China will take a 'long time' to catch up to memory chip rivals, industry expert says

发布时间:2018-08-31 00:00
作者:Ameya360
来源:CNBC
阅读量:1126

Even as China doubles down on its efforts to dominate the memory chip industry, its domestic companies continue to lag behind the global competition, an industry executive told CNBC on Thursday.

The semiconductor industry has been around for decades, but it is poised for another round of growth due to the emergence of new technologies like artificial intelligence and the fifth-generation of mobile networks, according to Lung Chu, president of SEMI China.

"There's a lot of opportunities in semiconductor," Chu told CNBC's Eunice Yoon at the Morgan Stanley Technology, Media and Telecom Conference in Beijing.

In 2014, the Chinese government issued guidelines for the development of China's semiconductor industry through innovation and investments, he explained. "There's evidence that money has been put in but I think it will take a long time for China to catch up with the global leaders."

SEMI is a global association for the semiconductor industry, and is present in countries such as the United States, China and South Korea.

Last year, global semiconductor revenue topped $400 billion, according to research firms Gartner and IHS Markit. The latter said worldwide revenue grew 21.7 percent and reached $429.1 billion in 2017. The industry is dominated by the likes of Samsung ElectronicsIntelSK Hynix, and Qualcomm.

Chu said China was responsible for more than half of the global consumption in the chip industry, yet Chinese local suppliers meet only about 13 percent of the domestic demand. According to Chu, that means Beijing has a massive trade deficit in this space.

"That's a major concern for the government, for the economy, but it's also a great opportunity for local companies to get into the (integrated circuits) business," he said. "That's the driving force as to why China wants to do more."

As part of its Made in China 2025 goals, Beijing wants to have have locally produced chips used in smartphones to make up about 40 percent of the domestic market by 2025, in a move to cut down its reliance on imports. The country's dependency on foreign chips was highlighted when the United States imposed a supplier ban on Chinese telecommunications equipment maker ZTE, which crippled its business.

China has raised multiple funds for semiconductor development since 2014, with contributions from government-backed enterprises and industry players to push local companies to develop their own chips that can rival the global competition, according to various reports. Beijing's involvement in the development of its semiconductor industry has been one of the main complaints from the U.S. over China's technology practices.

Amid the ongoing trade war between China and the U.S., Chu said many companies in the semiconductor space are worried about investing in the Chinese market.

"However, because the market is here, the customer is here, the China strategy has to be part of the global strategy or the corporate strategy," he said.

