上海雷卯电子;浅析防反接保护电路

发布时间:2023-03-20 11:10
作者:AMEYA360
来源:网络
阅读量:2164

  防反接保护电路

  上海雷卯电子;浅析防反接保护电路

  1,通常情况下直流电源输入防反接保护电路是利用二极管的单向导电性来实现防反接保护。如下图1示:

  这种接法简单可靠,但当输入大电流的情况下功耗影响是非常大的。以输入电流额定值达到2A,如选用Onsemi的快速恢复二极管 MUR3020PT,额定管压降为0.7V,那么功耗至少也要达到:Pd=2A×0.7V=1.4W,这样效率低,发热量大,要加散热器。

  2,另外还可以用二极管桥对输入做整流,这样电路就永远有正确的极性(图2)。这些方案的缺点是,二极管上的压降会消耗能量。输入电流为2A时,图1中的电路功耗为1.4W,图2中电路的功耗为2.8W。

  上海雷卯电子;浅析防反接保护电路

  上图,一只串联二极管保护系统不受反向极性影响,二极管有0.7V的压降

  下图, 是一个桥式整流器,不论什么极性都可以正常工作,但是有两个二极管导通,功耗是图1的两倍

  MOS管型防反接保护电路

  上海雷卯电子;浅析防反接保护电路

  图3  NMOS管型防反接保护电路

  图3利用了MOS管的开关特性,控制电路的导通和断开来设计防反接保护电路,由于功率MOS管的内阻很小,现在 MOSFET Rds(on)已经能够做到毫欧级,解决了现有采用二极管电源防反接方案存在的压降和功耗过大的问题。

  极性反接保护将保护用场效应管与被保护电路串联连接。保护用场效应管为PMOS场效应管或NMOS场效应管。若为PMOS,其栅极和源极分别连接被保护电路的接地端和电源端,其漏极连接被保护电路中PMOS元件的衬底。若是NMOS,其栅极和源极分别连接被保护电路的电源端和接地端,其漏极连接被保护电路中NMOS元件的衬底。一旦被保护电路的电源极性反接,保护用场效应管会形成断路,防止电流烧毁电路中的场效应管元件,保护整体电路。

  N沟道MOS管通过S管脚和D管脚串接于电源和负载之间,电阻R1为MOS管提供电压偏置,利用MOS管的开关特性控制电路的导通和断开,从而防止电源反接给负载带来损坏。正接时候,R1提供VGS电压,MOS饱和导通。反接的时候MOS不能导通,所以起到防反接作用。功率MOS管的Rds(on)只有20mΩ实际损耗很小,2A的电流,功耗为(2×2)×0.02=0.08W根本不用外加散热片。解决了现有采用二极管电源防反接方案存在的压降和功耗过大的问题。

