安森美:如何拿捏汽车进化的风向

发布时间:2022-06-15 09:52
作者:Ameya360
来源:网络
阅读量:3192

    放眼全球,汽车产业极具前景,已成为经济增长的重要引擎。在汽车进化的路径上,电动化已经根深蒂固,持续高涨的节能意识正加速这一进程。普及新能源车与零碳排放承诺关系密切,在这一方面,我国的战略决策是在2030年前实现碳达峰、2060年前实现碳中和,要实现这个目标,自然要从二氧化碳排放较多的燃油车着手。

安森美:如何拿捏汽车进化的风向



    许多国家将发展新能源汽车视为应对气候变化的重要且有效手段,并制定禁售燃油车的时间表。整车企业也制定了停售燃油车的时间表,时间点大多被定在2025年或以后。

    2025年并不遥远,燃油车的退出几乎近在咫尺。

    目前我国在新能源车上走在前列,“蔚小理”为主的造车新势力已是我国新能源车产业链的重要力量,传统整车企业紧随其后,各车企制定的停售燃油车时间不同,例如,将时间定在2025年的车企包括北汽集团、长安汽车、日产;将时间定在2030年的车企包括丰田、奔驰、宝马;将时间定在2035年的包括大众、起亚。

    比亚迪更为激进,4月3日宣布自2022年3月起停止生产燃油汽车,未来专注于纯电动和插电式混合动力汽车业务。比亚迪造就佳话背后有许多有利因素,比如国内新能源车消费市场巨大,充电基础设施比较完善,政策空间充足等等,而比亚迪自身具有动力电池、芯片等主要零部件产线,再加上其燃油车的营收占比较小,这些都足以让比亚迪在发展新能源车上更加义无反顾。

    汽车加速电动化,也更加智能化,以智能座舱、自动驾驶和ADAS为主的智能化差异成为激活用户需求的焦点。智能化促进汽车硬件架构逐渐由分布式ECU向域控制/中央集中架构方向发展,高算力处理器、MCU、传感器等半导体芯片使用数量提升,汽车的半导体占比越来越高。

    汽车不断进化的过程中,涌现许多新热点,对半导体的要求更加苛刻,安森美(onsemi)如何应对随之而来的挑战?

    高压架构规模应用呼之欲出,碳化硅优势明显

    续航和充电时间是电动车的关键参数,影响新能源车的使用体验和普及。现阶段常见的新能源车续航为500 km-600 km,而且充电时间远比燃油车加油时间长,无法满足城际间的长途驾车需求。

    提升整车运行效率及充电速度的有效办法是提升汽车的电压平台。相比之下,高电流模式对热管理要求高,因此大电流快速充电的推广难度较高,也因此高电压模式是普遍采用的模式。

    由现阶段400 V提升到800 V, 可解决上述问题,同时还能减少汽车线束的横截面积和重量,整车空间和重量也随之降低。资料显示,吉利、极氪、小鹏汽车、广汽埃安、比亚迪、理想汽车、北汽极狐、岚图等车企相继投资800 V电压架构产品并逐步计划量产。

    高压平台在功率器件的选择上也有所变化,安森美汽车主驱功率模块产品线经理陆涛表示,未来的新能源汽车动力系统会根据不同的电池电压以及功率适配不同的功率器件,在400 V电池系统中会以IGBT为主,而800 V系统当功率超过150 KW以上,碳化硅(SiC)的优势就会比较明显。

    SiC的应用发展前景乐观,其性能在特定条件下优于IGBT——在高压应用条件下,SiC的开关速度相比IGBT更高;小电流的时候,SiC的导通损耗和开关损耗优于IGBT。各大的车厂正在积极地开发相应的产品。

    当前挑战是800 V还是一个相对比较新的电压平台,高压系统的零部件成熟度不高,使得整体的成本会有一些偏高,同时SiC的长期可靠性也是一个很大的挑战。

    如果电池组、电机以及充电接口均使用800 V,相应的电子系统和芯片均重新适配以满足800 V高电压平台,短期成本较高。但是有研究表明,碳化硅对系统效率的提升,可降低电缆和散热系统等的成本,从而抵消碳化硅的成本。衬底制作难、长晶速度慢是碳化硅成本高的原因,随着衬底工艺、尺寸和产能提升,碳化硅成本会逐渐下降,与IGBT的成本差距越小,其优势越明显。