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
What is a memory chip?  What are the types of memory chips?
  Memory chips are the main components used for storage In the realm of computing and digital devices, and play a very important role in the entire integrated circuit market.  These chips serve as the foundation upon which our digital world operates, facilitating the storage and retrieval of information in devices ranging from smartphones and laptops to complex servers and embedded systems.  What is a memory chip?A memory chip, fundamentally an integrated circuit (IC), is a crucial electronic component designed to store, retrieve, and manage data within a digital device. These chips come in various types and configurations, each tailored to serve specific purposes within electronic systems.  What are the types of memory chips?RAM (Random Access Memory): One of the most common types of memory chips, RAM is volatile memory used by computers to temporarily store data that the CPU needs quick access to during operation. It enables swift read and write operations, facilitating multitasking and overall system performance.  ROM (Read-Only Memory): Unlike RAM, ROM is non-volatile memory, meaning it retains data even when the power is turned off. ROM is commonly used to store firmware and permanent instructions essential for booting up devices and initializing hardware components.  Flash Memory: This non-volatile memory type finds its application in devices like USB drives, Solid State Drives (SSDs), memory cards, and embedded systems. Flash memory allows for both reading and writing operations, making it suitable for storing files, applications, and operating systems.  EEPROM (Electrically Erasable Programmable Read-Only Memory): EEPROM combines the qualities of both volatile and non-volatile memory. It’s rewritable and often used in smaller capacities to store configuration settings and small amounts of essential data.  What are the applications of memory chips?The ubiquity of memory chips spans across an extensive array of applications and devices, playing a pivotal role in their functionality:  • Computers and Laptops: RAM enables quick access to data during computations, while ROM stores firmware and BIOS instructions essential for system startup.  • Smartphones and Tablets: Memory chips in these devices handle data storage for applications, media files, and the operating system, ensuring smooth multitasking and user experience.  • Digital Cameras and Camcorders: These devices utilize memory chips to store photos, videos, and settings, allowing users to capture and retain precious moments.  • Embedded Systems and IoT Devices: Memory chips facilitate the functioning of embedded systems and IoT devices, managing data crucial for their operations in various industries like healthcare, automotive, and home automation.  How to make a computer chip?The creation of a memory chip involves intricate processes conducted in specialized semiconductor fabrication plants. The process can be summarized in several key steps:  Design and Layout: Engineers meticulously design the chip’s layout, determining the arrangement and connections of transistors and circuits.  Lithography: A crucial step where the chip’s design is imprinted onto a silicon wafer using photolithography techniques.  Etching and Doping: Unwanted portions of the silicon wafer are removed, and specific regions are doped with materials to alter their conductivity and create the desired electronic components.  Layering: Multiple layers of conductive and insulating materials are deposited onto the wafer to form intricate circuitry.  Testing and Packaging: The fabricated chips undergo rigorous testing to ensure functionality and quality. Once validated, they are packaged into final products for integration into various devices.  What is the difference between a logic chip and memory chip?While both logic and memory chips are essential components of electronic systems, they serve distinct functions:  Logic Chip:  A logic chip is designed to perform computational tasks, execute instructions, and manage the flow of data within a digital device. These chips contain integrated circuits that implement logical operations, arithmetic calculations, and control functions. They are the brains of a system, carrying out operations based on instructions received from software or firmware.  Examples of logic chips include Central Processing Units (CPUs), Graphics Processing Units (GPUs), microcontrollers, and Application-Specific Integrated Circuits (ASICs). CPUs, for instance, process data, perform calculations, and execute instructions, while GPUs specialize in handling graphics-related tasks.  Memory Chip:  In contrast, a memory chip is specifically dedicated to storing and retrieving data. These chips don’t perform computational or logical operations but instead focus on holding information temporarily or permanently within a system. Memory chips are responsible for enabling the storage and retrieval of data for various purposes, such as program execution, data manipulation, or long-term storage.  Types of memory chips include Random Access Memory (RAM), Read-Only Memory (ROM), Flash Memory, and Electrically Erasable Programmable Read-Only Memory (EEPROM). RAM, for example, stores data temporarily while the system is running, allowing quick access for the CPU to carry out operations. ROM holds essential instructions and data that remain intact even when the power is turned off. Flash memory is used for non-volatile storage in devices like USB drives and SSDs, while EEPROM allows for rewritable non-volatile storage in smaller capacities.  How long does a memory chip last?  The longevity of memory chips varies based on usage, quality, and environmental factors. Under normal operating conditions, these chips can last for many years, potentially even decades. However, excessive usage, high temperatures, or voltage fluctuations may impact their lifespan.
2023-11-20 14:33 阅读量:1334
Memory Chip ASP Growth Expected to Cool in Second Half
  Sales of DRAM and NAND flash memory are both expected to set new records amid tight supply in 2017, though white hot growth in average selling prices (ASPs) are expected to cool through the end of the year, according to market research firm IC Insights.  DRAM ASPs are projected to increase by 63 percent this year, while NAND ASPs are expected to grow by 33 percent, according to IC Insights. These numbers would mark record ASP growth for each category, the firm said.  IC Insights (Scottsdale, Ariz.) said it believes DRAM quarterly ASP growth peaked in the fourth quarter of 2016, but the firm expects to to continue growing through the third quarter before turning slightly negative in the fourth quarter, signaling the end of the cyclical upturn.  IC Insights expects flash memory capital spending to increase significantly in 2017, with nearly all of the new investment going toward 3D NAND flash memory technology. Samsung, SK Hynix, Micron, Intel, Toshiba/SanDisk, and XMC/Yangtze River Storage Technology each plan to significantly ramp up 3D NAND flash capacity over the next couple of years, and new Chinese players may enter the market, putting the likelihood of overcapacity in the market for 3D NAND over the next few year very high, IC Insights said.  The strong ASP growth expected for both DRAM and NAND flash this year means sales of both are forecast to rise to record highs despite the fact that DRAM unit shipments are actually expected to decline while NAND shipments are expected to increase by only about 2 percent, IC Insights said.
2017-07-20 00:00 阅读量:903
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
RB751G-40T2R ROHM Semiconductor
MC33074DR2G onsemi
BD71847AMWV-E2 ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
型号 品牌 抢购
ESR03EZPJ151 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
TPS63050YFFR Texas Instruments
BP3621 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。