<span style='color:red'>思瑞浦</span>推出车规级、宽压降压转换器TPP36x07Q,TPP36x09Q
  聚焦模拟芯片供应商思瑞浦3PEAK(股票代码:688536)重磅推出两款高效率、高功率密度的车规级降压转换器系列TPP36x07Q、TPP36x09Q,可覆盖1A~6A的输出电流,产品广泛应用于车载娱乐、智能驾驶、汽车显示屏、域控制器和电池供电等系统中。  随着汽车与能源、通信等领域的加速融合,电动化、网联化、智能化成为汽车产业的发展潮流和趋势,车载电子系统也因消费者的需求而对电源芯片提出了更严苛的要求。尤其是与蓄电池直接相连的一级电源,不仅随着系统算力的提升和负载的变化,需要实现更大的功率输出、更低的静态功耗和更快的瞬态响应,还要满足车载应用恶劣的输入条件,如冷启动和抛负载等工况。  TPP36x07Q和TPP36x09Q系列为全集成同步降压转换器,均支持宽电压范围3V-36Vin输入,支持42V ABS抛负载和低至3V的冷启动能力。全系列的超低静态电流小于10μA,不仅可实现极高的轻载效率,在重载下也有着优异的转换效率和热性能。两款产品系列具有固定频率的PWM峰值电流模控制方式,采用对称引脚分布和自主知识产权的双抖频技术优化EMI性能。产品采用Flip Chip on Lead封装,可有效减小封装内寄生,优化EMI性能并提升功率密度,全系列内部集成了软启动功能、过流保护、欠压保护等多种保护功能。  小型化封装,输入对称的引脚设计  TPP36x07Q和TPP36x09Q产品优势  更高效率,更小体积  在典型工况下,TPP36x07Q系列的静态电流约3μA,空载电流约6μA;TPP36x09Q系列空载电流约10μA。超低的静态功耗极大降低了系统待机电流,尤其在电池供电的应用场景,可大幅提升电池使用时间和寿命。  TPP36x07Q空载工作电流 (VOUT=5V, IOUT=0A)  TPP36x09Q空载工作电流 (VOUT=5V, IOUT=0A)  TPP36x07Q系列集成了90mΩ的HS-FET和60mΩ的LS-FET,具备支持最大3A负载能力,在确保高性价比、高频2.1MHz小体积的特性下,工作效率可达93%以上,且具有出色的散热能力。同时,凭借显著的静态电流表现,产品能在全负载范围内实现高工作效率。  TPP36307Q温升测试 (VOUT=5V, IOUT=3A, Fsw=2.1MHz)  TPP36307Q效率曲线 (VOUT=5V, PFM mode, Fsw=400kHz)  TPP36x09Q系列集成了40mΩ的HS-FET和20mΩ的LS-FET,最大负载驱动能力可达6A。在85℃的环境温度下,即使在高频运作下(频率2.1MHz),TPP36609Q仍能稳定输出6A的满载电流,彰显产品在高频小型化方面的优越性,显著提高了功率密度。  TPP36609Q效率曲线 (VOUT=5V, PFM mode, Fsw=400kHz)  更优EMI性能  开关电源芯片在应用系统中是常见的EMI干扰发生源头,以buck变换器为例,当芯片在高频开关过程中,在输入环路引起的高频电流跳变di/dt会引入差模干扰,在与电感相连的开关节点引起的高频电压跳变dv/dt会引入共模干扰,进而导致不同维度和程度的EMI影响,TPP36x07Q和TPP36x09Q系列对症下药,总结并集成了多种EMI优化技术方案,可显著降低EMI调试的工作量,从而节省时间和成本投入。  两款产品系列均采用输入对称分布的引脚设计,可减小输入环路的寄生,同时两个回路的开关电流方向相反,可抵消一部分电流环路的磁场能量。基于可选的抖频技术,能够把基频能量通过调制分布到宽频带范围,使能量分布更均匀。利用Flip Chip on Lead封装和优化的电路设计,能够减小环路的寄生电感,从而降低开关节点的电压振铃,优化EMI辐射。  汽车与信息通信领域的加速融合,导致EMI情况日益复杂,为应对车辆对电磁环境的影响,CISPR 25规定了针对汽车设备的车载接收机防护干扰测量的标准。而随着车载通信的快速发展,该标准也不断迭代更新,相比于目前被广泛应用和熟知的2016版,最新版2021版在辐射测试的多个频段要求更加严格,TPP36x07Q和TPP36x09Q系列无需共模扼流圈即可通过最新的2021版CISPR 25 Class 5标准。  