艾华:光储融合新趋势:光伏<span style='color:red'>逆变器</span>和储能PCS母线电容的应用差异
  小小电容,大大世界!欢迎来到AISHI“电容空间站”!本期我们将深入探索电容世界的奥秘,揭秘它们在各个领域中如何扮演不可或缺的角色。  今天的第一步,我们将目光投向光伏逆变器和储能PCS。它们像是能源系统中的“双子星”各自拥有独特的任务。它们在电容的选择上有哪些差异呢?让我们一起揭开这些电力设备背后的奥秘,看看如何为它们量身定制最合适的电容方案!  在全球追求“碳中和”的发展共识下,随着能源转型的持续推进,可再生能源从替代能源逐渐走向主体能源,构建新型电力系统成为迫在眉睫的要求,导致发电侧的光伏发电强制配储和用户侧储能的持续渗透,因此光储融合也成为当下的主要发展趋势和现实需要。  光伏逆变器和储能PCS  母线电容应用差异的思考  作为光伏发电和储能系统的核心部件,光伏逆变器和储能PCS(变流器),名字类似,作用领域相同,就认为两者器件应用条件相同,其实不尽然。从实际应用场景来看,光伏逆变器、储能PCS,两者既是珠联璧合的最佳拍档,也在系统功能、设备使用率、安装位置、实际收益、器件选型上有所区别,接下来我们将从上述几个方面介绍两者母线电容方案和要求的相同之处。  01作用机理相同  光伏逆变器和储能PCS,两者都是电力系统中的电力电子设备,具备将直流电转换为交流电的能力,以适应不同的电力需求,都能与电网互动,实现电能的双向流动。  02拓扑基本相同  从基本的电路拓扑来看,两者基本上都是两级电路组成:DCDC变化+DCAC逆变,都需要一定数量的母线电容来支撑母线电压。  03母线电压相同  从光储一体化的发展来看,不管是用户侧,还是工商业以及地面电站的应用场景,两者的母线电容方案有一定趋同的,特别是微电网和分布式能源系统中,共用母线尤为常见。例如户用机型的母线电压一般为600V,可以采用额定电压315V的电容两串方案,或者额定电压550V的电容方案;工商业机型的母线电压一般为1100V,可以采用额定电压550V的电容两串方案;地面电站机型的母线电压一般为1500V,可以采用额定电压450V的电容四串方案。  以上为某光伏厂家225KW并网逆变器和175KW PCS的参数,母线电压均为1500V。  AISHI电容在光伏行业的部分应用  以上是AISHI电容器在光伏行业推荐使用的主力规格。
关键词:
发布时间:2024-10-15 13:12 阅读量:589 继续阅读>>
英飞凌:光伏混合<span style='color:red'>逆变器</span>用Easy模块
实现电流和控制信号分离,罗姆新型SiC封装模块助力实现更小型的xEV<span style='color:red'>逆变器</span>
  凭借高频、高压、高效、高耐温和低损耗的产品特性,目前第三代半导体SiC(碳化硅)器件已经成为各行业打造电气化方案的首选,进而可以实现更高的功率密度、可靠性和效率。根据市场调研机构Yole的统计数据,2023年全球SiC功率器件市场规模达19.72亿美元,近五年年均复合增长率达35.79%;在新能源汽车及光伏领域需求的带动下,全球SiC功率器件市场规模预计将会在2024年达到26.23亿美元。       为了更好地推动SiC产品研发落地和业务开展,全球知名半导体制造商罗姆(ROHM)推出了SiC品牌——EcoSiC™。罗姆工作人员表示,EcoSiC™是采用了因性能优于硅(Si)而在功率元器件领域备受关注的SiC的元器件品牌。从晶圆生产到制造工艺、封装和品质管理方法,罗姆一直在自主开发SiC产品升级所必需的技术,目前已经确立了SiC领域先进企业的地位。       在解读EcoSiC™品牌设计时,罗姆工作人员称,EcoSiC™结合了“Eco”和“SiC”两个术语,象征着生态系统和卓越技术之间的联系。该设计集成了电路图案和六边形晶体结构,代表了SiC技术的精确性和创新性。这些要素突出了罗姆对提供先进和可持续解决方案的承诺。该品牌是罗姆“Power Eco Family(功率节能家族)”品牌理念的一部分,旨在最大限度地提高电子应用程序的效率和紧凑性,同时对环境做出积极贡献。       除了EcoSiC™,罗姆目前还拥有EcoGaN™,该公司还计划在未来的Eco系列添加高性能硅产品。       罗姆方面的数据显示,预计到该公司2025财年,全球SiC潜在市场规模将超过2,000亿日元,预计到2028财年将达到10,000亿日元。罗姆公司的目标是在2025财年取得1,100亿日元(约合7.6亿美元)的市场份额,在2027财年取得2,200亿日元(约合15.2亿美元)的市场份额。目前,罗姆在全球已经获得超过130家客户的SiC订单,预计到2027财年超过70%的订单来自欧洲和中国。SiC市场预测  二合一 SiC封装模块  在宣布新品牌的同时,罗姆也推出了EcoSiC™品牌下的一款新品——二合一SiC封装型模块“TRCDRIVE pack™”。       在xEV应用场景中,传统的xEV构成包括DC-DC、OBC、电池以及驱动单元(牵引逆变器、电机等),未来这些结构逐渐变为“多合一”,比如牵引逆变器、驱动用电机、减速器“三合一”而成的一体化结构。