压直流(HVDC)电源

  服务器机柜的输入电压正从传统的12VDC、48VDC等低电压向400VDC甚至800VDC(或±400VDC)等高电压过渡。提高电压可降低电力传输时的电流,从而实现母线轻量化。

  另外,不采用交流电,而是以高压直流电直接为服务器机柜供电的“HVDC”系统正逐步推广。HVDC可减少AC/DC转换器的数量,实现更灵活的电力调控与双向输电,并更容易适用可再生能源。

  · 固态变压器(SST,Solid State Transformer)的发展

  变压器设备有望从传统变压器向采用半导体技术的SST(Solid State Transformer)演进。与传统设备相比,SST被认为是一种能够显著推动小型化的技术方案。

  · SiC/GaN功率半导体需求增长

  要实现高效高压电源系统,就需要传统硅(Si)半导体难以企及的性能。因此,SiC和GaN功率半导体成为必然选择。它们在高压输入条件下仍能实现低损耗、高频运行和高温工作,非常有助于电源系统的小型化与效率提升。

  此外,不仅电源系统,服务器机柜内的各类设备也在向多功能化、高性能化发展,这将有助于进一步提升能效。

  ROHM也在加速面向下一代服务器的解决方案研发,除了利用“EcoSiC™系列”“EcoGaN™系列”“EcoMOS™系列”等技术的现有产品(如SiC/GaN/Si IGBT、隔离型栅极驱动器、冷却风扇驱动器、SSD用PMIC、HDD用复合电机驱动器)外,还计划开发大电流LV MOS、隔离型DC-DC、SoC/GPU用DC-DC、eFuse等产品。

  *EcoSiC™、EcoGaN™、EcoMOS™均为ROHM Co., Ltd.的商标或注册商标。

ROHM:AI将耗尽全球电力?解决AI数据中心电力难题的功率半导体

  为应对市场变革,ROHM在深度优化现有产品群性能的同时,正积极推进以SiC和GaN为核心的功率半导体创新产品研发,以灵活响应新的市场需求。通过这些举措,ROHM将为从数据中心末端的服务器机柜到整个系统,提供高耐压、高效率的元器件,为下一代电源系统提供支撑。

  5. 满足下一代 AI 数据中心要求的功率半导体是什么样的?

  ·高压大电流场景适用SiC器件

  SiC器件在需要高电压大电流的领域具备显著优势。

  如前所述,随着服务器机柜输入电压向高压演进,传统54V机柜电源系统除面临物理空间限制外,还存在用铜量过高、功率转换损耗等问题。

  为此,在下一代数据中心电源系统中采用ROHM的SiC MOSFET,可使其在高电压、高功率条件下发挥出优异性能,通过降低开关损耗及导通损耗实现效率提升,并实现满足紧凑、高密度系统要求的高可靠性。

  这不仅能将能耗降到更低,还有助于削减用铜量,简化数据中心整体的功率转换过程。

  ·高效化、小型化场景适用GaN器件

  SiC适用于高电压大电流场景,而GaN则在100V~650V范围内性能优势显著,可实现优异的介电击穿强度、低导通电阻和超高速开关特性。

  AI服务器比通用服务器处理的数据量更大,需运行高性能GPU、大容量存储器及高性能软件。因此耗电量更多,散热与冷却也更为重要。

  在电源模块中使用可实现高速开关(高频运行)的GaN HEMT,能够最大限度降低功率损耗。功率转换效率的大幅提升有望带来节能效果,从而降低运营成本并减轻环境负荷。

  此外,具有高电流密度的GaN器件与传统硅器件相比,体积可减小约30%~50%,便于为电源模块、充电器等设备预留空间,同时简化散热设计。

ROHM:AI将耗尽全球电力?解决AI数据中心电力难题的功率半导体

  而且,通过单元小型化,可利用节省出的空间,减轻冷却系统负担,进而有助于减小系统整体的体积并提高其可靠性。加之GaN器件耐久性高且适用于高频应用,因此被视为数据中心的理想选择。