更高自由度,贴合汽车应用  车规电源芯片,尤其是一级电源,因直接跟蓄电池相连,不仅要求极低的静态电流,也需要承受特殊的应用条件。根据ISO 16750标准,抛负载是指在蓄电池充电时,断开发电机与蓄电池的连接而引起发电机输出大电压尖峰,从而使得其它连接到发电机电源的设备受到破坏的威胁,考虑到输入钳位电路的作用,一般乘用车的抛负载电压会被抑制到35V左右,TPP36x07Q和TPP36x09Q全系列可支持42V ABS抛负载能力。  冷启动是指汽车的后级负载瞬时启动造成的蓄电池电压跌落或者在寒冷天气下启动蓄电池造成的跌落,并恢复工作电压的过程。随着应用需求的提升,越来越多的产品要求跌落时电源芯片不能出现停机,并且恢复时输出电压不能过冲较大。TPP36x07Q和TPP36x09Q系列可支持最低至3V的工作电压,可满足绝大部分应用要求,并集成跌落后的平稳恢复功能。产品均具有全温下±1%的输出电压精度和极小的最小导通时间,能做到不降频的情况下支持高频应用,并实现高精度输出。  TPP36x07Q冷启动恢复过程 (VOUT=3.3V, IOUT=1.5A)  TPP36x07Q系列产品特点  车规AEC-Q100等级1认证  宽输入电压范围:3V~36V  抛负载:42V,冷启动:低至3V  持续输出电流:可选1A、2A、3A  超低0.9μA关断电流,3μA静态电流,6μA空载电流  极低最小导通时间:35ns  可选固定开关频率:400kHz、1.4MHz、2.1MHz  可选抖频功能  支持低压差工作状态  Power Good输出指示  输入对称分布的QFN 3mm × 2mm封装  TPP36x09Q系列产品特点  车规AEC-Q100等级1认证  宽输入电压范围:3V~36V  抛负载:42V,冷启动:低至3V  持续输出电流:可选3A、4A、6A  超低0.5μA关断电流,10μA空载电流  极低最小导通时间:55ns  可调开关频率:200kHz~2.2MHz  可选抖频功能  可调SW开关速度  支持低压差工作状态  轻载PFM/FCCM模式可选  Power Good输出指示  输入对称分布的QFN 4mm × 3.5mm封装
关键词:
发布时间:2024-11-06 10:40 阅读量:323 继续阅读>>
小尺寸、低功耗!<span style='color:red'>思瑞浦</span>发布高性能车规级看门狗定时器专用芯片TPV710Q
  聚焦模拟芯片和嵌入式处理器的供应商思瑞浦3PEAK(股票代码:688536)全新推出小尺寸、低功耗、车规级看门狗定时器专用芯片TPV710Q,在汽车座舱、T-Box、BMS、ESS、工业控制设备等领域得到了广泛应用。  TPV710Q提供AEC-Q100 Grade1认证 ,静态功耗6μA,提供多个可用看门狗超时周期10ms、100ms、0.6s、1.6s、3.2s、6.4s和12.8s,并带有EN控制,保证最小Vcc=1.67V有效。  MCU正常工作的时候,每隔一段时间输出一个信号到喂狗端,给 WDT清零,如果超过规定的时间不喂狗(一般在程序跑飞时),WDT定时超过,就会给出一个复位信号到MCU,使MCU复位,防止程序发生死循环,或者程序跑飞。看门狗命令在程序的中断中拥有最高的优先级,从而保证系统正常运行。  TPV710Q产品优势  低功耗  TPV710Q在Vcc=2.5V、3.3V、5V多种供电场景下,在全温-40°C至125°C,均能保持6μA以下的静态功耗,满足汽车电子应用领域低功耗需求。  低误差  TPV710Q在全温-40°C至125°C,超时周期的实测值和目标值比例范围误差小于±5%。  多型号  TPV710Q提供多个可用看门狗超时周期10ms、100ms、0.6s、1.6s、3.2s、6.4s和12.8s,方便客户系统灵活使用。  TPV710Q典型应用  TPV710Q看门狗定时器电路具有输入WDI和输出WDO。输入用于清除内部看门狗定时器在指定的超时周期内定期运行。当系统正常运行时,它会定期切换看门狗输入WDI。