如下图所示,在牵引逆变器方面,目前用户可以采用三颗罗姆的二合一SiC封装型模块“TRCDRIVE pack™”来构建。罗姆工作人员表示,未来公司也会开发六合一的SiC封装型模块“TRCDRIVE pack™”。“六合一的SiC封装型模块‘TRCDRIVE pack™’会配有散热器,将于2024年第二季度开始供应样品,相比以往的SiC壳体型模块,功率密度提升了1.3倍,有助于加快设计符合规格要求的牵引逆变器和产品阵容扩展。”基于“二合一”和“六合一”的牵引逆变器设计       值得注意的是,TRCDRIVE pack™是牵引逆变器驱动用SiC封装型模块的专用商标,标有该商标的产品利用罗姆自有的结构,更大程度地扩大了散热面积,从而实现了紧凑型封装。就以二合一SiC封装型模块“TRCDRIVE pack™”来说,这款模块通过创新的设计实现了更小的器件体积且无需焊接。       下图是二合一SiC封装型模块“TRCDRIVE pack™”的真实产品图,可以非常明显地看到,和传统SiC模块不同,罗姆SiC封装型模块“TRCDRIVE pack™”体积更小,且模块顶部配备了“Press fit pin”方式的控制用信号引脚。二合一SiC封装型模块“TRCDRIVE pack™”       罗姆工作人员介绍称,创新的产品设计让二合一SiC封装型模块“TRCDRIVE pack™”具有四大明显的优势:  ·小型化:采用电流和控制信号分离的罗姆自有机构,相较于传统封装,实现了28%的器件体积下降;  ·高功率密度:通过尽可能扩大主电流布线中的电流路径和采用双层布线结构,以及银烧结、高性能树脂(Tg>230℃)等领先工艺,实现了1.5倍业界超高的功率密度;  ·减少安装工时:模块顶部配备了“Press fit pin”方式的控制用信号引脚,栅极驱动器电路板只需从顶部按下即可完成连接,无需焊接电路板,并克服了传统模块引脚公差难确认的问题;  ·大量生产:二合一SiC封装型模块“TRCDRIVE pack™”虽然是模块,但已经确定了类似于分立产品的量产体系,和普通SiC模块相比,量产效率提高了约30倍。  结语  EcoSiC™品牌的推出,体现出罗姆致力于从晶圆生产到制造工艺、封装到产品设计,全面引领全球SiC器件发展的决心。二合一SiC封装型模块“TRCDRIVE pack™”很好地体现了罗姆EcoSiC™品牌的领先性,在终端用户非常在意的体积和散热问题上给出了更好的解决方案,助力实现更高的功率密度。
关键词:
发布时间:2024-07-24 09:31 阅读量:400 继续阅读>>
瑞萨电子:使用GaN FET改进您的三相高压电机<span style='color:red'>逆变器</span>
  氮化镓场效应晶体管是当今电力电子领域的明星,它正在提高功率转换效率、电机控制和功率密度,有效满足当前的市场需求和趋势。  在这个时代,自动化设备及逆变器数量的增加正在彻底改变工业和家庭,对舒适生活方式的追求越来越依赖于高效可靠的电源管理解决方案。随着越来越多的设备和系统融入我们的日常生活,出于经济和环境原因,确保最佳能源使用至关重要。这种需求推动了电源控制和转换技术的进步,这些技术在提高电源效率和性能方面发挥着关键作用。  功率因数是电气系统效率的关键决定因素,因为功率因数越高,无功功率形式的能量浪费越少。通过优化功率因数,企业和家庭可以显着降低能源消耗和成本,从而实现更可持续的电力使用。在某些地区,法律要求进行功率因数校正(PFC),以确保有效使用能源并减轻电网压力。  如今,大多数开关电源和逆变器都采用传统的PFC拓扑结构,利用其简单性、低成本和可靠性。这些传统PFC解决方案的共同特点是使用硅MOSFET或绝缘栅双极晶体管(IGBT)。常见的问题是它们的开关损耗和散热,这在更高功率和更小尺寸下变得具有挑战性。  随着市场朝着能够以更低成本提供更高功率的小型器件发展,GaN FET开始发挥重要作用。氮化镓场效应管可实现效率和尺寸的改进,可以对系统总成本产生积极影响。  瑞萨电子的该解决方案演示了如何轻松地将硅器件替换为瑞萨电子氮化镓场效应管(见下图)。  1.2kW高压逆变器,基于GaN的功率因数校正(PFC)  该系统的关键部件是MCU,它确保了稳定可靠的系统性能。如今,MCU内核正变得越来越普通,外设提供了越来越多的价值,减少了对外部元件的需求并简化了电源电路控制。  瑞萨电子提供广泛的专用电机控制MCU和MPU产品组合。  由于氮化镓场效应管的独特特性,整体系统性能的提高是显而易见的:  提高硬开关和软开关电路的效率  提高功率密度  减小系统尺寸和重量  更简单的散热设计  降低整体系统成本  瑞萨电子氮化镓场效应晶体管的下一个非常重要的优势是,大多数器件都可以用常用的栅极驱动器驱动。此功能允许轻松进行系统升级,从而显著提高效率。  尽管氮化镓场效应晶体管是当今电力电子的明星,但不应忘记它们与其他部件结合使用可提高系统的整体性能。值得注意的是,逻辑组件经常被忽视或被认为是最后的。它们的主要缺点是它们占用的PCB空间,尽管具有成本优势,因为它通常需要多个组件。我们利用瑞萨电子独特的可编程混合信号器件GreenPAK™和HVPAK™来应对这一挑战。在该解决方案中,HVPAK用于过压保护和放电控制,这是一种相对较小的设备,在独立模式下工作,包含复杂的状态机,确保可靠的硬件运行。如果所选MCU不具备此功能,GreenPAK可在硬件中实现简单可靠的PWM重叠保护。  从整体趋势来看,电机控制和逆变器系统也变得越来越小,处理的功率也越来越高。这凸显了对解决方案的需求,该解决方案既能提高功率密度,又能最大限度地减少总组件数量和解决方案尺寸。
