<span style='color:red'>电路板</span>上最容易出故障的元器件是什么?
  电容损坏引发的故障在电子设备中是最高的,其中以电解电容的损坏最为常见。电容损坏表现为:容量变小、完全失去容量、漏电、短路。  电容在电路中所起的作用不同,引起的故障也各有特点:在工控电路板中,数字电路占绝大多数,电容多用做电源滤波,用做信号耦合和振荡电路的电容较少。用在开关电源中的电解电容如果损坏,则开关电源可能不起振,没有电压输出;  输出电压滤波不好,电路因电压不稳而发生逻辑混乱,表现为机器工作时好时坏或开不了机,如果电容并在数字电路的电源正负极之间,故障表现同上。  这在电脑主板上表现尤其明显,很多电脑用了几年就出现有时开不了机,有时又可以开机的现象,打开机箱,往往可以看见有电解电容鼓包的现象,如果将电容拆下来量一下容量,发现比实际值要低很多。  电容的寿命与环境温度直接有关,环境温度越高,电容寿命越短。这个规律不但适用电解电容,也适用其它电容。所以在寻找故障电容时应重点检查和热源靠得比较近的电容,如散热片旁及大功率元器件旁的电容,离其越近,损坏的可能性就越大。所以在检修查找时应有所侧重。  有些电容漏电比较严重,用手指触摸时甚至会烫手,这种电容必须更换。在检修时好时坏的故障时,排除接触不良的可能性以外,一般大部分就是电容损坏引起的故障了。所以在碰到此类故障时,重点检查一下电容,换掉电容后结果令人惊喜。  电阻故障  许多初学者在检修电路时,在电阻上折腾,又是拆又是焊的,修得多了,只要了解了电阻的损坏特点,就不必大费周章。  电阻是电器设备中数量最多的元件,但不是损坏率最高的元件。电阻损坏以开路最常见,阻值变大较少见,阻值变小十分少见。常见的有碳膜电阻、金属膜电阻、线绕电阻和保险电阻几种。  前两种电阻应用最广,其损坏的特点一是:低阻值 (100Ω以下) 和高阻值 (100kΩ以上) 的损坏率较高,中间阻值 (如几百欧到几十千欧) 的极少损坏;特点二是:低阻值电阻损坏时往往是烧焦发黑,很容易发现,而高阻值电阻损坏时很少有痕迹。  线绕电阻一般用作大电流限流,阻值不大;圆柱形线绕电阻烧坏时有的会发黑或表面爆皮、裂纹,有的没有痕迹;水泥电阻是线绕电阻的一种,烧坏时可能会断裂;保险电阻烧坏时有的表面会炸掉一块皮,有的也没有什么痕迹,但绝不会烧焦发黑。根据以上特点,在检查电阻时可有所侧重,快速找出损坏的电阻。  根据以上列出的特点,我们先可以观察一下电路板上低阻值电阻有没有烧黑的痕迹,再根据电阻损坏时绝大多数开路或阻值变大以及高阻值电阻容易损坏的特点,我们就可以用万用表在电路板上先直接量高阻值的电阻两端的阻值。  如果量得阻值比标称阻值大,则这个电阻肯定损坏 (要注意等阻值显示稳定后才下结论,因为电路中有可能并联电容元件,有一个充放电过程) ,如果量得阻值比标称阻值小,则一般不用理会它。这样在电路板上每一个电阻都量一遍,即使“错杀”一千,也不会放过一个了。  运算放大器故障  运算放大器好坏的判别对相当多的电子维修者有一定的难度,在此与大家共同探讨一下,希望对大家有所帮助。  理想运算放大器具有“虚短”和“虚断”的特性,这两个特性对分析线性运用的运放电路十分有用。为了保证线性运用,运放必须在闭环(负反馈)下工作。如果没有负反馈,开环放大下的运放成为一个比较器。如果要判断器件的好坏,首先应分清楚器件在电路中是做放大器用还是做比较器用。  根据放大器虚短的原理,就是说如果这个运算放大器工作正常的话,其同向输入端和反向输入端电压必然相等,即使有差别也是mv级的,当然在某些高输入阻抗电路中,万用表的内阻会对电压测试有点影响,但一般也不会超过0.2V,如果有0.5V以上的差别,则放大器必坏无疑。  如果器件是做比较器用,则允许同向输入端和反向输入端不等。同向电压>反向电压,则输出电压接近正的最大值;同向电压<反向电压,则输出电压接近0V或负的最大值(视乎双电源或单电源)。如果检测到电压不符合这个规则,则器件必坏无疑!这样你不必使用代换法,不必拆下电路板上的芯片就可以判断运算放大器的好坏了。  SMT元件故障  有些贴片元件非常细小,用普通万用表表笔测试检修时很不方便,一是容易造成短路,二是对涂有绝缘涂层的电路板不便接触到元件管脚的金属部分。这里告诉大家一个简便方法,会给检测带来不少方便。  取两枚最小号的缝衣针,将之与万用表笔靠紧,然后取一根多股电缆里的细铜线,用细铜线将表笔和缝衣针绑在一起,再用焊锡焊牢。这样用带有细小针尖的表笔去测那些SMT元件的时候就再无短路之虞,而且针尖可以刺破绝缘涂层,直捣关键部位,再也不必费神去刮那些膜膜了。  公共电源短路故障  电路板维修中,如果碰到公共电源短路的故障往往头大,因为很多器件都共用同一电源,每一个用此电源的器件都有短路的嫌疑。  如果板上元件不多,采用“锄大地”的方式终归可以找到短路点;如果元件太多,“锄大地”能不能锄到状况就要靠运气了。在此推荐一比较管用的方法,采用此法,事半功倍,往往能很快找到故障点:  要有一个电压电流皆可调的电源,电压0-30V,电流0-3A,这种电源不贵,大概300元左右。将开路电压调到器件电源电压水平,先将电流调至最小,将此电压加在电路的电源电压点如74系列芯片的5V和0V端,视乎短路程度,慢慢将电流增大。  用手摸器件,当摸到某个器件发热明显,这个往往就是损坏的元件,可将之取下进一步测量确认。当然操作时电压一定不能超过器件的工作电压,并且不能接反,否则会烧坏其它好的器件。  