如果系统发生故障,则看门狗定时器未复位,看门狗输出WDO的输出低电平给到MCU的RST端,使MCU复位,防止跑飞。TPV710具有启用输入EN,可以启用或禁用看门狗功能,连接到芯片内部下拉电阻器。若EN引脚悬空,则器件使能。  TPV710Q产品特性  AEC-Q100 Grade 1:TA=-40°C至125°C  可用看门狗超时周期10ms、100ms、0.6s、1.6s、3.2s、6.4s和10s  芯片使能输入  漏极开路或推挽式低电平有效WDO输出  低功耗:6μA  保证输出对 VCC=1.67V有效  封装:SOT23-5
关键词:
发布时间:2024-10-28 17:52 阅读量:383 继续阅读>>
<span style='color:red'>思瑞浦</span>荣获上交所信息披露工作A级评价
<span style='color:red'>思瑞浦</span>推出17通道高精度电池管理产品—TPB76016
  聚焦模拟芯片和嵌入式处理器的供应商思瑞浦3PEAK(股票代码:688536)全新推出17通道高精度电池管理产品—TPB76016,内置高精度基准,工作温度支持-40°C to +125°C,可广泛应用于动力电池、储能电池、以及其他消费类电池的BMS控制板。  TPB76016产品优势  ±80V相邻两个通道耐压  2mV的电压采集精度,达到业内较高水平  17通道输入,高集成化,节省PCB空间和成本  17通道50mS采样周期,集成1MSPS SPI通信,满足大多数BMS应用领域  集成16位ADC,提高装置采样精度  内置高精度基准,初始精度±0.3%,温漂10ppm/℃  TPB76016产品特性  可测量多达17个串联电池电压  相邻采样通道耐压高达±80V  电压测量  电压采集范围0V~5V  电池电压测量精度可达2mV(典型值)±5mV(-20℃~65℃)  电流测量  检流电阻上的测量范围可到±100mV  ±0.2%电流测量精度(-20℃~65℃)  支持极低漏电流  深度睡眠模式:25μA  睡眠模式:30μA  关机模式:2.5μA  集成电压、电流、温度在内的多个保护功能  支持使用内部温度传感器和多达4个外部热敏电阻进行温度检测  集成可编程存储器供使用  集成二级化学熔断器驱动保护  内置均衡MOS,同时支持外接均衡管均衡  1Mbps SPI通信接口  产品内部框图和典型外围电路  TPB76016典型应用  下图以电动两轮车行业BMS典型应用框图,16节电池电压直接送到TPB76016的采样通道,通过内置高精度的AD转换得到精确的电压值,可达到2mV的采样精度,再通过SPI通信传输给单片机,同时可实现过流过压保护和均衡。  搭配思瑞浦高边驱动芯片TPB76200可以控制高边开关,如下图所示:
关键词:
发布时间:2024-09-27 11:20 阅读量:386 继续阅读>>
<span style='color:red'>思瑞浦</span>并购重组项目获中国证券监督管理委员会同意注册的批复
<span style='color:red'>思瑞浦</span>推出高性能车规级升压控制器TPQ5055xQ、升压转换器TPQ50571Q
  升压变换器是一种常用的DC-DC电源变换器,它能将低电压的直流输入升压为更高的直流输出,同时可以实现升压电源(Boost)、升降压电源(Buck-Boost)、SEPIC 电源、隔离反激电源等多种拓扑。在工业控制、汽车电子等领域得到了广泛应用。  思瑞浦推出TPQ5055xQ和TPQ50571Q两款高效率、小尺寸、易于使用的非同步升压控制器和转换器。  TPQ5055xQ和TPQ50571Q为非同步升压控制器和转换器,采用固定频率PWM峰值电流模式控制方式,采用思瑞浦自主知识产权的双抖频技术优化EMI性能。内部集成过温保护、固定斜坡补偿与可配置斜坡补偿功能、软启动功能和过流保护等多种保护功能。  TPQ5055xQ为控制器,可支持宽输入电压范围,并搭配MOSFET、IGBT或SiC功率管,适用于更广泛的应用场合;TPQ50571Q集成高达5A电流能力的MOSFET,可适用于小尺寸、高功率密度应用场景。  