  ROHM通过采用能进一步提升GaN器件开关性能的自有Nano Pulse Control™技术,成功将脉冲宽度缩短至最小2ns。作为EcoGaN™系列,除150V和650V的GaN HEMT、栅极驱动器外,还包括整合了上述器件的Power Stage IC等产品,为满足AI数据中心对小型、高效电源系统的需求,ROHM正在不断扩充相关产品阵容。

  *Nano Pulse Control™为ROHM Co., Ltd.的商标或注册商标。

  6. 总结

  AI的进化从未停止,随之而来的电力需求增长已成为不可回避的现实。

  据IEA(国际能源署)预测,未来五年全球数据中心的电力需求较当前增长一倍以上,达到约9,450亿kWh,其中半数将由太阳能、风能等可再生能源提供。这明确表明,在耗电量巨大的数据中心领域,光伏发电(PV)、储能系统(ESS)等可再生能源市场正在快速崛起。

  为应对这一课题,日本政府正以国家战略“瓦特·比特构想”为框架,通过官民协同机制推进多维度解决方案,包括提升电力系统效率、最大化利用可再生能源、优化数据中心布局等。

  ROHM以SiC、GaN器件等先进功率半导体技术为核心,拥有可实现高效电源系统及适配高压输入的丰富产品群。同时,为满足下一代AI数据中心的需求,正积极投入新产品研发。我们将通过这些技术,为以更环保、可持续的方式实现AI带来的美好未来贡献力量。

  关于个别产品的咨询,ROHM还设有可直接向ROHM提问的讨论页面,以及可查阅相关信息的FAQ页面。欢迎大家充分利用这些资源。

  *Engineer Social Hub™是ROHM Co., Ltd.的商标或注册商标。

  产品介绍、详细信息、其他链接等

  ・关于ROHM的SiC功率器件

  GaN功率器件 | 分立半导体 | ROHM Co., Ltd. - ROHM Semiconductor

  ・关于ROHM的SiC MOSFET

  SiC MOSFET - 产品搜索结果 | ROHM Co., Ltd. - ROHM Semiconductor

  ・关于ROHM的GaN功率器件

  GaN功率器件|分立半导体| ROHM Co., Ltd.-ROHM Semiconductor

  关于ROHM的GaN HEMT Power Stage IC

  GaN HEMT Power Stage IC - 产品搜索结果 | ROHM Co., Ltd. - ROHM Semiconductor

  ・关于ROHM的IGBT

  IGBT | 分立半导体 | ROHM Co., Ltd. - ROHM Semiconductor

  ・与NVIDIA之间的合作

  罗姆为英伟达800VHVDC架构提供高性能电源解决方案 | ROHM Co., Ltd. - ROHM Semiconductor

  ・关于适用于AI服务器的MOSFET“RY7P250BM”

  ROHM开发出适用于AI服务器的功率MOSFET~兼具更宽SOA范围和更低导通电阻~ | ROHM Co., Ltd. - ROHM Semiconductor

  关于SiC模块“HSDIP20”