    据介绍, 安森美在SiC领域具有独特的优势,是全球少数几家可提供从晶体生长,到晶圆制造,再到成品封装全产业链整合的供应商之一,有助于实现具成本优势的先进SiC方案。如VE TracDirect SiC和VE-Trac B2 SiC方案采用稳定可靠的平面SiC技术,结合烧结技术和压铸模封装,提高能效、功率密度和可靠性,符合AQG 324汽车功率模块标准,帮助解决成本及技术成熟度等挑战。

    新能源车的补能效率较低,要适配不同场景的使用需求,要求充电桩使用不同的充电方法和设计,陆涛介绍道,目前主流的充电桩采用交流桩为主,主要分布在各大工业园区和停车场,功率偏小。而直流充电桩则主要是一些专门的充电站,且均是快充。

    充电桩基本上都是采用模块化的设计方法,器件的发展主要侧重在开关速度,以及导通损耗等方面的优化为主。安森美提供领先的功率模块和SiC技术,及全面的产品组合,帮助实现高功率和高密度电动车充电桩所需的高能效。

    此外,在向纯电动车过度期间,还存在48 V轻混的小众车型,陆涛补充说道,48 V轻混主要是在欧洲比较流行,还有就是一些从欧洲进口到国内来的车型。由于48 V系统节能效果有待商榷,在中国有可能不会成为一个主流。

    汽车事件数据记录器EDR新政落地,安全系统增配势在必行

    工信部新修改的《机动车运行安全技术条件》要求自2022年1月起,国内所有新生产的乘用车强制要求配备汽车事件数据记录器(EDR)。EDR记录车辆事故前后的数据,被称为汽车的“黑匣子”。

    安森美智能感知部汽车感知分部技术和产品战略高级经理Sergey Velichko介绍, 欧洲新车评估组织(NCAP)和世界上许多其他汽车安全管理机构及其法规要求使用多种感知方式和控制系统,以提供更高的驾驶安全等级。行车事件记录器(EDR)是朝这方向发展的整体方案的一部分。能否在事件发生之前、期间和之后,保存有关汽车和驾驶员状态的数据是最重要的,这将使安全机构能根据可核实的数据成功地进行监管,并解析情况,这对涉事各方和保险公司都有利。

    Sergey Velichko表示,我们将看到围绕EDR的更多法规和法律,作为整个汽车安全的一部分,并最终成为这种安全系统的一个组成部分。这种发展有利于各种类型的汽车半导体,为更高的汽车电子含量提供基础(安全功能),包括不同类型的传感器和更多的闪存,一切都由某种类型的汽车控制器控制。

    汽车“黑匣子”作为整体安全系统的一部分正在成为一种规范。EDR系统即使在最可怕和致命的车祸中也应能保持完好。同时,无论摄像头被用在车身还是车内,摄像头都将成为EDR的重要组成部分。在事故发生前和发生过程中,对周围环境和车内进行几秒钟的视频拍摄是至关重要的。更重要的是,在事故发生后立即使用的摄像头,特别是在汽车可能远程联接到紧急网络的情况下,对参与事故的汽车进行拍摄。

    安森美是图像传感器和功率半导体的领先供应商,图像传感器和功率半导体是每个汽车摄像头和控制系统的核心。安森美的高动态范围(HDR)100万、200万、300万和800万像素(MP)方案正赋能最先进的ADAS和自动驾驶系统及视觉系统。

    安森美发布了新一代HDR图像传感器,用于摄像头中提供双路输出,为ADAS系统同时提供高分辨率的800万像素图像,为EDR和扩增实境显示提供200万像素图像。安森美希望最新的传感器将有助于实现更高的安全水平。

    自动驾驶升级,传感器用量和分辨率双管齐下放

    汽车安全系统的目标是降低人为失误、提高交通运输效率和道路通行能力等,在该领域,以先进驾驶辅助系统ADAS为基础,车企相继推出更高级的自动驾驶(AD)车型。

    Sergey Velichko表示,不同的传感器是ADAS或AD系统的“眼睛”和“耳朵”,具有各自独特功能,它们通过重叠类似的功能,提供异质性的冗余。例如,摄像头只提供颜色、确切的形状和纹理信息,而雷达则提供关于道路上不同物体的距离、方向和速度信息。摄像头和雷达一起可提供ADAS和AD系统所需的所有信息。激光雷达(LiDAR)和夜视摄像头可提供补充的冗余信息,特别是在具挑战的天气和照明条件下。