板卡故障  工业控制用到的板卡越来越多,很多板卡采用金手指插入插槽的方式。由于工业现场环境恶劣,多尘、潮湿、多腐蚀气体的环境易使板卡产生接触不良故障,很多朋友可能通过更换板卡的方式解决了问题,但购买板卡的费用非常可观,尤其是某些进口设备的板卡。  其实大家不妨使用橡皮擦在金手指上反复擦几下,将金手指上的污物清理干净后,再试机,没准就解决了问题,方法简单又实用。  电气故障  各种时好时坏电气故障从概率大小来讲大概包括以下几种情况:  接触不良:板卡与插槽接触不良、缆线内部折断时通时不通、线插头及接线端子接触不好、元器件虚焊等皆属此类;  信号受干扰:对数字电路而言,在特定的情况条件下故障才会呈现,有可能确实是干扰太大影响了控制系统使其出错,也有电路板个别元件参数或整体表现参数出现了变化,使抗干扰能力趋向临界点从而出现故障;  元器件热稳定性不好:从大量的维修实践来看,其中首推电解电容的热稳定性不好,其次是其它电容、三极管、二极管、IC、电阻等;  电路板上有湿气、尘土等:湿气和积尘会导电具有电阻效应,而且在热胀冷缩的过程中,阻值还会变化,这个电阻值会同其它元件有并联效果,这个效果比较强时就会改变电路参数使故障发生;  软件也是考虑因素之一:电路中许多参数使用软件来调整,某些参数的裕量调得太低处于临界范围,当机器运行工况符合软件判定故障的理由时,那么报警就会出现。
关键词:
发布时间:2024-04-15 13:51 阅读量:533 继续阅读>>
<span style='color:red'>电路板</span>设计对电阻温度系数的影响
  为什么需要四线检测?  分流电阻器在检测电流值时,需要用LSI来读取产品电阻值和流过电阻器的电流所产生的电极间电位差(电压差)。  检测电极间电位差的方法包括两线法和四线法(开尔文接法)。  由于两线法连接时焊料的电阻分量会导致误差,因此通常采用将电流导线和电压检测导线分开的四线法(开尔文接法)进行检测。  通过提高分流电阻器的阻值也可以增加电极之间的电位差,但由于发热量与电阻值成正比,因此还是需要尽可能选用更低的电阻值。  不过,电阻值越低,铜箔和焊料的电阻分量所引起的误差也越发不容忽视(参考右下图)。  所以,当用将电流导线与电压检测导线分开的四线法(开尔文接法)进行接线时,通过采用不包括铜箔电阻值的适当布线(参考左下图),就可以更高精度地检测电极之间的电位差(电压差)。  四线法(开尔文接法)的接线示例  影响电阻温度系数的主要因素  使用分流电阻器时,电阻值、额定功率和尺寸都是非常重要的考虑因素。另外,还需要考虑到会影响检测电压精度的一个因素——容许误差。  该容许误差不仅包括常温环境下的阻值公差(F级产品:±1%),还包括电阻温度系数 (TCR:Temperature Coefficient of Resistance)。  电阻温度系数表示当产品温度变化时电阻值的相对变化,单位为ppm/℃。  由于电阻值会随着电流流过时的功耗所带来的器件温升和环境温度变化而变化,因此电阻温度系数成为准确检测电流值的重要参数。
关键词:
发布时间:2023-08-18 10:28 阅读量:1742 继续阅读>>
日本电产尼得科需要高品质的<span style='color:red'>电路板</span>?他们来检测!
  半导体行业起源于20世纪后期,已成为全球经济重要的组成部分之一。如今,几乎每一个电子设备都有半导体。对于负责加工半导体器件的晶圆厂和包封已加工产品的封装厂而言,半导体测量与检测技术是决定产品质量的重中之重。  针对半导体封装、电路板的高密度化和高精度化.这一市场需求,尼得科精密检测科技(旧:日本电产理德)提供全新测量与检测技术,以满足市场需求。  尼得科精密检测科技(旧:日本电产理德)的检测装置在硬件方面采用了高精度定位技术和高速度搬运技术,高度融合了安全小巧的机械设计、与前工序联网的内联设计等量产部品检测时所需的机电一体化技术。  尼得科精密检测科技(旧:日本电产理德)确立了超微细 MEMS 加工技术,凭借着从电气铸造到涵盖曝光、显像、蚀刻的 3D 加工技术,向市场提供新颖的检测方案。  尼得科精密检测科技(旧:日本电产理德)利用各种光源和光学技术以及检测程序,把目视检查无法检测到的微细不良,用高分解高速地检测出来。  尼得科精密检测科技(旧:日本电产理德)充分运用已有技术构建多类型检测系统,创新生产半导体封装电路板检测设备、光学外观检测设备等产品。  RSH120  新一代 IC 载板 2D/3D 凸块检测技术,可以使3D 凸块的高度及外径同时进行检测。  Rwi300  新一代 IC 载板 2D/3D 凸块检测技术,可以使3D 凸块的高度及外径同时进行检测。  尼得科精密检测科技(旧:日本电产理德)坚持“高精尖”的产品导向,目前所生产的产品评价颇高,受到了国内外诸多电子产品制造企业的青睐,并形成了坚固的合作伙伴关系。
关键词:
发布时间:2023-04-25 09:32 阅读量:2209 继续阅读>>
如何简单维修<span style='color:red'>电路板</span> <span style='color:red'>电路板</span>常用维修技巧