TPQ5055xQ产品特点  车规AEC-Q100 等级1认证  输入电压范围:2.9V至45V 1.5A门级驱动能力  可调开关频率:100kHz~2.2MHz  可调输入欠电压锁定(UVLO)  可调软启动时间  PowerGood输出指示  可选Hiccup过载保护模式  可选双抖频功能  可选带可浸润侧翼的QFN 3mmX2mm封装  TPQ5055xQ Boost应用12V升压至24V效率曲线图  下图为TPQ5055xQ系列带抖频功能芯片的EMI传导特性图,其中测试条件为Boost应用,VIN=12V输入,VOUT=24V,IOUT=1A,f=440kHz,测试标准为CISPR25 class 3。  TPQ50571Q产品特点  车规AEC-Q100 等级1认证  输入电压范围:2.9V~45V  输出电压范围:从输入电压至48V  6.2A的开关电流限制  开关导通电阻为39mΩ  可调开关频率:100kHz~2.2MHz  可调输入欠电压锁定(UVLO)  可调软启动时间  PowerGood输出指示  可选Hiccup过载保护模式  可选展频功能  可选带可浸润侧翼3mmX3mm QFN封装  TPQ50571Q 12V升压至24V效率曲线图  隔离辅助电源应用  在新能源汽车、储能系统和充电基础设施等应用中,随着电压的增加,稳定可靠的隔离电源变得尤为重要。例如,在新能源汽车的电驱系统、车载充电器和车载DCDC电源中,需要从12V/24V或48V的车载系统产生多路辅助电源,以供隔离驱动使用。  与传统的PWM控制器相比,TPQ5055xQ具有以下优势:  提高开关频率,减小变压器体积;  提供保护和诊断功能;  针对电磁干扰(EMI)进行优化;  低静态功耗,高效率。  高压备用电源应用  TPQ5055xQ的出色静态工作电流性能,使其适用于将高压电池包直接转换为隔离低压供电的备用电源场景。这有助于在主电源12V失效的情况下,确保系统满足系统级功能安全需求。  TPQ50571Q正负电源输出  在光模块、激光雷达等应用中,经常需要高压正负电源轨,TPQ50571Q可同时产生多电源轨。  TPQ50571Q SEPIC电源应用  SEPIC方案因其宽输入范围、输出完全关断、低EMI并且低成本、固定输出电压的优势,广泛应用于车载电源稳压、摄像头电源供电等领域。  TPQ50571Q集成5A大电流MOSFET,可广泛适用于需要宽输入范围的SEPIC拓扑,可在宽输入范围内避免Buck-Boost拓扑的模式切换而造成的环路不稳定和纹波增大。
关键词:
发布时间:2024-08-13 13:56 阅读量:445 继续阅读>>
<span style='color:red'>思瑞浦</span>:CAN SIC收发器助力复杂CAN网络高效可靠通信(2)
  SIC的作用机理  在CAN总线上,通过CAN_H和CAN_L两根线上的电位差来表示CAN信号。CAN总线上的电位差分为两种:显性电平(Dominant Voltage)和隐性电平(Recessive Voltage),其中显性电平为逻辑0,隐性电平为逻辑1,如下图所示。  CAN总线电压电平  当TXD输出逻辑0时,总线输出的差分电压VDIFF为显性状态,当TXD输出逻辑高电平时总线通过接收器内部的高阻值输入电阻器 (RIN)偏置为VCC/2,为隐性状态,在仲裁期间,显性状态会覆盖隐性状态。CAN收发器在显性阶段的差分发送器输出阻抗约为50Ω,与总线特征阻抗紧密匹配,通常不会引起信号反射。对于常规CAN FD收发器,当驱动器输出显性电平切换到隐性电平时,差分输出阻抗会由50Ω变为约60kΩ,此时,反射回来的信号遇到端口的阻抗不匹配,并且这些反复的反射叠加在输出端口,从而导致了信号振铃的产生。  CAN总线振铃波形  对于具有SIC功能的CAN芯片而言,当发送器检测到TXD上出现从显性到隐性的边沿时,内部驱动器会激活振铃抑制(SIC)电路。CAN驱动器继续强力驱动总线至隐形电平,直至tpass_rec_start,以便减少反射,确保采样点处的隐性位很干净。在这一主动隐性阶段,发送器输出阻抗较低(约为100Ω)。