关键词:
发布时间:2024-07-05 13:31 阅读量:588 继续阅读>>
<span style='color:red'>逆变器</span>电源和UPS电源有什么区别
  在电力领域中,逆变器电源和UPS(不间断电源)电源是两种常见的供电设备,它们都有着保障电力稳定供应的重要作用。尽管它们都用于应对电力中断和波动等问题,但两者之间存在一些显著的区别。本文将探讨逆变器电源和UPS电源之间的差异,包括定义、工作原理、应用场景以及优缺点。  1. 定义  逆变器电源:逆变器电源是一种将直流电转换为交流电的装置,通常用于太阳能发电系统、风力发电系统、汽车电子设备等,以提供可控的交流电源输出。  UPS电源:UPS(不间断电源)电源是一种备用电源系统,用于在主电源中断或波动时提供即时电力支持,确保设备或系统连续供电。  2. 工作原理  逆变器电源:逆变器电源通过将直流电源转换为交流电源,其工作原理类似于电路中的逆变器部分,使用开关元件如晶体管来实现直流到交流的转换。  UPS电源:UPS电源通常由电池、充电器、逆变器和控制电路组成。当主电源正常时,UPS通过充电器将电池充电;当主电源中断时,UPS自动切换到电池供电状态,同时通过逆变器将直流电转换为交流电。  3. 应用场景  逆变器电源:主要应用于需要将直流电源转换为交流电源的场合,如太阳能发电系统、风力发电系统、家庭或商业用途的UPS系统等。  UPS电源:适用于需要连续供电和保护设备免受电力中断或波动影响的场合,如数据中心、医疗设备、通信基站等。  5. 优缺点  逆变器电源  优点: 高效、稳定的交流输出;适用于长时间运行。  缺点: 不具备电力中断应急处理功能;不能保证连续供电。  UPS电源  优点: 可实现即时备用电源供电;保护设备免受电力波动和中断影响。  缺点: 效率较低,因为需要经常进行电池充电和放电操作;成本相对较高。  逆变器电源和UPS电源虽然都是用于保障电力供应的重要设备,但它们在功能、工作原理、应用场景以及优缺点上存在明显的区别。逆变器电源主要用于将直流电转换为交流电输出,适用于长时间运行且稳定的场合;而UPS电源则是为了应对电力中断或波动,提供即时备用电源支持,以确保设备连续供电。在选择适合的供电设备时,需要根据实际需求和应用场景综合考虑两者的特点,以满足设备安全可靠运行的需要。
关键词:
发布时间:2024-06-28 11:20 阅读量:445 继续阅读>>
新一代800 V SiC电动汽车牵引<span style='color:red'>逆变器</span>,恩智浦高压隔离栅极驱动器强力赋能!
恩智浦的高压隔离栅极驱动器系列集成到采埃孚的下一代800 V SiC电动汽车牵引逆变器解决方案中此次合作旨在提升电动汽车的安全、能效、续航里程和性能GD316x产品系列带有多项功能,可保护高压SiC功率开关,并发挥其优势  恩智浦半导体宣布与电动汽车领域领先企业采埃孚股份公司(ZF Friedrichshafen AG)合作下一代基于SiC的电动汽车(EV)牵引逆变器解决方案。解决方案采用恩智浦先进的GD316x高压(HV)隔离栅极驱动器,旨在加速800V和SiC功率器件的采用。  GD316x产品系列支持实现安全、高效且性能更高的牵引逆变器,从而可以延长电动汽车的续航里程、减少充电次数,同时降低OEM的系统级成本。  恩智浦与采埃孚之间的合作是推动汽车行业电气化的重要一步,有助于为未来打造更加安全、可持续且高效节能的电动汽车。  采埃孚电动动力系统技术资深副总裁Carsten Götte博士表示:“我们期待与恩智浦合作,提高我们800V牵引逆变器解决方案的功能和性能,这将帮助我们实现减排及可持续发展目标。凭借采埃孚在电机控制和电力电子方面的专业知识与恩智浦的GD316x栅极驱动器系列,我们最新基于SiC的牵引逆变器能够提供更高的功率和体积密度、效率和差异化,从而为我们的客户带来显著的安全、效率、续航里程和性能提升。”  牵引逆变器是电动汽车电动动力系统的关键组件,它将电池的直流电压转换为随时间变化的交流电压,从而驱动汽车的电机。牵引逆变器逐渐转向SiC设计,SiC功率器件需要与高级的高压隔离栅极驱动器配合使用。SiC相较于上一代硅基的IGBT和MOSFET功率开关,具有开关频率更高、传导损耗更低、热特性更好且高压稳定性更强等优势。  GD316x系列先进的功能安全型隔离式高压栅极驱动器集成了多种可编程控制、诊断、监控和保护功能,能够更好地驱动适用于汽车牵引逆变器应用的最新SiC功率模块。GD3162高度集成,因此尺寸非常小,并可简化系统设计过程。