  电路板的名称有:线路板,PCB板,铝基板,高频板,厚铜板,阻抗板,PCB,超薄线路板,超薄电路板,印刷(铜刻蚀技术)电路板等。电路板使电路迷你化、直观化,对于固定电路的批量生产和优化用电器布局起重要作用。电路板是由许多电子元器件组成,如:电容、电阻、二极管等等,众所周知控制系统价格不便宜,所以我们在其故障出现的时候大部分选择维修来解决问题。下面小GOO给大家介绍电路板的简单维修技巧及制作流程。今天Ameya360电子元器件采购网讲为大家进行介绍。  电路板维修技巧:观察法  这个方法是相当直观的,通过仔细的对其检查,可以很清晰的看到烧毁的痕迹。在使用这个办法的时候,需要注意以下几个问题:  第一步:通过观察确定电路板是否人为损坏,主要观察下面几个方面来确定:  (1)板角是否变形;芯片是否变形,其它部件是否变形。  (2)芯片、插座是否有撬过痕迹。  (3)电路板芯片是否插的有问题,这个在通电的时候毁损伤,因此要注意。  (4)电路板相应的短接端子有没有插错或者是插反。  第二步:仔细的观察这个电路板相关的元器件,每一个电容、电阻等都要观察,是否有发黑的状况出现。由于电阻是没法观看的,只能用仪器来进行测量。相关的坏件要及时的更换。  第三步:电路板集成电路的观察,如CPU、AD等相关的芯片,观察到鼓包、烧糊等相关情况要及时的修改。  以上问题的原因有可能出现在电流方面,电流过大造成烧毁,因此要检查相关的电路图,看看是哪里有问题。  电路板维修技巧:静态测量法  在维修中,观察法往往很难发现一些问题,除非是很明显的烧毁或者是变形才可能看得出来。但是大多数的问题还是需要进行电压表的测量才可能得出结论,因此电路板的元件以及相关部位都要逐一的进行检测。主要工具就是万用表,流程如下:  第一步:对电源跟地进行短路的检测,查看其原因。  第二步:检测二极管是不是正常。  第三步:检查电容是不是出现有短路甚至是断路情况。  第四步:检查电路板相关的集成电路以及电阻等相关器件指标。  利用观察法以及静态测量法可以解决电路板维修中的大部分问题,但是在测量时要确保电源正常,不能出现二次损伤。  电路板维修技巧:在线测量法  在线测量法一般应用在批量生产电路板的厂家,生产厂商为了维修方便,一般会搭建一个比较通用的调试维修平台,它可以方便的提供电路板所需的电源以及一些必要的初始信号。在线测量法主要解决两个方面的问题:一是将上两个步骤中发现的问题细分,最终锁定到出现问题的元器件;二是通过上面两步的检查,问题并没有得到解决的,需要通过在线测量找出故障原因。在线测量法主要通过以下几个步骤来进行:  第一步:给电路板通电,在这步中需要注意的是,有些电路板电源并不是单一的,可能需要5V,12V,24V等等。电路板通电后,通过手摸电路板上的元器件,看是否有发烫发热的元件,重点检查74系列芯片,如果元件有烫手的情况,则说明此元件有可能已经损坏。更换元件后,检查电路板故障是否已解决。  第二步:用示波器测量电路板上的门电路,观察其是否符合逻辑关系。若输出不符合逻辑,需要分两种情况分别对待,一种是输出应该是低电平的,实际测量为高电平,可以直接判断芯片损坏;另一种是输出应该是高电平的,实际测量为低的,并不能就此判定芯片已经损坏,还需要将芯片与后面的电路断开,再次测量,观察逻辑是否合理,判定芯片的好坏。  第三步:用示波器测量数字电路里的晶振,看其是否有输出。若无输出,则需要将与晶振相连的芯片尽可能都摘掉后再进行测量。若还无输出,则初步判定晶振已经损坏;若有输出,需要将摘掉的芯片一片一片装回去,装一片测一片,找出故障所在。  第四步:带总线结构的数字电路,一般包括数字、地址、控制总线三路。用示波器测量三路总线,对比原理图,观察信号是否正常,找出问题。  在线测量法主要用于两块好坏电路板的对比,通过对比,发现问题,解决问题。从而完成电路板的维修。
关键词:
发布时间:2022-12-23 17:17 阅读量:2514 继续阅读>>
<span style='color:red'>电路板</span>上最容易出故障元件是什么
    电容故障    电容损坏引发的故障在电子设备中是最高的,其中尤其以电解电容的损坏最为常见。电容损坏表现为:容量变小、完全失去容量、漏电、短路。    电容在电路中所起的作用不同,引起的故障也各有特点:在工控电路板中,数字电路占绝大多数,电容多用做电源滤波,用做信号耦合和振荡电路的电容较少。用在开关电源中的电解电容如果损坏,则开关电源可能不起振,没有电压输出;    或者输出电压滤波不好,电路因电压不稳而发生逻辑混乱,表现为机器工作时好时坏或开不了机,如果电容并在数字电路的电源正负极之间,故障表现同上。    这在电脑主板上表现尤其明显,很多电脑用了几年就出现有时开不了机,有时又可以开机的现象,打开机箱,往往可以看见有电解电容鼓包的现象,如果将电容拆下来量一下容量,发现比实际值要低很多。    电容的寿命与环境温度直接有关,环境温度越高,电容寿命越短。这个规律不但适用电解电容,也适用其它电容。所以在寻找故障电容时应重点检查和热源靠得比较近的电容,如散热片旁及大功率元器件旁的电容,离其越近,损坏的可能性就越大。所以在检修查找时应有所侧重。    有些电容漏电比较严重,用手指触摸时甚至会烫手,这种电容必须更换。在检修时好时坏的故障时,排除了接触不良的可能性以外,一般大部分就是电容损坏引起的故障了。所以在碰到此类故障时,可以将电容重点检查一下,换掉电容后往往令人惊喜。    电阻故障    常看见许多初学者在检修电路时在电阻上折腾,又是拆又是焊的,其实修得多了,你只要了解了电阻的损坏特点,就不必大费周章。    