反射的信号没有遇到显著的阻抗不匹配,并且驱动电阻可有效吸收反射信号,因此振铃会大大减弱。在该阶段结束后驱动器进入被动隐性阶段,其输出阻抗上升至约60kΩ。  CAN SIC阻抗时序图  在SIC作用的主动隐性阶段,其持续时间最长可达530ns(tpass_rec_start,如上文所列)。由于CAN FD协议的数据阶段最低位宽为200ns(5Mbps),因此振铃抑制可在整个的隐性位持续时间内保持活动状态,从而保证CAN总线和RXD信号的翻转正常进行。  SIC芯片对于组网的优势  相比常规CAN芯片,CAN SIC可采用更为灵活的组网方式,如下图所示;常规CAN芯片由于信号振铃的限制,为了保证CAN FD的高速率要求,所有节点需采用手拉手的菊花链组网方式,且每个节点的分支线缆不超过0.3m,采用SIC芯片后可灵活调整组网方式和提高总线速率上限,可根据实际应用场景进行布线,有效节省组网线材成本和车身重量。  常规CAN组网方式  在常规组网环境中在若出现某一节点断开时,信号会因为断开节点后留下的分支线导致信号振铃,若是使用常规CAN芯片该振铃无法避免,易导致节点收到错误帧,如果其中一个终端异常断开的话,基本很难保证总线通信了,若是使用CAN SIC芯片可抑制信号振铃,可保证信号在异常场景下正常通信。  CAN SIC组网方式  CAN SIC收发器有更严格的位时间对称性,这使得CAN信号在恶劣的组网环境中能够提供更多裕量。收发器对上升沿和下降沿的斜率要求更快,可保证单bit的有效位宽,因此可以以8Mbps的速率可靠运行。与CAN FD收发器相比,其SIC的环路延时最大仅为190ns,远低于CAN FD收发器的255ns最大环路延时的要求,更有助于延长最大组网长度。  TPT1462  思瑞浦推出基于其自主创新设计振铃抑制电路专利的车规级CAN SIC(信号改善功能,Signal Improvement Capability)TPT1462Q芯片,相比当前主流的CAN FD车载通信方案,TPT1462Q满足最新的ISO 11898-2:2024标准(见下表),同时兼容CiA 601-4标准,可实现≥8Mbps的传输速率。可与常规CAN FD的CAN芯片(TPT1044/TPT1042)兼容和混合组网,还具有待机模式和远程唤醒功能,此外其优异的EMC表现,以及灵活的VIO供电选择(低至1.8V)可有效助力工程师简化系统设计、并打造更高质量的车载通信系统。  表1、TPT1462关于ISO 11898-2:2024标准测试数据  在工况复杂的汽车应用中,环境中恶劣的电磁干扰可通过电缆耦合到芯片的CAN总线,这可能导致CAN芯片传输异常,甚至导致芯片损伤。思瑞浦推出的CAN SIC芯片TPT1462Q具有国际领先的抗干扰能力,为汽车安全通讯奠定坚实的基础;此外TPT1462Q采用思瑞浦自主设计对称性调节模块专利技术,用于调节第一输出驱动级和第二输出驱动级的对称性;借助于该对称性调节模块,确保差分输出级的对称性,优化芯片的EMI性能,依照IEC 62228-3标准进行传导发射的EME测试,表现如下:  无共模电感时TPT1462Q的EME测试图  TPT1462实战效果  总线振铃一般是CAN总线的通信过程中,由于阻抗不匹配导致的信号反射等原因,使得信号在传输线上多次反射,进而产生的一种振荡现象。振铃现象可能会对CAN总线的通信质量产生负面影响,甚至有可能导致通信失败。TPT1462Q采用自研的振铃抑制专利,允许工程师在多节点、复杂拓扑情况下有效减少总线中的信号反射,降低振铃现象发生的概率(如下图)。  常规CAN-FD在星型网络多节点通信波形  CAN SIC芯片在星型网络多节点通信波形  同时由于架构的优化TPT1462Q可维持高达10Mbps的通信传输速率,并且可保证优质的总线对称性,大幅提升车载通信质量,为下一代CAN技术发展奠定基础。  在10Mbps通信速率下的波形  TPT1462产品系列提供带VIO(TPT1462VQ)与不带VIO(TPT1462Q)两个版本,可根据系统需求灵活选择简化系统设计,提供SOP8和DFN8两种封装,可Pin-to-Pin兼容市场主流经典CAN和CAN FD收发器。TPT1462Q已通过AEC-Q100车规认证要求,支持–40°C~125°C的宽工作温度范围,提供过温保护;同时,TPT1462Q还具备TXD显性超时保护,待机模式下支持远程唤醒。此外,该产品的VIO设计可低至1.8V,这一设计不仅提高了产品的灵活性,还可进一步减少系统中对LDO或电平转换器的需求,从而为工程师在成本控制方面提供有力支持。