其出色的功能可降低电磁兼容性(EMC)噪声,同时还可减少开关能量损失以提高效率。而快速短路保护时间(<1μs)与强大的可编程栅极驱动方案相结合,则能优化牵引逆变器的SiC功率模块性能。  恩智浦半导体全球资深副总裁、新能源及驱动系统产品线总经理李晓鹤表示:“我们正在与采埃孚合作开发面向未来电动汽车的下一代电力电子产品。我们的栅极驱动器系列实现了多项出色的功能,既能保护高压SiC功率开关,又能发挥其优势,因此非常适合采埃孚基于SiC的新型牵引逆变器解决方案。此次合作证明了我们致力于提供先进的解决方案,帮助OEM实现其电动汽车性能和可持续发展目标。”  采用恩智浦GD316x产品系列的采埃孚牵引逆变器已经投入使用。  恩智浦电气化解决方案  恩智浦的电气化解决方案能够精确灵活地管理电动汽车中的能量流动,有效延长汽车的续航里程,确保汽车在路上行驶时间更久、里程更远。恩智浦提供完整的电动汽车系统电气化解决方案,为OEM提供其所需的优化性能和集成安全性,并专为在整个车队中实现可扩展性和兼容性而设计。
关键词:
发布时间:2024-06-21 10:14 阅读量:468 继续阅读>>
解决方案 | 英飞凌主驱<span style='color:red'>逆变器</span>助力电动汽车跑得快跑得远
  电动汽车越来越受欢迎。如今电动汽车的发展趋势是,电机功率越来越大,但为了保证续航里程,行驶中的电耗也要越来越低。这看似不可能完成的任务,背后的最大功臣正是主驱逆变器。  市面上众多热门车型采用了英飞凌的主驱逆变器方案,那么英飞凌逆变器方案有哪些优点,它又是怎么让电动汽车性能提高的同时还保证续航里程?  英飞凌主驱方案核心优点  英飞凌做为全球领先的汽车半导体供应商为新能源汽车电控系统提供完解决方案。  电控方案可分解为两部分:  功率逆变执行部分  该部分也被称为power stack, 功率砖,包含了功率模块,域驱芯片,电流传感器。  功率模块实现电力变换,为新能源汽车开发的EDT系列IGBT芯片提高了逆变器转换效率,确保汽车安全行驶。Zero defect (0失效)一直是我们追求的目标。HybridPACK™ Drive功率模块自2017年量产以来已经为超5百万电动汽车提供驱动电力。搭配高可靠的驱动芯片及高精度的电流传感器保证系统性能及可靠性。  控制与功能安全部分  该部分包含了MCU/PMIC/Driver等器件。  在控制部分,AURIX™ 系列MCU与TLF35584系列PMIC 搭配EiceDrive™ 实现系统级ASIL-D级功能安全,保证汽车行驶指令准备无误的传递给各个系统。AURIX™ 已经累积出货超5亿片。  英飞凌解决方案如何助力电动车  具有强大的性能,同时又有超长续航?  电动汽车的很重要的两个核心参数就是续航里程和加速度。这两个参数都和功率模块有非常强的关联性。  同样的电池电量在不同的车上会有不同的续航表现,功率模块的损耗决定了系统的转换效率,英飞凌的车规级功率模块致力于调节性能与可靠性之间的平衡关系,包括:  英飞凌优化了EDT2代 IGBT芯片的设计与生产工艺,使得损耗远低于其他同类产品  未来还有EDT3代IGBT芯片推出  第三代半导体的重要成员SiC 也是英飞凌产品开发的重要方向,英飞凌坚持沟槽结构的SiC芯片研究,目前推出第二代沟槽工艺的芯片,用于HybridPACK™ Drive第二代功率模块。英飞凌SiC门极耐受电压高,门极开启电压一致性,易于使用,降低电控系统及售后成本。  加速度的快慢就需要看功率模块的电流输出能力了,模块可提供的峰值电流越大,加速度越快。基于英飞凌Si 和SiC芯片开发的功率模块可以提供高压1000A的峰值电流,使用户用十分之一甚至更低的价格享受超跑的驾使体验。  英飞凌主驱逆变器一站式解决方案  除了功率逆变执行和控制与功能安全两部分产品组合外,英飞凌可提供电控系统的完整解决方案。  英飞凌最新的无磁芯电流传器可以解决磁饱和问题,降低电流检测成本。搭配 HybridPACK™ Drive G2 模块还可以进一步节省空间提升功率密度。PMIC TLF35585 芯片为 MCU 稳定运行提供电源保证。EiceDRIVER™ 使得功率模块的控制变得更安全可靠。
关键词:
发布时间:2024-03-27 15:56 阅读量:510 继续阅读>>
蔡司工业CT:探寻电驱系统<span style='color:red'>逆变器</span>/铸铝转子内部结构的秘密