  ROHM推出高功率密度的新型SiC模块,将实现车载充电器小型化! | ROHM Co., Ltd. - ROHM Semiconductor


(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
ROHM课堂 |  什么是开关噪声?开关电源中产生的噪声及其对策
  开关噪声是由电流突然通断(ON/OFF)切换引发的高频振铃,尤其常见于开关电源及高速工作的半导体器件中。这类噪声虽可通过优化电路板布线实现降噪,但针对泄漏的辐射噪声,需采取专门的应对措施。此外,平行布线之间会产生串扰,进而引发感应噪声。本文将以DC-DC转换器为例,由ROHM为您详细阐述开关噪声的产生原理、电子电路设计中开关噪声对电磁兼容性(EMC)等方面的影响,以及针对这些问题的有效解决方案。  什么是开关噪声?  开关噪声是电子电路及电源IC(集成电路)工作过程中,由不必要的电流波动引发的高频振铃。这类噪声常见于DC-DC转换器、AC-DC转换器等高速运行的半导体器件中。开关噪声可能降低电路稳定性,还可能引发电磁兼容性(EMC)中的电磁干扰(EMI)相关问题。  开关噪声的产生原因  开关噪声的常见原因是由开关电源等可高速通断的半导体器件工作所导致。由此会产生急剧的电流或电压变化,进而引发纹波与噪声。  噪声对策(噪声消除与降低)  针对开关噪声的降低与消除,可采取以下几项对策:  1. 使用滤波器:通过低通滤波器或高通滤波器,去除不必要的频率成分。  2. 配置电容器:在电路的关键位置配置电容器,吸收电压波动。  3. 电路板布局的噪声对策:尽量缩短布线长度,通过优化布局降低开关噪声(传导噪声)。  4. 缓冲电路:使用缓冲电路吸收振铃,从而可以降低开关噪声(辐射噪声)。  5. 自举电路的噪声对策:插入电阻,能够降低开关噪声(辐射噪声)。  噪声对策的重要性  通过采取有效的开关噪声对策,电路的工作会更加稳定,性能也能得到提升。尤其在高精度电子设备及工业领域的应用中,开关噪声对策更是必不可少的。  本文后续将以DC-DC转换器为例,详细讲解所产生的共模噪声和差模噪声的相关原因及对策,此外还会深入说明串扰的定义、以及缓冲电路等的辐射噪声应对方法。理解这一系列内容后,便能实施更高级别的噪声对策。  DC-DC转换器中开关噪声的产生原理  开关噪声的产生原因,是电子电路或电源IC工作过程中出现的不必要电流波动,进而引发高频振铃。下面将以DC-DC转换器为例,对开关噪声进行说明。  首先,我们将借助同步整流型降压DC-DC转换器的等效电路,确认开关电流的路径。  查看完整内容:https://techclass.rohm.com.cn/knowledge/emc/nowisee/18796?utm_medium=social&utm_source=wechat&utm_campaign=WeChat%EF%BC%88infor%EF%BC%89&utm_content=251217&openid=ot4DKs6HygwKJWbVFmco7o-TQNb0
2026-01-28 13:41 阅读量:287
ROHM推出输出电流500mA的LDO稳压器,提升大电流应用的设计灵活性
  ~极小电容亦可稳定运行~  2026年1月27日,全球知名半导体制造商ROHM(总部位于日本京都市)宣布,面向车载设备、工业设备、通信基础设施等所用的12V/24V系统一级*¹电源,开发出搭载ROHM自有超稳定控制技术“Nano Cap™”、输出电流500mA的LDO稳压器*² IC“BD9xxN5系列”(共18款产品)。  近年来,电子设备正朝着小型化、高密度化方向发展。为了进一步节省空间并提高设计灵活性,电源电路亟需一种即使采用小容量电容器也可稳定工作的电源IC。然而,用1µF以下的输出电容实现稳定运行在技术上还存在困难。针对这一课题,ROHM在2022年推出搭载自有超稳定控制技术“Nano Cap™”的LDO稳压器“BD9xxN1系列(输出电流150mA)”。该系列产品凭借用仅100nF的输出电容即可稳定运行的高性能,获得客户高度好评,目前已积累了丰富的实际应用业绩。此次新开发出的“BD9xxN5系列”,支持需要更大电流的应用,可进一步助力解决电源设计中输出电容相关的课题。  本系列产品是广受好评的“BD9xxN1系列”(输出电流150mA)的电流扩展型号,其输出电流提升至500mA,是以往型号的3倍以上,适用于需要更大电流的应用,应用范围更广。