关键词:
发布时间:2024-08-09 09:08 阅读量:537 继续阅读>>
<span style='color:red'>思瑞浦</span>:CAN SIC收发器助力复杂CAN网络高效可靠通信(1)
  现在的汽车通过丰富多项功能来提升其安全性、性能和舒适性。从动力总成到高级驾驶辅助系统,从车身电子控制和照明到信息娱乐和安全,大量电子控制单元 (ECU) 被部署到车辆上用于丰富这些功能。  ECU通过车内网络总线交换控制和数据日志信息。在众多车载总线中,CAN总线因其易用性、良好的共模噪声抑制能力、基于优先级的消息传递机制、可处理总线仲裁以及错误检测和恢复等特性,一直备受追捧。  CAN总线在车载通信网络的应用优势  简单且低成本  ECU通过单个CAN系统进行通信,而不是直接的复杂模拟信号线通信,从而减少了错误、重量、接线和成本;  完全集中控制  CAN总线提供了“一个进入点”,可以与所有网络ECU进行通信——支持集中诊断、数据记录和配置;  高抗扰  CAN总线具有强大的抗电干扰和抗电磁干扰能力,非常适合对安全行能要求严格的应用场景;  实时高效  通过ID对CAN帧进行优先级排序,以便优先级最高的数据可以立即访问总线,而不会引起其他帧的中断。  通过向现有CAN总线添加节点,可以轻松地扩展车辆网络,这也是一个主要优势。随着附加功能被集成到这些应用中,对更复杂网络和更快速数据速率的需求日益正在增加。然而,当网络变得复杂时,如CAN节点采用星形拓扑连接时,这种优势就会减弱。这些网络中固有的未端接存根引起了反射,在速度较高时会导致发生信号通信故障。这两种需求都与总线上信号振铃的增加效应相冲突,这突出说明了CAN介质访问传统技术的能力有限。因此,尽管CAN灵活数据速率(FD)收发器额定值为5Mbps,但在实际车辆网络中必须以低于2Mbps的速率使用。CAN信号增强能力 (SIC)的引入可能改变这种状况,信号改善功能(SIC)使CAN-FD收发器能够以5Mbps及更高的速度用于复杂的星形网络,而无需进行大规模的重新设计。  经典CAN和CAN-FD的局限性  第一代CAN协议ISO 11898-2(又称经典 CAN)于1993年左右发布。该协议只允许进行8字节的有效载荷数据传输,最大指定数据速率为1Mbps。经典CAN网络性价比高、稳定可靠、具有可扩展和易于部署等优点,能够支持整车的复杂拓扑。但是,汽车的新功能不断增加,数据交换需求提高,CAN网络系统必须突破自身的限制。与经典CAN相比,CAN FD技术可提供更高的带宽,它将有效载荷长度增加到64字节,同时将数据阶段的传输速率从1Mbps提升至5Mbps。  虽然CAN FD网络具有诸多优点,但由于信号反射产生的“信号振铃”问题,使得信号完整性受限,在很多网络中只能达到2Mbps的传输速率,而且仅限于使用高度线性的拓扑。这意味着线束必须避免长线缆分支,从而使得汽车上的走线变得更加复杂,进而导致了汽车成本的上升和重量的增加。  当前汽车工业快速发展,面对汽车上急剧增加的节点数量,设计人员意识到CAN FD收发器无法满足当前多节点复杂组网的情况,因为复杂星形网络导致的总线振铃影响了正确的信号通信,图1是星形拓扑示例。  图1、在星形网络中连接的CAN节点  在具有多个节点的复杂星形拓扑中,CAN芯片总线信号在翻转时阻抗会发生显著变化,导致总线上传输的信号出现阻抗不匹配,进而引起信号反射。这些反射的信号叠加会导致CAN总线振荡,使得接收端出现误翻转,从而导致出现错误帧。尽管这些这种信号振铃的情况并不仅仅在CAN FD速率下存在,但是当以标准CAN低速率运行时,位持续时间长,采样点相对靠后,因此可以采到正确的位(如图2所示),从而可以正常通信。  图2、高速CAN速度下的CAN总线振铃和RXD干扰  对于5Mbps CAN FD 200ns的位持续时间过短,以致复杂星形拓扑中的振铃无法通过调整采样点去规避,从而没法保证可靠的数据通信。