  一、逆变器装配完成后的内部结构无损检测  1、接插件对插后的无损检测  新能源汽车逆变器的内部结构复杂。PCBA之间的连接通常会涉及到非目视对接以及盲插。内部模块化的逆变器产品一旦装配完成,就无法确认模块内部结构的组装状态。  现阶段,电控企业采取的是通过线下电性能测试来确认模块的功能完善性。EOL电性能测试,只能保证逆变器产品在下线时的功能是否满足要求,却无法保证元器件接触状态是否可靠,依旧可能会存在虚接、错位的风险。  逆变器装配后主要的失效模式有如下情况:  首先,在生产过程中,由于尺寸公差的累加,或者PCBA贴片焊误差,或者PCBA装配后产生形变等一系列生产工艺的变化,都可能让接插件匹配偏离设计,而导致电气连接失效。  如下图中,大电流铜排的公端贴在一块PCBA上,母端贴在另一块PCBA上,再通过盲插将PCBA之间连接起来。这时,所有的接插状态被遮挡,通过常规检测手段无法探测公端和母端之间是否实现了合格的连接。  其次,在焊接时,可能会出现贴片位置不准、盲插插歪了(或者没插上)、插的外力太大,导致母端被撑大等等,以至于公母端接触不良,就可能导致大电流状态下,因铜排接触不良而温度上升。如果工作温度持续超过限定的工作温度,逆变器内部零部件就可能产生失效。  而EOL下线电性能测试,难以发现接触不良这类物理性质的问题,无法覆盖上述相关失效,从而影响产品可靠性。  此外,多合一控制器 PCBA的数量变多,连接端口更多,存在的风险也更高。  为避免以上情况,逆变器组装产线中需要增加逆变器下线后对内部元器件接触状态的无损检测。  蔡司工业CT的解决方案中,不仅可以根据X-RAY的探伤原理将不同原材料的结构件区分开来,更可以使用测量型CT,在做3D探伤的同时,对复杂结构直接进行尺寸测量,从而减少检测工时,同时又避免了因为频繁调整测量基准而带来的尺寸偏差。  2、PCBA电路板、走线、锡焊质量检测  2D X-RAY在逆变器及各个子零件的生产过程中,作为一个探伤检测设备并不少见。但是,随着产品工艺越发复杂,结构越来越繁琐,2D的探伤逐渐无法完全覆盖现在的重要失效模型。故而3D工业CT技术也逐渐被引入产线生产过程中。尤其是断层扫描技术对探测逆变器内部复杂的连接结构有着先天的优势。  集成电路板组装后可能会出现装配缺陷。无损检测可对PCBA板的焊球质量、焊锡缺陷、连接线短路、元器件缺失等进行检测。半导体逻辑器件检测中,有多种材料需要达到很好的衬度,便于区别。同时在失效检查中,需要进行无损检测,避免结构破坏。  蔡司的高分辨率和高精度工业CT可以获取完整的PCB图像,通过重构清晰的三维模型,了解内部缺陷和连接情况;通过高级复合材料伪影缩减(AMMAR),清晰的区分出定位销和塑料;可一次性扫描多样件,通过多样件拆分功能,自动分割成单独体积。  蔡司的高分辨率和高精度工业CT可无损检测PCB内部走线状态,并进行截面分析;元器件焊接后,通过重构清晰的三维模型,了解内部缺陷和连接情况。对每层layer的状态进行确认。  3、PCBA上贴片质量检测  蔡司的高分辨率和高精度工业CT可以对PCBA上的贴片进行多角度扫描,并进行观测。可以快速准确的确认失效元器件的位置和尺寸。  上图中的红色框内为有缺陷的元器件,失效点可以通过测量相关数据信息,供工程师进行判断。  二、异步电机铸铝转子内部缺陷检测  随着高性能电四驱的出现,因异步感应电机的零扭损耗要比永磁同步小,而且两驱变四驱时切换速度快,驾驶感受(NVH)比永磁+断开机构要好,因此异步感应电机已大规模应用于电四驱车辆,尤其是低成本的铸铝转子异步机。  铸铝转子中需要铸造的部分是鼠笼和两侧短路端环,但如果工艺过程控制不当,铸造部分内部会产生气孔、夹渣、裂纹等缺陷。  转子是要高速旋转的,如果铸铝鼠笼或短路端环存在铸造缺陷,且超出标准范围,转子在运行过程中,端环部分就会出现变形、断裂等失效。因此,异步电机对铸铝质量有着很高的技术要求,也就催生了异步机铸铝质量检查的要求。  异步机转子在铸造过程中,从涂层蒸发的气体渗透在熔融金属中,在铸件的表面或内部形成气孔。如果铸铝合金液体中的气体含量过高,则在固化过程中也会形成气孔。  在铸造铝合金凝固过程中,由于温度逐渐降低,金属体积逐渐减小的过程中会产生缩孔。或者无法完全充满铸造腔体,产生缺料。加热过程中,由于厚度不均匀或局部过热,铸件在某个位置缓慢固化,当铸件表面凹入时,体积缩小,产生缩孔。  蔡司高精度工业CT,通过大功率射线穿透查看铸铝转子内部质量情况,可用于测试转子短路端环中孔隙的大小和数量,然后通过ZEISS软件对记录的3D数据进行孔隙度的分析和分类。落地仓门便于上下料,具有测量范围大,长时间工作,性能稳定可靠等特点。  当前电驱市场竞争激烈,尤其是在成本方面,研发工程师们需要不断改进生产工艺模式新技术能够量产落地,也需要不断提升良品率,来保障成本不会大幅度攀升。  此时,电机电控企业的质量控制能力成为胜出的关键要素。需要企业对电机电控产品设计效果、装配尺寸以及制造缺陷等能够清晰掌握,及时发现瑕疵,并在每一步的质量控制上都做到更好。  在电控的研发和生产中,通过光镜和电镜联用技术,对金属异物进行采样分析来实现更佳清洁度检测。通过在产线上安装和设置三维光学测量设备来实现对高接触敏感度元器件来料的无接触式检测,通过CT技术探测逆变器内部复杂的连接结构来发现产品装配完成后的虚接、错位的风险。通过CT铸铝转子的内部缺陷,对开发和生产出高性能和低成本的电机电控产品至关重要。  正所谓“工欲善其事,必先利其器”,更优秀的电驱产品离不开更高效有力的检测工具。蔡司正在积极地探索检测与成像技术,发掘自身的百年积淀,为电驱的性能提升和成本优化,提供着更加“趁手的工具”,为行业发展发挥着更大的促进势能。
关键词:
发布时间:2024-03-15 09:33 阅读量:1117 继续阅读>>
安森美:主驱<span style='color:red'>逆变器</span>,为何要选择碳化硅?