    ADAS和AD系统发展的一般趋势是每辆车都有更多的这些传感器模式——从目前L2自动驾驶的一个、两个或三个摄像头,到L3和L3以上汽车的六个、十个、十二个或更多的摄像头。同样,对于传统雷达和LiDAR来说,更多的这些设备被用于感知汽车周围所有角落的远处和近处。

    另一个趋势是,所有这些传感器需要更高的分辨率,这是整个汽车行业从L2到L3和更高水平的自动驾驶的主要驱动力。

    安森美将继续看到在每辆汽车中装配更高分辨率和更多传感器的趋势,直到达到L5自动驾驶。例如,汽车图像传感器刚刚大规模过渡到800万像素的分辨率,这正成为一种规范。安森美看到在未来几年,市场将开始需要1200万像素和1600万像素图像传感器。安森美还看到,500万像素和800万像素的图像传感器正在被用于座舱应用。

    另一方面,安森美看到经济因素在推动发展。所有具有多种传感器模式的新方案都应该使成本/价格降低到可接受的范围。安森美看到雷达和LiDAR的情况尤其如此,它们的价格已大幅下降,并试图赶上汽车摄像头的可负担性。

    总而言之,对于汽车摄像头来说,一方面,安森美看到了更高分辨率的趋势,另一方面,其价格应保持在相同的可负担范围内。这推动了图像传感器朝更小像素发展,小像素传感器的最大挑战是在低光照和汽车高温下提供更好的性能。

    安森美的最新一代图像传感器具有更小的2.1 ?m像素,比现有3 ?m方案提供更胜一筹的性能,它们具有极佳的微光性能、HDR超过150 dB、并减少LED闪烁、提供无可比拟的色彩保真度和图像清晰度。安森美希望这些新的传感器将有助于追求性能更好的ADAS和AD系统。

    智能座舱盛行,新用例受益于图像传感器

    智能座舱目前是车企和半导体厂商发力焦点,往往以更先进的人机交互、视听娱乐、信息显示等技术带动消费观念升级,产业链包含车机、液晶仪表、HUD等。

    安森美长期以来一直为座舱驾驶员监控和乘员监控摄像头提供图像传感器方案。这些摄像头用于监控驾驶员的瞌睡和注意力、安全带的位置、是否有儿童在座位上、哨兵报警系统以及其他重要功能。

    一个普遍趋势是,许多这些功能正在被合并到一个或几个更高分辨率的500万像素和800万像素的座舱摄像头中。此外,新的应用正在被引入汽车座舱,如视频会议、社交互动、无匙进入和驾驶等。

    所有新应用正在成为主流,这得益于开发更小像素的图像传感器、特殊照明器件和电源方案等等的创新。我们现在看到的极有意义的发展是,在所有这些应用中越来越多地使用卷帘快门高分辨率HDR图像传感器。安森美采用特殊的彩色滤光片和优化的近红外性能,以负担得起的价位,为座舱应用定制更新的传感器来推动市场的发展。