另外,本系列产品还采用了“Nano Cap™”技术,经证实,即使在仅470nF(Typ.)的输出电容条件下,也能将输出电压波动抑制在约250mV(负载电流波动1mA⇔500mA/1μs时)范围内,运行非常稳定。除常规的数μF的小型MLCC(叠层陶瓷电容器)和大容量电解电容器外,本系列产品还可兼容过去难以确保稳定性的1µF以下容值、0603M尺寸(0.6mm×0.3mm)等超小型MLCC。这不仅有助于实现电路和电路板的小型化,还有助于提高元器件选型的灵活性。  本系列产品已于2025年10月起以月产30万个的规模投入量产(样品价格300日元/个,不含税)。新产品已经开始通过电商进行销售,如有需要可联系AMEYA360客服。另外,还可以从ROHM官网上获取验证用的仿真模型——高精度SPICE模型“ROHM Real Model*³”(SPICE模型:BD900N5xxx-C、BD933N5xxxx-C、BD950N5xxxx-C)。  未来,ROHM将通过进一步扩充搭载Nano Cap™技术的LDO系列产品群,为电子设备的小型化、性能和可靠性提升贡献力量。  <产品阵容>  <应用示例>  车载设备:  ⚫ 燃油喷射装置(FI)、胎压监测系统(TPMS)等动力总成系统相关电源  ⚫ 车身控制模块(BCM)等车身系统相关电源  ⚫ 仪表盘和抬头显示系统(HUD)等信息娱乐系统相关电源等  工业设备:  ⚫ 可编程逻辑控制器(PLC)、远程终端设备(RTU)、工业网关等控制器用的电源  ⚫ 温度、压力、流量等的模拟负载及传感器用的高精度LDO  ⚫ 楼宇自动化、防灾、门禁控制器等监控控制器用的电源  ⚫ 人机界面(HMI)和显示面板等的待机电源等  消费电子:  ⚫ 冰箱、洗碗机、空调等设备的控制电路板用的电源  ⚫ 恒温器(温控器)和门铃等住宅设备用的电源  ⚫ 家庭安防系统和网络设备等持续供电用的电源  <关于Nano Cap™>  Nano Cap™是指利用ROHM的垂直统合型生产体系,通过融合“电路设计”、“布局”和“工艺”三大模拟技术优势而实现的超稳定控制技术。利用这种稳定控制技术,可消除模拟电路中电容器相关的稳定运行问题,有助于缩短汽车、工业设备、消费电子等各种领域应用产品的设计周期。  ⚫ 特设页面:实现节能和小型化的罗姆“Nano”电源技术:  https://www.rohm.com.cn/support/nano#anc-03  ⚫ 罗姆的生产制造:“Nano电源技术”:  https://www.rohm.com.cn/company/about/stories-of-manufacturing/nano  Nano Cap™是ROHM Co.,Ltd.的商标或注册商标。  <术语解说>  *1) 一级(Primary)  在电源IC中,从电池等电源的角度看,负责第一级转换的被称为“一级(Primary)”,负责其后的第二级转换的被称为“二级(Secondary)”。  *2) LDO稳压器(Low Drop Out稳压器/低饱和稳压器)  一种可将电压从直流电(DC)转换为直流电的电源IC。其输入输出电压差较小,属于线性稳压器(输入输出电压为线性动作)。与DC-DC转换器IC(开关稳压器)相比,具有电路结构简单、噪声少等特点。  *3) ROHM Real Model  高精度SPICE模型,利用ROHM自有的基于模型的技术,可忠实地复现IC实物的电气特性和温度特性,从而可实现IC实际值与仿真值完全一致。通过切实可靠的验证,可防止产品试制后的返工等问题发生,有助于提高应用产品的开发效率。
2026-01-28 11:25 阅读量:304
ROHM课堂 | ROHM LogiCoA™为50W~1kW电源转换器领域开创模数混合控制新技术
  传统的微控制器,受成本和功耗等因素的限制,很难在50W~1kW级电源中实际应用数字控制技术。ROHM的LogiCoA™通过采用混合型且基于事件驱动的设计,成功攻克了这一难题。而且,该产品还具备校准功能、日志采集功能及软件灵活性,可实现高效且可扩展的电源解决方案。  前言  电力电子领域正经历着日新月异的发展,对更智能、更高效且可扩展的电源解决方案的需求与日俱增。数字控制是满足这些需求的有效手段,但传统的微控制器因成本和功耗等方面的问题,一直很难在50W~1kW的中小功率范围得到广泛应用。因此,这一范围仍以模拟控制为主,这虽然有成本低、功耗低的优点,但在功能方面还存在局限性。  