  在当今全球汽车工业驶向电动化的滚滚浪潮中,一项关键技术正以其颠覆性的性能改变着电动汽车整体市场竞争力的新格局,它便是基于碳化硅(SiC)材料打造的主驱逆变器。就像电子领域的“黑科技”催化剂,SiC正以其耐高压、高热导率及低损耗特性,重新定义新能源汽车的核心部件的工作效能极限,并以前所未有的方式推动整个行业朝着更长续航、更高能效的方向疾速前行。  大规模“上车”在即的碳化硅  犹如引擎之于燃油车,主驱逆变器是电动汽车动力系统的心脏,其性能优劣直接影响到车辆的整体表现。碳化硅的应用,就像给这个心脏注入了一剂强心针,各大车企纷纷导入使得碳化硅在主驱逆变器上的市场份额正以前所未有的速度扩张,预示着一场深度影响汽车产业链的技术革命已拉开帷幕。  据NE时代预测数据,未来5年,中国新能源乘用车市场不同类型功率器件的份额中,增长最快的将是800V高压SiC平台,其次是主要用于800V四驱车辆辅驱的800V IGBT和400V SiC的份额将先有所增长。在未来一段时间内,大部分车企的800V平台和400V平台仍将处于共存阶段,因为虽然大部分车企均有800V平台的相应规划,但不同企业对应用800V的平台策略有一定差别,最为积极的新势力头部车企将用800V平台迭代现有平台,其他OEM则相对较为稳健,会在部分高端车型上应用800V平台。  此外,尽管在在未来十年内,IGBT和SiC MOSFET会共同存在,但趋势是随着OEM更大胆地直接转向纯电动汽车,插电式混合动力汽车和混合电动汽车市场将继续萎缩,轿车和跨界纯电动汽车将继续增长并成为主要市场。到了2025年之后,“肌肉”电车,例如SUV、卡车和运动型车的需求将大幅增长,从而推动功率大于250千瓦的电力驱动装置的更多需求,加之800V高压平台系统的逐步推广,碳化硅大规模“上车”在即。  大功率+低损耗:难以拒绝的效率吸引力  汽车的动力更迭,从内燃机到电驱动,这当下汽车变革中最大的一个部分。传统燃油车的三大件包括油箱、轴承(包括总成、变速箱等)、内燃机,而动力电池就相当于电动汽车的“油箱”,电机是内燃机,逆变器便相当于变速箱,主要作用就是把电池中储存的能量形式转换成另一个可控的可让电机输出的能量形式。因此,对于主驱逆变器中的电力需求,主要体现在五个方面:  动力更强 - 更大的瞬间扭矩带来更多驾驶乐趣;  效率更高 - 航程更长,损耗更低;  电压更高 - 400V 电池是目前的主流,800V将是未来;  重量更轻 - 减轻车重,增加续航里程;  尺寸更小 - 可安装在前轴或后轴上,节省行李箱和后备箱空间。  与硅相比,碳化硅在材料特性方面具有多种优势,因而成为主驱逆变器设计的更优选择。  碳化硅的物理硬度达到了9.5莫氏硬度,而硅为6.5莫氏硬度,所以碳化硅更适合高压烧结并具有更高的机械完整性。  碳化硅的热导率 (4.9W/cm.K) 是硅 (1.15 W/cm.K) 的四倍多,这意味着它可以更有效地传递热量从而在更高温度下可靠运行。  碳化硅的击穿电压(2500kV/cm)是硅(300kV/cm)的 8 倍多,而且它具有宽带隙性质,能够更快地导通和关断,意味着它的损耗比硅更低。  针对主驱逆变、辅助电源、车载充电和直流快充等系统,安森美可以提供完整的智能电源方案,包括碳化硅、IGBT、MOSFET等产品阵容。其中,EliteSiC功率模块可以提供更优秀的性能、效率和功率密度,采用了最新的平面结构的EliteSiC MOSFET,实现了从电池的直流800V到后轴交流驱动的高效电源转换。  此外,安森美采用先进互连技术的压铸模封装进一步提高了SiC模块的高功率密度,并且具有低杂散电感,而且更高的开关频率有助于减小系统中一些无源组件的尺寸和重量。此外,这种封装类型具有多种工作温度选项,最高达 200°C,可降低OEM的散热要求,并有望采用更小的泵进行热管理。  值得一提的是,除了先进的智能电源方案在功率密度、效率和可靠性上表现出众,为电动汽车技术变革可靠的供电保证,安森美 ADAS 和自动化系统解决方案同样使现代车辆实现半自动化,例如先进的CMOS图像传感器可以应用于前视、侧视、后视、环视摄像头系统,使得汽车的安全等级进一提高,向着全自动驾驶的目标又进一步。
关键词:
发布时间:2024-03-13 09:21 阅读量:658 继续阅读>>
ROHM:可以提高工业<span style='color:red'>逆变器</span>功率转换效率并具有节能效果的半导体