电阻是电器设备中数量最多的元件,但不是损坏率最高的元件。电阻损坏以开路最常见,阻值变大较少见,阻值变小十分少见。常见的有碳膜电阻、金属膜电阻、线绕电阻和保险电阻几种。    前两种电阻应用最广,其损坏的特点一是低阻值 (100Ω以下) 和高阻值 (100kΩ以上) 的损坏率较高,中间阻值 (如几百欧到几十千欧) 的极少损坏;二是低阻值电阻损坏时往往是烧焦发黑,很容易发现,而高阻值电阻损坏时很少有痕迹。    线绕电阻一般用作大电流限流,阻值不大;圆柱形线绕电阻烧坏时有的会发黑或表面爆皮、裂纹,有的没有痕迹;水泥电阻是线绕电阻的一种,烧坏时可能会断裂,否则也没有可见痕迹;保险电阻烧坏时有的表面会炸掉一块皮,有的也没有什么痕迹,但绝不会烧焦发黑。根据以上特点,在检查电阻时可有所侧重,快速找出损坏的电阻。    根据以上列出的特点,我们先可以观察一下电路板上低阻值电阻有没有烧黑的痕迹,再根据电阻损坏时绝大多数开路或阻值变大以及高阻值电阻容易损坏的特点,我们就可以用万用表在电路板上先直接量高阻值的电阻两端的阻值。    如果量得阻值比标称阻值大,则这个电阻肯定损坏 (要注意等阻值显示稳定后才下结论,因为电路中有可能并联电容元件,有一个充放电过程) ,如果量得阻值比标称阻值小,则一般不用理会它。这样在电路板上每一个电阻都量一遍,即使“错杀”一千,也不会放过一个了。    运算放大器故障    运算放大器好坏的判别对相当多的电子维修者有一定的难度,不只文化程度的关系,在此与大家共同探讨一下,希望对大家有所帮助。    理想运算放大器具有“虚短”和“虚断”的特性,这两个特性对分析线性运用的运放电路十分有用。为了保证线性运用,运放必须在闭环(负反馈)下工作。如果没有负反馈,开环放大下的运放成为一个比较器。如果要判断器件的好坏,先应分清楚器件在电路中是做放大器用还是做比较器用。    根据放大器虚短的原理,就是说如果这个运算放大器工作正常的话,其同向输入端和反向输入端电压必然相等,即使有差别也是mv级的,当然在某些高输入阻抗电路中,万用表的内阻会对电压测试有点影响,但一般也不会超过0.2V,如果有0.5V以上的差别,则放大器必坏无疑。    如果器件是做比较器用,则允许同向输入端和反向输入端不等。同向电压>反向电压,则输出电压接近正的最大值;同向电压<反向电压,则输出电压接近0V或负的最大值(视乎双电源或单电源)。如果检测到电压不符合这个规则,则器件必坏无疑!这样你不必使用代换法,不必拆下电路板上的芯片就可以判断运算放大器的好坏了。    SMT元件故障    有些贴片元件非常细小,用普通万用表表笔测试检修时很不方便,一是容易造成短路,二是对涂有绝缘涂层的电路板不便接触到元件管脚的金属部分。这里告诉大家一个简便方法,会给检测带来不少方便。    取两枚最小号的缝衣针,将之与万用表笔靠紧,然后取一根多股电缆里的细铜线,用细铜线将表笔和缝衣针绑在一起,再用焊锡焊牢。这样用带有细小针尖的表笔去测那些SMT元件的时候就再无短路之虞,而且针尖可以刺破绝缘涂层,直捣关键部位,再也不必费神去刮那些膜膜了。    公共电源短路故障    电路板维修中,如果碰到公共电源短路的故障往往头大,因为很多器件都共用同一电源,每一个用此电源的器件都有短路的嫌疑。    如果板上元件不多,采用“锄大地”的方式终归可以找到短路点;如果元件太多,“锄大地”能不能锄到状况就要靠运气了。在此推荐一比较管用的方法,采用此法,事半功倍,往往能很快找到故障点。    要有一个电压电流皆可调的电源,电压0-30V,电流0-3A,这种电源不贵,大概300元左右。将开路电压调到器件电源电压水平,先将电流调至最小,将此电压加在电路的电源电压点如74系列芯片的5V和0V端,视乎短路程度,慢慢将电流增大。    用手摸器件,当摸到某个器件发热明显,这个往往就是损坏的元件,可将之取下进一步测量确认。当然操作时电压一定不能超过器件的工作电压,并且不能接反,否则会烧坏其它好的器件。    板卡故障    工业控制用到的板卡越来越多,很多板卡采用金手指插入插槽的方式。由于工业现场环境恶劣,多尘、潮湿、多腐蚀气体的环境易使板卡产生接触不良故障,很多朋友可能通过更换板卡的方式解决了问题,但购买板卡的费用非常可观,尤其某些进口设备的板卡。    其实大家不妨使用橡皮擦在金手指上反复擦几下,将金手指上的污物清理干净后,再试机,没准就解决了问题,方法简单又实用。    电气故障    各种时好时坏电气故障从概率大小来讲大概包括以下几种情况:    接触不良:板卡与插槽接触不良、缆线内部折断时通时不通、线插头及接线端子接触不好、元器件虚焊等皆属此类;    信号受干扰:对数字电路而言,在特定的情况条件下故障才会呈现,有可能确实是干扰太大影响了控制系统使其出错,也有电路板个别元件参数或整体表现参数出现了变化,使抗干扰能力趋向临界点从而出现故障;    元器件热稳定性不好:从大量的维修实践来看,其中首推电解电容的热稳定性不好,其次是其它电容、三极管、二极管、IC、电阻等;    电路板上有湿气、尘土等:湿气和积尘会导电具有电阻效应,而且在热胀冷缩的过程中阻值还会变化,这个电阻值会同其它元件有并联效果,这个效果比较强时就会改变电路参数使故障发生;    软件也是考虑因素之一:电路中许多参数使用软件来调整,某些参数的裕量调得太低处于临界范围,当机器运行工况符合软件判定故障的理由时,那么报警就会出现。
关键词:
发布时间:2022-10-13 10:43 阅读量:2802 继续阅读>>
<span style='color:red'>电路板</span>的工作原理与组成
  电路板可称为印刷线路板或印刷电路板,英文名称为(Printed Circuit Board)PCB、(Flexible Printed Circuit board)FPC线路板(FPC线路板又称柔性线路板柔性电路板是以聚酰亚胺或聚酯薄膜为基材制成的一种具有高度可靠性,绝佳的可挠性印刷电路板。电路板的名称有:陶瓷电路板,氧化铝陶瓷电路板,氮化铝陶瓷电路板,线路板,PCB板,铝基板,高频板,厚铜板,阻抗板,PCB,超薄线路板,超薄电路板,印刷(铜刻蚀技术)电路板等。  一、工作原理  电路板的工作原理是利用板基绝缘材料隔离开表面铜箔导电层,使得电流沿着预先设计好的路线在各种元器件中流动完成诸如做功、放大、衰减、调制、解调、编码等功能。  二、组成  电路板主要由焊盘、过孔、安装孔、导线、元器件、接插件沃特弗电路板之薄膜线路SMT贴片沃特弗电路板之薄膜线路SMT贴片、填充、电气边界等组成,各组成部分的主要功能如下:  焊盘:用于焊接元器件引脚的金属孔。  过孔:有金属过孔 和 非金属过孔,其中金属过孔用于连接各层之间元器件引脚。  安装孔:用于固定电路板。  导线:用于连接元器件引脚的电气网络铜膜。  接插件:用于电路板之间连接的元器件。  填充:用于地线网络的敷铜,可以有效的减小阻抗。  电气边界:用于确定电路板的尺寸,所有电路板上的元器件都不能超过该边界。
关键词:
发布时间:2022-08-25 17:32 阅读量:2719 继续阅读>>
怎么解决pcb<span style='color:red'>电路板</span>散热问题
  控制热量或散热和分配对于构建和使用pcb电路板非常重要,并且无法管理热量传递也可能毁坏您的电路板。对于电子设备来说,工作时都会产生一定的热量,从而使设备内部温度迅速上升,如果不及时将该热量散发出去,设备就会持续的升温,器件就会因过热而失效,电子设备的可靠性能就会下降。因此,对电路板进行很好的散热处理是非常重要的。下面Ameya360电子元器件采购网详细介绍一下。  1、通过PCB板本身散热目前广泛应用的PCB板材是覆铜/环氧玻璃布基材或酚醛树脂玻璃布基材,还有少量使用的纸基覆铜板材。这些基材虽然具有优良的电气性能和加工性能,但散热性差,作为高发热元件的散热途径,几乎不能指望由PCB本身树脂传导热量,而是从元件的表面向周围空气中散热。但随着电子产品已进入到部件小型化、高密度安装、高发热化组装时代,若只靠表面积十分小的元件表面来散热是非常不够的。同时由于QFP、BGA等表面安装元件的大量使用,元器件产生的热量大量地传给PCB板,因此,解决散热的最好方法是提高与发热元件直接接触的PCB自身的散热能力,通过PCB板传导出去或散发出去。  2、高发热器件加散热器、导热板当PCB中有少数器件发热量较大时(少于3个)时,可在发热器件上加散热器或导热管,当温度还不能降下来时,可采用带风扇的散热器,以增强散热效果。当发热器件量较多时(多于3个),可采用大的散热罩(板),它是按PCB板上发热器件的位置和高低而定制的专用散热器或是在一个大的平板散热器上抠出不同的元件高低位置。将散热罩整体扣在元件面上,与每个元件接触而散热。但由于元器件装焊时高低一致性差,散热效果并不好。通常在元器件面上加柔软的热相变导热垫来改善散热效果。  3、对于采用自由对流空气冷却的设备,最好是将集成电路(或其他器件)按纵长方式排列,或按横长方式排列。  4、采用合理的走线设计实现散热由于板材中的树脂导热性差,而铜箔线路和孔是热的良导体,因此提高铜箔剩余率和增加导热孔是散热的主要手段。评价PCB的散热能力,就需要对由导热系数不同的各种材料构成的复合材料一一PCB用绝缘基板的等效导热系数(九eq)进行计算。  5、同一块印制板上的器件应尽可能按其发热量大小及散热程度分区排列,发热量小或耐热性差的器件(如小信号晶体管、小规模集成电路、电解电容等)放在冷却气流的最上流(入口处),发热量大或耐热性好的器件(如功率晶体管、大规模集成电路等)放在冷却气流最下游。  6、在水平方向上,大功率器件尽量靠近印制板边沿布置,以便缩短传热路径;在垂直方向上,大功率器件尽量靠近印制板上方布置,以便减少这些器件工作时对其他器件温度的影响。  7、设备内印制板的散热主要依靠空气流动,所以在设计时要研究空气流动路径,合理配置器件或印制电路板。空气流动时总是趋向于阻力小的地方流动,所以在印制电路板上配置器件时,要避免在某个区域留有较大的空域。整机中多块印制电路板的配置也应注意同样的问题。  8、对温度比较敏感的器件最好安置在温度最低的区域(如设备的底部),千万不要将它放在发热器件的正上方,多个器件最好是在水平面上交错布局。  9、将功耗最高和发热最大的器件布置在散热最佳位置附近。不要将发热较高的器件放置在印制板的角落和四周边缘,除非在它的附近安排有散热装置。在设计功率电阻时尽可能选择大一些的器件,且在调整印制板布局时使之有足够的散热空间。  10、避免PCB上热点的集中,尽可能地将功率均匀地分布在PCB板上,保持PCB表面温度性能的均匀和一致。往往设计过程中要达到严格的均匀分布是较为困难的,但一定要避免功率密度太高的区域,以免出现过热点影响整个电路的正常工作。如果有条件的话,进行印制电路的热效能分析是很有必要的,如现在一些专业PCB设计软件中增加的热效能指标分析软件模块,就可以帮助设计人员优化电路设计。以上就是散热的一些技巧方法,需要工程师在实践中不断积累。  以上便是Ameya360电子元器件采购网对pcb电路板散热的相关介绍,希望对您有所帮助。