  上海雷卯电子;浅析防反接保护电路

上海雷卯电子;浅析防反接保护电路

  VZ1为稳压管防止栅源电压过高击穿mos管。NMOS管的导通电阻比PMOS的小,最好选NMOS。

  NMOS管接在电源的负极,栅极高电平导通。

  PMOS管接在电源的正极,栅极低电平导通。


(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
上海雷卯电子:浅谈汽车系统电压优缺点分析
  汽车电气系统的电压等级选择直接影响整车性能、能效和兼容性。以下是 12V、24V、48V 系统的简单介绍,包括技术特点、优缺点及典型应用场景。  汽车电气系统的发展随着车辆电子设备的增多和对能效要求的提高,电压等级也在逐步提升,从传统的12V电压系统 、24V电压系统,到目前在逐步推广的48V电压系统。  首先,12V系统是传统的汽车电气系统,已经存在了很多年。几乎所有传统燃油车都使用12V系统。它的优点可能包括成熟的技术、广泛的配件支持以及较低的成本。但缺点可能是在高功率需求下表现不足,比如启动电机、大功率音响或现代电子设备较多时,因为功率增大,电压较低,P=V x I, 所以电流会很大,导致线损增加(功率损耗P=I2R),需要更粗的线缆,增加重量和成本,车辆系统内也会显得更加的拥挤。  24V系统,常见于商用车、卡车或大型车辆。24V系统的优点可能是更高的功率输出,同样的功率下电流减半,减少线损和线径,适合更大功率需求的设备。  48V系统是近年来随着混合动力和节能需求兴起的中压系统,尤其在轻度混合动力车辆中应用较多。现在的汽车需要比几年前的汽车更多的动力。除了发动机、车灯、收音机、电动天窗、电动助力转向、网络和信息娱乐等基本功能,现在还会集成很多与安全和便捷性有关的其他功能,这些功能通常会归入高级驾驶辅助系统 (ADAS) 范畴内。ADAS系统对电池提出了更高的要求,需要更多的电力,如用12V系统难以支撑,如使48V系统,能够支持更多高功率设备如电动增压器、空调压缩机等,同时减少电流,降低线损,线缆更细更轻。此外,48V系统可以更好地支持能量回收,提高燃油经济性。不过缺点可能涉及更高的系统成本,安全性问题(更高的电压需要更好的绝缘和保护),以及现有供应链可能还未完全适应48V系统,配件和维修可能更复杂。  对比表格如下:  未来趋势48V轻混普及,48V系统将成为燃油车节能升级的主流选择。随着 48V 系统融入电动汽车的电气架构,车辆得以实现更为高效的能量传输,同时显著减轻重量、降低成本。这一变革不仅全面提升了车辆的整体性能,还为未来电动汽车的技术演进筑牢了根基。不过,要充分释放 48V 系统的潜力,设计师们仍需攻克电气系统布局的复杂性、电池管理的精准性以及安全性保障等诸多难题。展望未来,随着技术的持续迭代,48V 系统必将在电动汽车领域中扮演愈发关键的角色,成为推动行业进步的核心驱动力。  浪涌保护对于48V 电源系统也是重要环节,上海雷卯发挥自己的技术专长,作为专业的防护器件供应商,拥有先进的技术与丰富的经验,针对 48V 系统研发出一系列高效浪涌保护方案。助力众多车企提升 48V 系统可靠性,有效降低因浪涌冲击导致的故障风险,为 48V 系统在电动汽车领域的广泛应用保驾护航。关于浪涌防护下期分享。
2025-03-07 13:36 阅读量:183
上海雷卯电子:空气放电与接触放电的对比解析
  空气放电与接触放电的对比解析  在现代电子产品无处不在。从日常使用的智能手机、平板电脑,到工业领域的精密仪器,其稳定性和可靠性至关重要。而静电放电(ESD)作为影响电子产品性能的关键因素,可能会导致设备故障、数据丢失甚至永久性损坏。其中,空气放电和接触放电是 ESD 测试中最为常用的两种方法,两者在测试原理、适用场景、测试效果等方面存在诸多差异。深入对比有助于优化 ESD 防护设计,提升产品质量。  一、空气放电与接触放电对比  整理空气放电和接触放电主要差异列表如下:  标准规定:接触放电是优先选择的试验方法,空气放电则用于不能使用接触放电的场合(如表面涂有绝缘层、计算机键盘缝隙等情况)。对于有金属外壳或对外接口的大部分产品或设备,目前这两种试验方法通常都被用户要求进行。  二、ESD抗扰度试验标准IEC61000-4-2/GB-T 17626.2  测试等级  GB/T 17626.2-2018(中国国家标准), IEC 61000-4-2:2008 + A1:2023(国际电工委员会标准)两者内容技术等效,GB/T 等同采用IEC标准。 两种试验方法的电压等级如下表。等级越高越严格。  三、防护策略  1、接触放电防护策略  低阻抗接地设计:金属外壳、接口等导电部件通过多点接地,接地阻抗需<1Ω。  瞬态电流分流: 在接口(如USB、HDMI)处并联TVS二极管(响应时间<1ns),电源输入/输出端增加ESD防护器件(如PESD、TVS阵列)。  上海雷卯整理出各种接口防护放入“EMC电磁兼容社区”小程序,可以查阅参考。  PCB回路面积:减小PCB 电源和信号回路面积。  结构设计强化:金属部件绝缘隔离:外露金属(按键、螺丝)通过绝缘垫片与内部电路隔离。使用导电泡棉填充外壳缝隙,防止ESD通过缝隙侵入。  2、空气放电防护策略  绝缘与屏蔽设计:表面绝缘处理和电磁屏蔽。  