  Powering Industrial Innovations ~半导体助推工业设备创新~先进的半导体功率元器件和模拟IC助力工业用能源设备节能  随着向无碳社会的推进以及能源的短缺,全球对可再生能源寄予厚望,对不断提高能源利用效率并改进逆变器技术(节能的关键)提出了更高要求。而功率元器件和模拟IC在很大程度上决定了逆变器的节能性能和效率。通过在适合的应用中使用功率元器件和模拟IC,可以进一步提高逆变器的功率转换效率,降低工业设备的功耗,从而实现节能。本文将为您介绍在新型逆变器中应用日益广泛的先进功率元器件和模拟IC的特性及特点。  目录  什么是具有节能效果的逆变器?  为什么必须要使逆变器更加节能?  功率元器件是提高逆变器节能效果的关键所在  解决不同课题和困扰的各种半导体产品的特点及优势  希望优先提高转换效率  希望既能提高转换效率,又能降低成本  希望有助于设备的小型化和轻量化  模拟IC  电源IC  栅极驱动器IC  分流电阻器  总结  产品介绍、详细信息、其他链接等  什么是具有节能效果的逆变器?  逆变器是用来将直流电(DC)转换为交流电(AC)并有效地提供所需电力的设备。使用效率高的逆变器,可以更大程度地提高设施和设备的性能并降低能耗。  提到逆变器,很多人通常可能会认为它是在FA应用中用来控制电机的技术,或者用来使电泵、风门、风扇、鼓风机、空调等平稳运行的技术。其实,有效地转换电能也是逆变器的一个主要用途,是使工业设备更节能的关键技术。特别是在追求无碳社会和碳中和的进程中,太阳能发电设施中使用的光伏逆变器市场和充电桩市场不断增长,从而对具有出色能量转换效率的逆变器的需求也日益高涨。接下来将围绕逆变器的功率转换进行具体说明。  逆变器及其相关的功率元器件解决方案在促进包括太阳能发电系统在内的各种工业设施和设备的节能和效率提升方面发挥着核心作用。  另外,逆变器的高效运作高度依赖于半导体技术的进步。通过使用先进的半导体,可以使逆变器更高效、更稳定地工作。此外,还可以延长设备的使用寿命,先进半导体产品能够带来诸多好处。  为什么必须要使逆变器更加节能?  世界上第一台逆变器诞生于1958年。日本的第一款逆变器产品诞生于1966年。逆变器本身已经不是一项新技术,大家所用的设施和电气设备中都有可能配有逆变器。然而,如今对使用中的设施和设备中的逆变器进行改进的需求越来越多。  其主要原因之一是制造现场的用电量增加。目前,很多生产设施的自动化和智能化程度都越来越高。尽管单台设备都更加节能,但从设施整体看,用电量却在增加,这种情况屡见不鲜。要想更大程度地发挥出设施的节能性能,逆变器也需要具备相应的性能。  另一个主要原因是设备电压提升以及对设备小型化、轻量化的要求提高。例如,在太阳能发电设施中,电压越来越高,功率调节器却越来越小、越来越轻,这就要求作为功率转换设备的逆变器能够满足这些需求。  功率元器件  提高逆变器节能效果的关键所在  使用逆变器进行功率转换时,大约有90%的功率损耗是由功率元器件造成的。因此,可以毫不夸张地说,功率元器件的性能决定了逆变器的性能。在工业设备领域,以往主流的Si功率元器件正在被SiC功率元器件和GaN功率器件快速取代。在逆变器领域也呈现同样的趋势。  那么,应该如何为逆变器选择合适的功率元器件呢?事实上,并不是仅仅更换为新的SiC元器件或GaN器件即可解决问题。这是因为设施的规模和需求不同,相应的解决方案也会不同。根据设施需求和用途选择合适的功率元器件解决方案,就可以实现性价比更高和能量转换效率更出色的逆变器,从而通过逆变器实现节能。  例如,ROHM的功率元器件产品群具有以下特点:  解决不同课题和困扰的  各种半导体产品的特点及优势  理想的功率元器件解决方案会因逆变器的用途和需要解决的问题和困扰而有所不同。那么,具体而言,哪些需求更多呢?如果分得太细,涵盖的范围将非常广,所以在这里仅介绍具有代表性的需求以及相应的理想功率元器件解决方案。  1. 希望优先提高转换效率  当希望优先提高转换效率、提高发电量时,建议采用SiC MOSFET和SiC SBD等SiC器件。SiC器件具有耐压高、导通电阻低和开关速度快的优异特性,因此用SiC器件替代Si器件可以提升转换效率,有助于提高发电量。  例如,当要通过家用光伏逆变器提高平均照度下的发电量时,用SiC器件替代Si器件可将发电量提高3.4%左右,即1kW~2kW时的发电能力预计可改善约45W(全年210kWh)*。另外,对于支持高电压和大电流的逆变器的需求也与日俱增。  *发电5kW时约为130W(全年570kWh)。  2. 希望既能提高转换效率,又能降低成本  既希望提高转换效率,又希望降低成本。Hybrid-IGBT可以满足这样的需求。Hybrid-IGBT是在传统IGBT的反馈单元(续流二极管)中使用了ROHM低损耗SiC SBD的Hybrid型IGBT,与传统的IGBT相比,可以大大降低导通时的开关损耗。  该系列产品非常适用于诸如电动汽车(xEV)中的车载充电器和DC-DC转换器、太阳能发电系统中的光伏逆变器等处理大功率的工业设备和汽车电子设备,具有功率损耗低于Si器件、成本效益优于SiC器件的优点。  另外,对于太阳能发电设施中使用的逆变电路、图腾柱PFC电路和LLC电路,建议使用融入了Super Junction技术的PrestoMOS™。PrestoMOS™通过采用ROHM专利技术,同时实现了业界超快反向恢复时间和原本难以同时实现的低导通电阻,与同等的普通产品相比,更有助于逆变器节能。  3. 希望有助于设备的小型化和轻量化  不仅要求设备的节能性能出色,还希望设备的体积更小。尤其是在太阳能发电设施中,分布式系统的普及要求减轻设备重量以降低安装成本,因此相应的产品呈现小型化趋势。针对此类需求,建议采用GaN器件,这种器件在现有的集中式光伏逆变器中作为替代品已经开始普及,是非常适用于微型逆变器的器件。  