本文将介绍ROHM的Logic and Control Architecture(LogiCoA™)是如何攻克这一长期存在的技术难题的。通过将模拟技术的高效性与数字技术的灵活性融合在一起,LogiCoA™使得在工业设备主流市场实现高级数字控制成为现实。在接下来的内容中,我们将详细阐述现有解决方案的局限性、LogiCoA™混合方案及其在成本效益、性能表现及设计灵活性方面开创的新可能性。  在50W~1kW电源转换器中应用数字控制所面临的挑战  数字控制电源用的微控制器本身并非新技术,很多半导体制造商早已开始提供相关解决方案,并已应用在各种应用场景中。然而,LogiCoA™之所以与众不同,在于它针对传统微控制器无法解决的根本问题采取了创新性的解决方法。 一直以来的课题是现有的数字控制微控制器不仅价格高,功耗也很大。因此,目前其主要用途仅限于超过1kW的大功率工业电源系统领域,而在50W~1kW的中小功率范围(主流市场)仍难以普及。  工业设备电源系统中的功率控制方式细分  在中小功率电源系统中,对数字控制电源特有的高级功能的应用需求非常强烈。然而,受成本和功耗等问题的影响,数字控制电源的导入仍处于审慎推进阶段。  PWM控制回路的结构创新  针对传统数字控制电源用的微控制器在成本和功耗方面存在的课题,LogiCoA™通过采用模数混合技术成功解决了这一课题。  在常规的数字控制电源中,通常采用A-D转换器和CPU/DSP来构建PWM控制回路。为将该控制回路内的延迟时间控制得更小,高速A-D转换器及高性能CPU/DSP是必不可少的器件。 然而,这正是导致成本高和功耗大的主要原因。采用了LogiCoA™的电源系统的结构
2026-01-22 17:39 阅读量:344
ROHM课堂 | 什么是网孔分析法
  网孔分析法(网孔电流法、回路电流法)是一种电路分析的基本方法,该方法将导线互不交叉的平面电路中的每个网孔电流设为未知量,并根据基尔霍夫电压定律(KVL)建立联立方程组,从而求解电压和电流。它是与节点分析法并列的代表性电路分析方法,尤其能够高效地求解具有多个电压源的电路。若能灵活运用这两种方法,就可以应对更广泛的电气网络。接下来我们将详细介绍网孔分析法的原理、基本步骤以及如何将其拓展应用于包含多个电源和受控源的复杂电路。  网孔分析法概述  网孔分析法的前提是目标电路为平面电路。该方法为每个闭合回路(即网孔)分配一个网孔电流作为未知量,并根据电路元件、电源和KVL建立联立方程组。由于大多数示例电路都是平面电路,因此该方法具有适用性强的特点。  与基尔霍夫定律的关系  基本步骤和示例  在网孔分析法中,需要定义围绕闭合回路流动的网孔电流,并对每个回路应用KVL。以下Step将采用仅包含电阻和电压源的简单案例来说明标准分析步骤。  Step 1:分配网孔电流  首先确认电路是平面电路,然后为每个基本网孔(不包含其他回路的最小闭合路径)设置任意方向的网孔电流。按照惯例,若将所有网孔均设为顺时针方向,会更易于进行符号管理。  Step 2:对每个网孔应用KVL  对每个网孔应用KVL,并用网孔电流表示每个元件的电压降或电压升。当网孔间共有元件时,该元件的电压用网孔电流的差值来表示。  针对每个网孔,沿着回路应用KVL。需注意电流是如何流过每个电路元件的,回路内有电压源时需注意其极性。当两个网孔共有一个电路元件时,需要用两个网孔电流在该元件内流动方向相反时的差值来表示该元件的电压降。  基于矩阵形式的网孔分析法  当含有多个电压源或三个以上的回路时,手动求解所有的联立方程组将变得十分困难。在这种情况下,将方程组转换为矩阵形式,并应用标准的线性代数步骤(或电路仿真和软件),能够使分析更加系统化。下面将介绍网孔分析法中矩阵表达式的建立方法和求解步骤。
2026-01-16 10:36 阅读量:408
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
型号 品牌 抢购
ESR03EZPJ151 ROHM Semiconductor
BP3621 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
TPS63050YFFR Texas Instruments
IPZ40N04S5L4R8ATMA1 Infineon Technologies
STM32F429IGT6 STMicroelectronics
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码