Automotive, Industrial Continue to Drive TI's Sales Gains

发布时间:2017-07-27 00:00
作者:Ameya360
来源:Dylan McGrath
阅读量:1000

  Texas Instruments Inc. reported a second consecutive quarter of double digit year-over-year sales gains as continued strength in the automotive and industrial chip sectors continue to propel its business.

  TI (Dallas) reported sales of $3.69 billion and a profit of $1.06 billion for the quarter, increases of 13 percent and 29 percent, respectively compared to the second quarter of 2016. The company said it expects sales for the third quarter to grow to between $3.74 billion to $4.06 billion, beating consensus analysts' forecasts.

  "Demand for our products continues to be strong in the automotive market and continues to strengthen in the industrial market," said Dave Pahl, vice president and head of investor relations at TI, in a conference call with analysts following the second quarter report.

  TI said its revenue from its analog segment increased by 18 percent year-over-year, largely due to growth in power and signal chain devices. The company reported that its embedded processor revenue, included connected microcontrollers and processors, grew by 15 percent year-over-year.

  Sales of other products, including DLP products, calculators and custom ASICs, fell by $60 million compared with the second quarter of 2016, TI said.

  "We continue to focus our strategy on the industrial and automotive markets, which are the end markets where we have been allocating our capital and driving initiatives," Pahl said. This, Pahl said, is driven by TI's "belief that industrial and automotive will be the fastest growing semiconductor markets due to their increasing semiconductor content and that they will provide diversity and longevity of products."