关键词:
发布时间:2022-05-26 09:28 阅读量:2667 继续阅读>>
PCB设计高频<span style='color:red'>电路板</span>布线中要注意什么
  随着电子技术快速发展,以及无线通信技术在各领域的广泛应用,高频、高速、高密度逐渐成为现代电子产品的重要发展趋势之一,信号传输的高频和高速数字化迫使PCB向微孔和埋入/盲孔、导线细化和均匀薄的介质层移动。为帮助大家深入了解,以下相关内容整理,提供给您参考。  高频电路板是电磁频率较高的特种电路板,一般来说,高频可定义为频率在1GHz以上。其各项物理性能、精度、技术参数要求非常高,常用于汽车防碰撞系统、卫星系统、无线电系统等领域。该实用新型提供的这种高频电路板,于芯板中空槽的上开口和下开口边缘处设有可阻挡流胶的挡边,这样,芯板与置于其上表面和下表面的覆铜板粘合时流胶不会进入中空槽内,即一次压合即可完成粘接操作,较现有技术需经二次压合才能完成的高频电路板,该实用新型中的高频电路板结构简单,成本低,易于制造。  1.合理选择层数  在PCB设计中,在对高频电路板进行布线时,采用中间内平面作为电源和地线层,起到屏蔽作用,有效降低寄生电感,缩短信号线长度,减少信号间的交叉干扰。一般来说,四层板的噪声比两层板低20dB。  2.高频扼流  在PCB设计中对高频电路板布线时,数字地、模拟地等连接公共地线时要接高频扼流器件,一般是中心孔穿有导线的高频铁氧体磁珠。  3.信号线  在PCB设计中对高频电路板布线时,信号走线不能环路,需要按照菊花链方式布线。  4.层间布线方向  在PCB设计中,高频电路板布线时,层间布线方向应垂直,即顶层水平,底层垂直,这样可以减少信号之间的干扰。  5.过孔数量  在PCB设计中,对高频电路板进行布线时,过孔的数量越少越好。  6.敷铜  在PCB设计中对高频电路板布线时,增加接地的敷铜可以减小信号间的干扰。  7.去耦电容  在PCB设计中对高频电路板布线时,在集成电路的电源端跨接去耦电容。  8.走线长度  在PCB设计中对高频电路板布线时,走线长度越短越好,两根线并行距离越短越好。  9.包地  在PCB设计中,在对高频电路板进行布线时,将重要的信号线包裹起来,可以显著提高信号的抗干扰能力。当然,它也可以包裹干扰源,使其不会干扰其他信号。  10.走线方式  在PCB设计中,在对高频电路板进行布线时,布线必须以45°的角度旋转,这样可以减少高频信号的传输和相互耦合。  以上就是Ameya360电子元器件采购网关于PCB设计高频电路板布线的所有内容介绍,希望能够对大家有所帮助。
关键词:
发布时间:2022-05-16 10:33 阅读量:2900 继续阅读>>
如何设计一个好的PCB<span style='color:red'>电路板</span>  设计<span style='color:red'>电路板</span>需要哪些知识
  PCB板就是PrintedCircuitBlock,即印制电路板,供电子组件安插,有线路的基版。通过使用印刷方式将镀铜的基版印上防蚀线路,并加以蚀刻冲洗出线路。电路板的工作原理相信大家都很了解:利用基板绝缘材料,将表面铜箔导电层隔离开,让电流能沿着提前设计好的路线中游走在各种元器件中,从而实现诸如做功、放大、衰减、调制、解调、编码等功能。本文Ameya360电子元器件采购网收集整理了一些设计电路板的相关资料,期望能对各位读者有比较大的参阅价值。  1.电容相关知识:  铝电解电容的容量大,额定电压高,但适应工作温度环境较差,适合低频滤波的场合;  钽电容具有较好的温度特性,具有较小的ESR和ESL,高频滤波特性较好,但其承受冲击电流的能力不行,一般在设计中要降额50%以上使用;  陶瓷电容具有体积小、价格低和稳定性好的优点,广泛用于电源的高频滤波中,其容值较小,当需要大容值的电容时,需要考虑其他电容的类别。  电容的去耦存在去耦半径的问题:容值与封装越小,其去耦半径越小。在PCB布局时,为保证小封装小电容对电源的有效去耦,电容应尽量靠近要去耦的电源引脚放置;容值与封装越大,其去耦半径越大,可以对较大区域的电源进行有效去耦,在大封装大容值的去耦电容布局时,可以同时管控多个电源引脚的去耦。  2.电感相关知识:  电感在电路设计中的特性主要表现为:滤除高频谐波,通直流、阻交流;阻碍电流的变化,保持器件工作电流的稳定。  在进行电感选型时需要核对的电感参数有电感值、直流电阻、额定电流和自谐振频率(Q值最大的频率)  一般电感值越大,对应的直流电阻越大;电感值越大,对应的谐振频率越小;电感值越大,对应的额定电流越小。  3.磁珠相关知识:  磁珠专用于抑制信号线、电源线上的高频噪声和尖峰干扰还具有吸收静电脉冲的能力.  磁珠在转折点频率以下,表现为电感性,反射噪声;在转折点频率以上,磁珠表现为电阻性,磁珠吸收噪声并转换为热能。  电感与磁珠的不同点:  (1)处理噪声的方式不同。电感和电容可以组成LC低通滤波电路,电容在电感和地之间构建一个低阻抗的路径,让高频噪声通过低阻抗路径将噪声导到地平面上。