GaN器件具有出色的开关特性和高频特性,因而在市场上的应用日益广泛。不仅如此,其导通电阻也低于Si器件,在助力众多应用实现更低功耗和小型化方面被寄予厚望。在太阳能发电设施所用的光伏逆变器中,在其MPPT(Maximum Power Point Tracking)和蓄电单元采用GaN器件,与采用SiC器件时相比,可以进一步降低构成电路的线圈部件的电感值(L),从而能够减少绕线匝数、或使用尺寸更细的芯材,因此有助于大大缩小线圈的体积。另外,还可以减少电解电容器的数量,与Si器件(IGBT)相比,所需安装面积更小。  ROHM将有助于应用产品的节能和小型化的GaN器件命名为“EcoGaN™系列”,并一直致力于进一步提高器件的性能。  * EcoGaN™是ROHM Co., Ltd.的商标或注册商标。  另一种推荐方法是利用上述第1节中介绍的SiC MOSFET在高温环境下优异的工作特性优势。由于这种器件的容许损耗低,发热量少,因此可通过与合适的外围元器件相结合来减小散热器件的数量和尺寸,从而减轻逆变器的重量。  模拟IC  与功率元器件一样,电源IC和栅极驱动器等模拟IC对逆变器的性能影响也很大。电源IC可以控制设备运行所需的电压,是相当于电气设备心脏的重要器件,起到将电压转换为合适的电压并稳定供电的作用。  栅极驱动器可以控制MOSFET和IGBT的驱动,通过控制栅极电压来执行ON/OFF开关动作。由于大部分功率损耗发生在开关过程中,因此栅极驱动器对于提高节能性能而言是非常重要的器件。栅极驱动器不仅适用于使用大电流的工业设备,还适用于要求高耐压的应用。  电源IC  对于逆变器用的电源IC,推荐采用内置SiC MOSFET的电源IC。这种产品已经将SiC MOSFET内置于电源IC中,应用产品无需进行SiC MOSFET驱动电路设计,因此可以大大减少元器件数量,并且可以利用保护电路实现安全的栅极驱动。  栅极驱动器IC  虽然SiC MOSFET和GaN器件的性能很高,但它们的开关控制较难,因此离不开高性能的栅极驱动器IC。  ROHM拥有可以更好地驱动上述各种功率器件的丰富的栅极驱动器IC产品群。例如,ROHM开发的GaN用栅极驱动器IC,可以更大程度地激发出GaN的高速开关性能,助力应用产品实现节能和小型化。  分流电阻器  在电流检测用途中使用的分流电阻器也是有助于大功率应用产品小型化的重要元件。随着应用产品的功率越来越高,对于能够处理大功率且阻值低的分流电阻器的需求也不断增长。分流电阻器的亮点在于其优异的散热性能和出色的温度特性。  ROHM的产品阵容中包括支持高达4W~10W级额定功率的低阻值分流电阻器GMR系列,使用该系列产品,即使在大功率条件下工作也能实现高精度的电流检测,有助于设备的安全运行以及节能和小型化。  总结  为提高能源利用率,逆变器技术正在突飞猛进地发展,并已成为包括工业应用在内的各种能源设备不可或缺的组成部分。利用这项技术,可以通过将直流电转换为交流电并根据需要优化供电,来减少能源浪费并延长设施和设备的使用寿命。另外,通过使用符合应用需求和目的的理想半导体解决方案,可以进一步提高逆变器的功率转换效率。ROHM通过推动先进功率元器件和模拟IC在逆变器中的应用,来促进各种设备的节能,从而为实现可持续发展社会贡献力量。  • IGBT  • 功率晶体管  • 功率元器件  • SiC功率元器件  • SiC MOSFET  • SiC肖特基势垒二极管  • GaN功率器件  • 模拟IC  • 电源管理/电源IC  • 栅极驱动器  • GaN用栅极驱动器  • BD2311NVX-LB  • Super Junction MOSFET  • 内置1700V耐压SiC MOS的AC-DC转换器IC  • 电流检测用 贴片电阻器(分流电阻器)  • 大功率 分流电阻器/低阻值 金属板(GMR系列)  • ROHM开发出内置SiC二极管的IGBT(Hybrid IGBT)“RGWxx65C系列”  • ROHM开发出EcoGaN™ Power Stage IC“BM3G0xxMUV-LB”,助力减少服务器和AC适配器等的损耗和体积!
关键词:
发布时间:2024-02-21 13:13 阅读量:1741 继续阅读>>

跳转至

/ 4

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
TL431ACLPR Texas Instruments
CDZVT2R20B ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
型号 品牌 抢购
BU33JA2MNVX-CTL ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
BP3621 ROHM Semiconductor
TPS63050YFFR Texas Instruments
IPZ40N04S5L4R8ATMA1 Infineon Technologies
ESR03EZPJ151 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。