减少耦合路径:缝隙和孔径控制,共模干扰抑制。外壳缝隙宽度<0.5mm(避免电弧穿透),或设计迷宫结构延长放电路径。散热孔采用蜂窝状结构,孔径<1mm并增加金属网屏蔽。信号线使用共模扼流圈(CMC),抑制高频辐射干扰。  软硬件协同防护:MCU程序增加看门狗(Watchdog)和状态自检,ESD触发后自动复位。关键数据存储采用ECC校验或双备份机制,防止数据篡改。  测试验证:预测试使用静电枪扫描设备表面,识别薄弱点,上海雷卯有静电浪涌测试实验室,可以提供免费测试验证。如有需求请联系AMEYA360。  四、总结:  总之,接触放电防护核心是“疏导”,通过低阻抗接地和瞬态抑制器件快速泄放能量。空气放电防护:核心是“隔离”,利用屏蔽和绝缘阻断电弧路径,减少耦合干扰。  总结实际生活中需结合两种策略:  1、金属外壳设备:接地+屏蔽层+接口TVS  2、塑料外壳设备:防静电涂层+内部屏蔽罩+共模扼流圈+TVS。  Leiditech雷卯电子致力于成为电磁兼容解决方案和元器件供应领导品牌,供应ESD,TVS,TSS,GDT,MOV,MOSFET,Zener,电感等产品。雷卯拥有一支经验丰富的研发团队,能够根据客户需求提供个性化定制服务,为客户提供最优质的解决方案。
2025-02-11 13:10 阅读量:415
上海雷卯电子:耐压100v的车载以太网保护ESD
上海雷卯电子:新能源汽车直流电源接口防浪涌保护方案
  上海雷卯EMC小哥经常接到客户:“ 我们新能源汽车DC24V电源口浪涌测试, DC/DC(或者LDO)烧了,但我在前面放了一颗大功率的TVS,为啥还会坏,请您帮分析下是什么原因 ?推荐一颗合适的防护器件”。这类问题常常困扰客户。  一、已放置大功率TVS为什么DC/DC(LDO)还会烧坏  一般直流电源入口是先防护再滤波,工程师都会在电源入口采用的方案是:  保险丝+防反接二极管+TVS+滤波+电源IC电压变换,  一颗大功率TVS(根据产品测试等级放置)做浪涌防护。  上面这一问题EMC小哥分析原因有如下几种:  (1)TVS 选型VC太高:尽管是大功率 TVS,但如果其钳位电压(Vc))过高,对后端电路的保护效果相对较差,无法有效保护 DC/DC(LDO)。比如新能源汽车常用的电路,VIN 为24V输入电压,DC/DC 模块 VIN 输入电压范围在 24-36V,最高电压36V, TVS 使用SMDJ26CA, 钳位电压在42.1V。这样超出了DC/DC输入电压范围,导致烧坏。如果改用下表5LM26CA,它的钳位电压30.3V, 满足后端DC/DC 输入范围要求。  (2)浪涌峰值功率大,超出了TVS 功率承受能力。比如上面电路 24V 要过4KV ,用SMDJ26CA 功率太低过不了,只有3KW。如果选用5LM26CA可以轻松通过4KV, 5LM26CA 功率为5KW。  (3)寄生电感和电容的影响:在实际电路中,存在寄生电感和电容,这可能导致 TVS 响应延迟,无法及时对过电压进行钳位,从而使 DC/DC(LDO)受到损害。  (4)电路布局不合理:比如 TVS 与被保护器件之间的走线过长,或者没有良好的接地和电源布线,都可能削弱 TVS 的保护效果。  二、上海雷卯低钳位电压(VC)TVS型号推荐  正因大量客户需求的强烈呼声,上海雷卯出于想帮客户解决问题发心,开发一系列低VC新品大功率TVS,主要型号包括:  600W的SMB封装26V 6LM26CA,33V, 6LM33CA;  3KW的包括SMC封装26V,3LM26CA,33V, 3LM33CA。  5KW的包括SMC封装 26V,5LM26CA,33V, 5LM33CA。  以上几款用于产品DC 12V,24V 电源浪涌防护。  这几个电压是客户需求量最多的,所以首先做开发。其它电压如果有需求也会持续开发。  上表中我们取同功率的3KW的3LM26CA,SMDJ26CA做比较,3LM26CA的Vc是28.10V, SMDJ26CA的Vc 是42.1V,低了十几V。  因此选择上海雷卯同功率带回扫TVS ,能更好的保护后端电源IC,解决了文章开头常常遇到的烧毁 LDO 和DC/DC 问题。  Leiditech雷卯电子致力于成为电磁兼容解决方案和元器件供应领导品牌,供应ESD,TVS,TSS,GDT,MOV,MOSFET,Zener,电感等产品。雷卯拥有一支经验丰富的研发团队,能够根据客户需求提供个性化定制服务,为客户提供最优质的解决方案。
2025-02-06 16:37 阅读量:439
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
BD71847AMWV-E2 ROHM Semiconductor
MC33074DR2G onsemi
TL431ACLPR Texas Instruments
CDZVT2R20B ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
型号 品牌 抢购
BP3621 ROHM Semiconductor
TPS63050YFFR Texas Instruments
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码