在LC低通滤波电路中,电感在处理噪声时,没有从根本上清除噪声;磁珠处理噪声的方式是在低频时,磁珠表现为感性,反射噪声,在高频时电阻特性为主要特性,磁珠中的电阻吸收高频噪声并转换为热能,能够从根本上消除噪声。  (2)自身是否产生危害的影响。电感与电容组成LC滤波电路时,因为LC都是储能元件,所以两者可能会产生自激,给电路带来影响;而磁珠是耗能元件,自身不会自激,不会给电路带来噪声的影响。  (3)滤波的频率范围不同。电感在不超过50MHz的低频段时,就有较好的滤波特性,频率再高时,滤波效果不好;而磁珠利用其呈现出来的电阻特性吸收高频噪声,滤波的频率范围要远大于磁珠。  (4)器件直流压降的不同。电感与磁珠都有直流电阻,同样级别的滤波器,磁珠的直流电阻要小于电感,磁珠的压降也就小于同级别电感的压降。  4.ESD  在进行PCB设计时,要考虑ESD的防护,在走线时应遵循横平竖直的走线方向,空间允许时走线应尽量加粗;在PCB的边缘不要布置对噪声敏感的信号,如时钟信号、复位信号等;当PCB由多层构成时,敏感走线尽可能要有良好的参考地平面;对于滤波器、光耦合器、弱信号走线,应尽可能加大走线之间的距离;长距离的走线需要进行滤波处理;根据ESD的防护,应适当增加屏蔽罩。  ESD对接口与保护可以遵循如下设计规则:  (1)一般电源防雷保护器件的顺序是压敏电阻、熔丝、抑制二极管、EMI滤波器、电感或共模电感,对于原理图缺失上面任意器件的则顺延布局。  (2)一般接口信号保护器件的顺序是ESD(TVS管)、隔离变压器、共模电感、电容和电阻,对于原理图缺失上面任意器件的则顺延布局。  (3)严格按照原理图的顺序进行“一字形”布局  (4)电平变换芯片要靠近连接器放置。  (5)易受ESD干扰的器件,如NMOS和CMOS器件等,应判断是否已尽量远离易受ESD干扰的区域(如单板的边缘)。  (6)浪涌抑制器件(TVS管、压敏电阻)对应的信号走线在表层应短且粗(一般距离在10mil以上)  (7)不同接口之间的走线要清晰,不要互相交叉,接口线到所连接的保护和滤波器件距离要尽量短,接口线必须经过保护或滤波器件再到信号接收芯片。  (8)接口器件的固定孔要接到保护地上,连接到机壳的定位孔、扳手要直接接到信号地。  (9)变压器、光耦合器等器件输入与输出信号的地要分开。  5.PCB散热处理  一些发热大的器件,一般会有专用的散热焊盘,要适当在散热焊盘上添加过孔,为利于散热,散热用的过孔都要做阻焊开窗处理。  6.PCB板框  无论是布局、布线还是内层平面的敷铜处理,相对板框都要内缩一定距离,内缩的尺寸可以依据设计的要求进行选择,如无特殊说明,敷铜时相对板框内缩0.5mm即可。  四层板设计,若中间两层为电源层和地层,要设置内缩,从而减少电磁辐射。  在实际的PCB设计中,走线主要有两种模型:微带线和带状线。微带线是走在电路板顶层或者底层的信号线,带状线是走在电路板内层的信号线。  蛇形线会破环信号质量,改变传输延时,因此布线时要尽量避免使用。但在实际设计中,为了保证信号有足够的保持时间,或为了减少同组信号之间的时间偏移,往往不得不故意进行绕线。信号在蛇形线上传输时,相互平行的线段之间会发生耦合,呈差模形式,S越小,Lp越大,则耦合程度也越大,可能会导致传输延时减小,以及由于串扰而大大降低信号的质量。  关于处理蛇形线时的几点建议:  (1)尽量增加平行线段的距离(S),至少大于3H,H指信号走线到参考平面的距离。通俗地说就是绕大弯走线,只要S足够大,就几乎能完全避免相互的耦合效应。  (2)减小耦合长度Lp,当两倍的Lp延时接近或超过信号上升时间时,产生的串扰将达到饱和。  (3)带状线或埋式微带线的蛇形线引起的信号传输延时小于微带线。理论上,带状线不会因为差模串扰影响传输速率。  (4)高速及对时序要求较为严格的信号线,尽量不要走蛇形线,尤其不能在小范围内蜿蜒走线。  (5)在空间允许的情况下,可以采用任意角度的蛇形走线,能有效减少相互间的耦合。  (6)高速PCB设计中,蛇形线没有所谓滤波或抗干扰的能力,只可能降低信号质量,因此只做时序匹配之用而无其他目的  (7)有时可以考虑螺旋走线的方式进行绕线,仿真表明,其效果要优于正常的蛇形走线。  (8)蛇形走线的转角采用45°转角或圆形转角。  在最基本的PCB电路板上,零件基本集中在一侧,导线集中在另一侧。由于导线只出现在一侧,这种PCB被称为单面板。多层板,多层有导线,必须在两层之间有适当的电路连接。电路之间的桥梁叫作导孔(via)。电路板的基本设计过程可分为以下四个步骤:  (1)电路原理图的设计---电路原理图的设计主要是利用ProtelDXP的原理图编辑器来绘制原理图。  (2)生成网络报表——网络报表:显示电路原理与电路中各个元器件之间的连接关系。它是电路原理图设计和电路板设计之间的桥梁和纽带。通过电路原理图的网络报表,可以快速找到元件之间的连接,为以后的PCB设计提供方便。  (3)印刷电路板的设计---印刷电路板的设计即我们通常所说的PCB设计,它是电路原理图转化成的最终形式,这部分的相关设计较电路原理图的设计有较大的难度,我们可以借助ProtelDXP的强大设计功能完成这一部分的设计。  (4)生成印刷电路板报表——印刷电路板设计完成后,还有最后一道工序需要完成,那就是生成报表:电路板信息报表、生成引脚报表、网络状态报表等,最后打印印刷电路图。  以上就是Ameya360关于电路板的工作原理和设计步骤介绍!希望可以给您提供一些帮助!