这就使系统设计人员无法在这种复杂组网条件下使用CAN FD进行通信,只能降速处理。随着现代车辆对更多的节点数据交换和更快的吞吐量需求,CAN SIC为下一代车载通信总线技术铺平了道路,该技术保证更快的通信速率并提供了更大的网络灵活性和可扩展性。  CAN FD SIC  在国际标准ISO11898-2:2024中的定义  信号改善是CAN FD收发器的基础上增加的一项额外功能,它通过最大限度地减少信号振铃来提高复杂星形拓扑中可实现的更大数据速率。CAN SIC收发器需要满足国际标准化组织 (ISO) 11898-2:2024高速CAN物理层标准和CAN-in-Automation (CiA) 601-4信号改善规格的要求。  下图是常规CAN FD收发器,在总线产生振铃时,其总线差模信号会反复在显性电平和隐性电平阈值之间振荡,导致RXD产生误翻转,从而使接收数据受到干扰。根据ISO 11898-2:2024规范要求,具有SIC功能的CAN收发器可有效抑制总线信号振铃,从而产生正确的RXD信号,如下图所示。  (左)无SIC功能的CAN总线和RXD波形  (右)有SIC功能的CAN总线和RXD波形  今年3月份ISO更新了最新的ISO 11898-2:2024标准,增加了对CAN SIC部分的参数要求,就电气参数而言,符合ISO 11898-2:2024的CAN SIC收发器与常规CAN FD收发器相比,前者具有更严格的位时间对称性和环路延时要求,如表1所示。发送和接收路径延时的分离可以帮助系统设计人员清楚地计算存在其他信号链组件时的网络传播延时。  表1、 ISO 11898-2:2016和ISO 11898-2:2024 SIC和时间参数定义对比  目前思瑞浦最新推出的TPT1462xQ已通过德国IHR实验室提供的符合ISO 11898-2:2024的CAN收发器一致性(IOPT)报告,成为国内首款支持并通过ISO 11898-2:2024认证的CAN SIC收发器。通过该测试意味着TPT1462xQ已经完全符合最新的国际标准ISO 11898-2:2024,并可以在复杂组网的各种条件下与其他符合国际标准并通过认证的产品稳定通信。
关键词:
发布时间:2024-08-08 09:03 阅读量:491 继续阅读>>
<span style='color:red'>思瑞浦</span>荣膺 “2024年最具创新力科创板上市公司”
关键词:
发布时间:2024-07-31 09:04 阅读量:493 继续阅读>>
<span style='color:red'>思瑞浦</span>发布支持振铃抑制功能的汽车级CAN SIC收发器TPT1462xQ
  聚焦高性能模拟芯片和嵌入式处理器的半导体供应商思瑞浦3PEAK(股票代码:688536)推出支持振铃抑制功能、具有待机模式的CAN信号改善功能(CAN Signal Improvement Capability, CAN SIC)收发器TPT1462xQ。  TPT1462xQ符合ISO 11898-2:2024高速CAN规范物理层要求并实现了信号改善功能(CAN SIC)。  TPT1462xQ具有更严格的位时间对称性和环路延时要求,可实现高达8 Mbit/s的CAN FD通信,支持1.7V~5.5V的VIO接口电平,可无需外加额外电路直接支持1.8V SOC以及3.3V、5V的MCU通讯,且具有低功耗待机模式,可通过ISO 11898定义的唤醒模式 (WUP) 实现远程唤醒。  TPT1462xQ通过CAN SIC信号改善功能大大抑制了网络上的信号振铃,可满足最新车载网络升级对更高通信速率的需求,广泛应用于汽车域控、ADAS、座舱等领域 。  目前TPT1462xQ是国内首款采用全国产供应链量产且通过多家车厂和Tier1项目测试认证并拿到定点的CAN SIC收发器,已开始小批量产出货。  TPT1462xQ产品优势  CAN SIC信号改善功能  TPT1462xQ具有优异的CAN信号改善功能,可以提高通讯速率、大幅抑制网络中的信号振铃效应,减少通讯误码率,从而提高整车网络通信速率和组网方式的灵活性。