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
What is automotive chip What are the types of automotive chips
  Chip is a general term for semiconductor component products, also known as integrated circuits (IC).  Automotive chips are mainly divided into three categories: functional chips (MCU, MicrocontrollerUnit), power semiconductors, and sensors.  Functional chips mainly refer to processor and controller chips. For a car to run on the road, it cannot do without the electronic and electrical architecture for information transmission and data processing. The vehicle control system mainly includes body electronic system, vehicle motion system, powertrain system, infotainment system, automatic driving system, etc. There are many sub-function items under these systems, and each sub-function item has a control system behind it. There will be a function chip inside the controller.  Power semiconductors are mainly responsible for power conversion and are mostly used in power supplies and interfaces, such as IGBT power chips for electric vehicles, and field effect transistors MOSFET that can be widely used in analog circuits and digital circuits.  Sensors are mainly used for various radars, airbags, tire pressure detection, etc.  What is an autonomous driving chip?The self-driving chip is essentially a functional chip, a high-computing chip produced with the development of smart cars. There is a saying that the self-driving chip is the Mount Everest of chips, representing the highest technical challenge.  At present, the commercially available autonomous driving chips are basically in the stage of advanced driver assistance systems, which can realize L1-L2 assisted driving, and some claim to realize L3 functions.  What is the main reason for the shortage of automotive chips?There are three main reasons for the sudden shortage of automotive chips:  First, the impact of force majeure such as the new crown epidemic and fire. Wafers are the raw materials for making chips. The new crown epidemic has brought a severe impact on wafer production. The world’s first and second wafer foundries TSMC and Samsung have been forced to suspend production due to employees being infected with the epidemic. At the same time, the strike movement in Europe and the fire at the Asahi Kasei plant in Japan once again affected the production capacity of wafer foundries.  Second, the rapid recovery of the auto industry and insufficient estimates from suppliers. According to the statistics of StrategyAnalytics, the number of functional chips installed in automobiles of all levels is increasing year by year. At present, the average number of functional chips used in automobiles is about 25, and some high-end models have exceeded 100. In the second half of 2020, the auto market represented by China will recover rapidly, exceeding the supply chain’s prediction of chip demand.  Third, competition for production capacity of consumer electronics products. On the one hand, the demand for consumer electronics products has increased significantly during the pandemic. On the other hand, the profit margin of in-vehicle chips is far lower than that of consumer electronics chips. Some chip suppliers tend to reserve production capacity for consumer electronics products.
2023-09-06 13:46 阅读量:2242
Outlook Remains Bright for Automotive Electronic Systems Growth
Despite some high-profile setbacks with autonomous vehicles, auto electronic systems growth projects well; remains a hotbed for semiconductor growth.Sales of automotive electronic systems are forecast to increase 7.0% in 2018 and 6.3% in 2019, the highest growth rate in both years among the six major end-use applications for semiconductors.  Figure 1 shows that sales of automotive-related electronic systems are forecast to increase to $152 billion in 2018 from $142 billion in 2017, and are forecast to rise to $162 billion in 2019.  Furthermore, automotive electronic systems are expected to enjoy a compound annual growth rate (CAGR) of 6.4% from 2017 through 2021, again topping all other major system categories, based on recent findings by IC Insights.Figure 1Overall, the automotive segment is expected to account for 9.4% of the $1.62 trillion total worldwide electronic systems market in 2018 (Figure 2), a slight increase from 9.1% in 2017. Automotive has increased only incrementally over the years, and is forecast to show only marginal gains as a percent of the total electronic systems market through 2021, when it is forecast to account for 9.9% of global electronic systems sales.  Though accounting for a rather small percentage of total electronic system marketshare in 2018, (larger only than the government/military category), automotive is expected to be the fastest-growing segment through 2021.Figure 2Technology features that are focused on self-driving (autonomous) vehicles, ADAS, vehicle-to-vehicle (V2V) communications, on-board safety, convenience, and environmental features, as well as ongoing interest in electric vehicles, continues to lift the market for automotive electronics systems, despite some highly publicized accidents involving self-driving vehicles this year that were at least partly blamed on technology miscues.New advancements are more widely available onboard mid range and entry-level cars and as aftermarket products, which has further raised automotive system growth in recent years.  In the semiconductor world, this is particularly good news for makers of analog ICs, MCUs, and sensors since a great number of all of these devices are required in most of these automotive systems. It is worth noting that the Automotive—Special Purpose Logic category is forecast to increase 29% this year—second only to the DRAM market, and the Automotive—Application-Specific Analog market is forecast to jump 14% this year—as backup cameras, blind-spot (lane departure) detectors, and other “intelligent” systems are mandated or otherwise being added to more vehicles.  Meanwhile, memory (specifically, DRAM and flash memory) is increasingly playing a more critical role in the development of new automotive system solutions used in vehicles.
2018-11-21 00:00 阅读量:1076
Automotive semiconductors to reach $73B by 2023, says Semico Research
Automotive electronics are a bright light for the semiconductor industry, as smartphone growth slows, and personal computing growth continues to decline. The expectation is that automotive electronics will become the next big technology market driver. The automotive semiconductor market will exceed the overall industry growth as semiconductor content expands with added features and functionality. The desire to put self-driving vehicles on the road is creating increased interest in innovative automotive solutions as well as increased semiconductor demand. A new research report from Semico Research, Automotive Semiconductors: Accelerating in the Fast Lane, states that the automotive segment of the semiconductor industry will grow to $73 billion by 2023.“There are a number of challenges in the automotive industry that are unique for the system developers to navigate. Autonomous driving is a critical one,” says Jim Feldhan, President of Semico Research. “Many people feel AI is the key to the success of autonomous driving. Autonomous driving includes the ability to have optical character recognition, i.e. reading signs, distinguishing a sign from a person, and determining if the brakes should be turned on. Security surveillance, computer vision, virtual reality and image processing, real-time diagnosis and corrective solutions and strategic map planning are critical to autonomous driving. Increasing levels of processing are required as these systems become more sophisticated.”Key findings in the report include:The TAM market for automotive IP processor royalties will grow to $2.34 billion by 2023.A fully autonomous vehicle (L5) is expected to require 74GB DRAM and 1TB NAND memory.Powertrain requires the highest compute function and carries the highest ASP.Revenue generated from processors in Autonomous Driving Systems will reach $422 million in 2018.In its recent report, Automotive Semiconductors: Accelerating in the Fast Lane (MP118-18), Semico Research provides a comprehensive review of the current market and future opportunities for the semiconductor industry in the automotive segment. Topics covered in the report include Automotive Trends, Opportunities and Challenges, Manufacturing Technology for Auto ICs, Automotive Forecast, and Semiconductor IP in Automotive. The report is 56 pages long and includes 28 tables and 34 figures.
2018-08-16 00:00 阅读量:1005
Automotive mmWave Radar Market Expects Rapid Growth with a CAGR of 15% from 2018 to 2023
According to the latest research by TrendForce, the market of automotive mmWave radar expects rapid growth with the shipment estimated at 65 million units in 2018; the CAGR is expected to be 15% from 2018 to 2023. The growth momentum comes from China’s adoption of C-NCAP, a car safety assessment program, and NHTSA’s new regulation that makes automatic emergency braking system as a standard feature for new cars.“With its wavelengths between centimeter wave and light wave, mmWave radar has been widely used in military fields because of its properties of both optical waveguide and electromagnetic waveguide”, says Yvette Lin, an analyst of TrendForce. With the development of automotive electronics, mmWave sensors have become a key for ADAS and autonomous driving, but its development in the past years has been stalled since mmWave radar needs exclusive frequency band. The situation has changed after the World Radiocommunication Conference 2015 allocated 76~81GHz for automotive radar, providing a clear direction for the development of automotive mmWave radar.Compared with other sensors, automotive mmWave radars are less influenced by weather, as well as shapes and colors of objects, with a detection range of 250 meters. Therefore, it has been widely used in active safety systems like blind spot detection (BSD), automatic emergency braking (AEB) and front anti-collision warning (FCW). At present, mass-produced cars with FCW and AEB are normally equipped with a long-range mmWave radar with two short-range ones, while cars with BSD require two short-range ones.Current suppliers of long-range mmWave radar are mainly Tier 1 international manufacturers, while most Taiwan-based and Chinese manufacturers remain in the process of R&D or verification. As for short-range ones, Taiwan-based companies like Alpha Networks, Wistron NeWeb, Cubtek and Universal Microelectronics, have launched related products. Chinese companies, including Nanoradar, Sensortech Intelligent Technology and Intibeam, have also entered the stage of productization.Lin notes that, China has included FDW and AEB in C-NCAP for the first time in 2018, while the U.S. will make AEB system as a standard feature for new cars since 2022, which will jointly drive the global shipments of mmWave radar to 65 million units this year. Driven by the demand for active safety from auto markets in China and the U.S., Trendforce estimates the annual shipments of automotive mmWave radars at 132 million in 2023, a CAGR of 15% for the period 2018~2023.
2018-07-23 00:00 阅读量:1022
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
TL431ACLPR Texas Instruments
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
型号 品牌 抢购
BP3621 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
IPZ40N04S5L4R8ATMA1 Infineon Technologies
ESR03EZPJ151 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
TPS63050YFFR Texas Instruments
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码