关键词:
发布时间:2022-05-13 11:33 阅读量:2054 继续阅读>>
变频器<span style='color:red'>电路板</span>上的电子元件及故障分析
  变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器主要由整流、滤波、逆变、制动单元、驱动单元、检测单元微处理单元等组成,靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来 提供其所需要的电源电压,进而达到节能、调速的目的。另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。  变频器内部包含着非常大量的电子元器件,每一个电子元器件都起着至关重要的作用。变频器内部组成按功能分,分为主电路,辅助开关电源,控制板以及驱动板。变频器的电路板主要包括操作板、电源板、驱动板、控制板。  一、电阻  电路板上字母“R”表示电阻,单位有:欧姆(Ω)、千欧(KΩ)、兆欧(MΩ)。  电阻按照不同的特性分类  1、按材料分:碳膜电阻、水泥电阻、金属膜电阻和绕线电阻等;  2、按用途分:通用型、精密型、高阻型和功率型等;  3、按功能分:负载电阻、采样电阻、分流电阻、保护电阻等;  4、按安装方式分:插件电阻、贴片电阻;  5、按敏感方式分:力敏电阻、气敏电阻、光敏电阻、压敏电阻等。  二、电容  电容是一种容纳电荷的器件,广泛用于隔直通交、滤波、旁路、谐振等等。创拓电气的变频器电路板也有这些功能,肯定也有电容元件。  电路板上用字母“CD”表示电容,它的单位是:F(法拉)、pF(皮法)、μF(微法)、nF(纳法)  电容按照不同的特性分类  1、按照结构分三大类:固定电容器、可变电容器和微调电容器;  2、按电解质分类:有机介质电容器、无机介质电容器、电解电容器和空气介质电容器等;  3、按用途分有:高频旁路、低频旁路、滤波、调谐等等;  4、按制造材料的不同可以分为:瓷介电容、涤纶电容、电解电容、钽电容、聚丙烯电容等等;  5、高频旁路:陶瓷电容器、云母电容器、玻璃膜电容器、涤纶电容器、玻璃釉电容器;  6、低频旁路:纸介电容器、陶瓷电容器、铝电解电容器、涤纶电容器。  变频器电路板上的电子元件及故障分析  三、电感  电感器(电感线圈)是用漆包线等绝缘线绕制而成的电磁感应元件。在电路板上用字母“L”表示电感器,它的单位是亨(H)、毫亨(mH)、微亨(μH)。  电感按照不同的特性分类  按结构不同分:线绕式电感器和非线绕式电感器;  按贴装不同分:贴片式电感器、插件式电感器;  按工作频率分:高频电感器、中频电感器和低频电感器;  按用途方式分:振荡电感器、校正电感器、阻流电感器、隔离电感器等等。  四、二极管  二极管是一种具有两个电极的装置,但是电流只能从一个方向流过,即导通,许多的使用是应用其整流的功能。  二极管按照不同的特性分类  按PN结构面的特点分:点接触型二极管、面接触型二极管、平面型二极管等等;  按用途分为:检波二极管、整流二极管、调制二极管、放大二极管等等。  五、三极管  三极管全名为半导体三极管,也称晶体三极管等,是半导体基本元器件之一,具有电流放大作用,是电子电路的重要元件。  三极管按照不同的特性分类  1、按材质不同分为:硅管、锗管;  2、按结构不同分为:NPN 、 PNP;  3、按功能不同分为:开关管、功率管、达林顿管、光敏管等;  4、按功率不同分为:小功率管、中功率管、大功率管;  5、按工作频率不同分为:低频管、高频管、超频管;  6、按结构工艺不同分为:合金管、平面管;  7、按安装方式不同分为:插件三极管、贴片三极管。  六、IGBT  IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由双极型三极管、绝缘栅型场效应管组成的复合全控型电压驱动式功率半导体器件。  它的静态特性有伏安特性、转移特性两种特性;  它的动态特性又称作开关特性。它分为两大部分:一是开关速度,指开关过程中各部分的时间,二是开关过程的损耗。  七、光耦  光耦也名光电隔离器、光电耦合器。它是用光作为媒介,来传输电信号的,发光器与受光器通常封装在同一管壳内。  光接收单元接收到发光器发出的光线之后,就从输出端输出光电流,从而实现了“电—光—电”转换。  光耦按照不同的特性分类  1、按光路径分为:外光路光电耦合器、内光路光电耦合器;  2、按输出形式分为:光敏器件输出型、逻辑门电路输出型、功率输出型等等;  3、按封装可分为:同轴型、扁平封装性、贴片封装型等等;  4、按速度可分为:低速光电耦合器、高速光电耦合器。  再来看看变频器的常见故障分析:  (1)过流故障:过流故障可分为加速、减速、恒速过电流。其可能是由于变频器的加减速时间太短、负载发生突变、负荷分配不均,输出短路等原因引起的。这时一般可通过延长加减速时间、减少负荷的突变、外加能耗制动元件、进行负荷分配设计、对线路进行检查。如果断开负载变频器还是过流故障,说明变频器逆变电路已环,需要更换变频器。  (2)过载故障:过载故障包括变频过载和电机过载。其可能是加速时间太短,电网电压太低、负载过重等原因引起的。一般可通过延长加速时间、延长制动时间、检查电网电压等。负载过重,所选的电机和变频器不能拖动该负载,也可能是由于机械润滑不好引起。如前者则必须更换大功率的电机和变频器;如后者则要对生产机械进行检修。  (3)欠压:说明变频器电源输入部分有问题,需检查后才可以运行。  以上对变频器电路板上的电子元件就介绍到这了,随着变频调速技术在我国水泥行业应用的日趋广泛,在回转窑、篦冷机、喂料机、配料秤、风机、水泵等生产工艺需要调速的许多环节,以交流变频调速取代调压调速、滑差调速、直流调速已成为一种必然趋势。
关键词:
发布时间:2022-04-25 11:39 阅读量:2145 继续阅读>>

跳转至

/ 2

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
型号 品牌 抢购
TPS63050YFFR Texas Instruments
BU33JA2MNVX-CTL ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
ESR03EZPJ151 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
BP3621 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。