如下图所示,传统的CAN FD只适用于简单的总线架构的组网方式,在复杂的星型架构上,总线波形振铃现象和通讯误码率会大幅增加。  图1-常规总线架构组网方式  图2-星型架构组网方式  下图为星型组网下,常规CAN-FD和TPT1462xQ的CAN SIC信号波形对比。可以看到TPT1462xQ在复杂星型组网环境下的通讯总线电平波形质量有了极大的提升。  下方图3-1和3-2为星型组网下测试波形对比  图3-1、常规CAN-FD在星型网络多节点通信波形  图3-2、TPT1462xQ芯片在星型网络多节点通信波形  VIO电平支持1.7V~5.5V工作范围  TPT1462xQ的VIO工作范围为1.7V~5.5V,可以更好的兼容更低的通讯接口电平。下图是面向1.8V通讯电平的方案对比,相较于市面上只支持5V和3.3V的传统CAN收发器,可以省掉外围的电平转换芯片和额外的LDO电源轨(见图4-1中红色部分),整体方案更加简洁并节省了系统成本,对于当前采用1.8V SOC系统的车载应用,这一优势提供了显著价值。  下方图4-1和图4-2为1.8V电平通讯方案对比  图4-1、传统CAN收发器和1.8V SOC 的通讯方案  图4-2、TPT1462VQ和1.8V SOC 的通讯方案  优异的电磁兼容特性  TPT1462xQ具有优异的电磁兼容特性,即使在极恶劣的电磁环境中,仍能维持CAN正常通信,为汽车安全通讯奠定了坚实的基础。同时基于汽车客户模块和整机的测试需求,TPT1462xQ已经在汽车零部件上通过了如下全部EMC测试,可以提供完整测试报告。  国内首款支持并通过  ISO11898-2:2024认证的  CAN SIC收发器TPT1462xQ  2024年3月更新的11898-2:2024,增加了对CAN SIC部分的参数要求,TPT1462xQ已经通过德国IHR实验室提供的符合ISO 11898-2:2024的物理层以及组网测试报告,成为国内首款支持并通过ISO 11898-2:2024认证的CAN SIC收发器。通过该测试意味着TPT1462xQ已经完全符合最新的国际标准ISO 11898-2:2024,并可以在复杂组网的各种条件下与其他符合国际标准并通过认证的产品稳定通信。  IHR是从事汽车总线测试的权威机构,是SAE、LIN联盟、PSI5联盟及国际主要整车厂指定的第三方CAN、LIN、GMLAN、J2602、PSI5、Cooling等总线一致性测试认证实验室,是ISO Work Group、AUTOSAR以及Open Alliance等组织的成员,也是全球汽车Ethernet、CAN、LIN、GMLAN、J2602总线开发、测试工具的主要供应商。  TPT1462xQ产品特性  ·具有CAN SIC信号改善功能(Signal Improvement Capability)  ·具有低功耗待机模式,支持唤醒模式(WUP)实现远程唤醒  ·支持高达8Mbps的CAN网络通信  ·VIO电平支持1.7V~5.5V  ·具有±42V以上的CAN BUS总线故障保护  ·具有±8kV的ESD防护能力(IEC 61000-4-2)  ·具有优异的电磁兼容特性(EMC)
关键词:
发布时间:2024-07-30 09:00 阅读量:380 继续阅读>>

跳转至

/ 7

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
BD71847AMWV-E2 ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
MC33074DR2G onsemi
型号 品牌 抢购
IPZ40N04S5L4R8ATMA1 Infineon Technologies
TPS63050YFFR Texas Instruments
BU33JA2MNVX-CTL ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
BP3621 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。