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
安森美推出业界领先的模拟和混合信号平台
  Treo平台基于65纳米节点的BCD工艺技术,支持同行业领先的1-90V宽电压范围和高达175°C的工作温度  Treo平台将帮助客户简化设计流程,降低系统成本,并加快在汽车、医疗、工业、AI数据中心等领域解决方案的上市速度  安森美现可提供基于Treo平台构建的多个产品系列样品,包括电压转换器、超低功耗模拟前端(AFE)、LDO、超声波传感器、多相控制器和单对以太网控制器  基于该平台构建的产品将在安森美(onsemi)位于纽约州East Fishkill的世界级300mm工厂制造  近日,安森美(onsemi,纳斯达克股票代号:ON)宣布推出Treo平台,这是一个采用先进的65nm节点的BCD(Bipolar-CMOS-DMOS)工艺技术构建的模拟和混合信号平台。该平台为安森美广泛的电源和感知解决方案奠定了强大的基础,包括高性能和低功耗感知、高效电源管理和专用通信器件。利用该可扩展的单一解决方案,客户可以简化和加快现有应用的产品开发,并快速把握新兴市场机遇。  当今汽车、工业和AI数据中心市场对电力的需求不断增加,同时环保法规也更加严格,促使这些行业需要提高能效,并在终端应用中也要求更高的性能和功能。此外,医疗可穿戴设备等低功耗设备正变得越来越复杂,需要更智能和更高能效来改善个人护理并降低设备成本。这就需要高度集成、先进的电源和感知解决方案,能够在提供更强智能化的同时,在整个功率范围实现更高的能效。  Treo平台在满足这些日益增长的需求方面具有得天独厚的优势,它不仅具有卓越的性能和功能,还能在领先的节点上支持同行业领先的宽电压范围。基于Treo平台制造的产品可在精度、性能和能效方面实现显著提升,从而改善功能、安全性和整个生命周期的质量。例如:  在汽车领域,高性能超声波传感器可将精度提高两倍,这意味着在泊车辅助应用中,它们可以探测到距离车辆更近的物体。由于具备探测更近距离物体的能力,泊车辅助系统可以帮助驾驶员在泊车时更有效地避开障碍物,从而提供更佳的防撞功能并提高整体安全性。  在医疗健康领域,用于连续血糖监测仪(CGM)的超低功耗模拟前端(AFE)可以更精确地测量小至纳安(nA)级的电流。这种精度对于检测血糖传感器产生的微小信号、确保准确的血糖读数至关重要。通过将多种功能集成到单个紧凑型芯片中,该平台能够将所需空间减半,并将电池寿命延长至数周。这意味着整个CGM 设备的体积更小,佩戴更舒适,同时减少了更换次数以节省医疗费用。  在数据中心应用中,Treo平台将使得安森美的智能功率级更紧凑,有助于提高向 GPU和CPU供电的能效。这可以减少冷却需求并大幅节能,从而降低运营成本,减少对环境的影响,实现可持续发展。  Treo平台采用类似系统单芯片(SoC)的模块化架构,拥有一套用于构成计算、电源管理、感知和通信子系统的不断演进且稳健的IP构建模块。Treo平台采用65纳米工艺节点,具有先进的数字处理能力和更好的模拟IP性能。凭借这些能力,该平台可以提供本地智能化和计算功能,实现灵活配置,并显著提高终端应用的性能和精度。此外,该平台支持业界领先的1-90V宽电压范围和高达175°C的工作温度,使客户能够集成从低功耗到高功耗的一系列功能。这些功能增强了安森美交付优化解决方案和定制产品组合的能力,使客户能够以前所未有的速度将产品推向市场。  安森美现可提供基于Treo平台的初始产品系列样品,包括电压转换器、超低功耗AFE、LDO、超声波传感器、多相控制器和单对以太网控制器。到2025年,安森美将提供更广泛的产品系列,增加更多系统级价值,包括:高性能传感器、DC-DC转换器、汽车LED驱动器、电气安全IC、连接产品等。
2024-11-12 11:06 阅读量:214
17.6亿!安森美最新业绩出炉
  据最新数据,安森美半导体第三季度营收环比增长2%至17.6亿美元,符合预期;非公认会计准则每股收益为0.99美元,同比增长0.02美元;调整后营业利润为4.965亿美元,超出分析师预期的4.834亿美元。  其中,汽车收入环比增长5%,主要由碳化硅和ADAS图像传感器驱动。工业收入环比下降6%,同比下降29%。毛利率保持强劲,为45.4%,自由现金流环比增长41%。  安森美半导体总裁兼首席执行官Hassane El-Khoury表示,尽管业绩超出预期,公司仍将专注于在当前环境下通过执行和审慎的财务管理实现持续业绩。随着主要市场的电力需求持续扩增以及效率要求成为最优先考虑目标,安森美将透过投资以扩大在汽车、工业和人工智能(AI)数据中心市场的占有率。  Hassane El-Khoury在 2020 年接任首席执行官后,安森美一直在增加对碳化硅的投资,碳化硅是电动汽车和数据中心的关键部件。El-Khoury 谈到数据中心时表示:“我们赢得了北美四大超大规模运营商中的三家的设计胜利,预计将在 2025 年为收入做出贡献。”  展望未来,该公司预计第四季度营收为17.1至18.1亿美元,预期为17.8亿美元,每股收益为0.92至1.04美元,分析师预期为1.00美元。  德州仪器也在稍早公布了第三季度财报,业绩也得到环比增长的走势。德州仪器第三季度营收为41.5 亿美元,环比增长 9%,超出分析师预期的41.2亿美元,净利润为13.6 亿美元,每股收益为1.47 美元。  虽然德州仪器认为工业市场疲软,但其它终端市场已经呈现回暖,如智能手机和PC供应商的订单有所改善,推动了德州仪器半导体(用于电力电子设备)的销售表现,该领域业绩呈现环比增长。德州仪器的其他终端市场包括汽车、个人电子及通讯设备领域。  值得注意的是,德州仪器指出,第3季中国车用业绩创新高,电动车是主要成长动能,个人消电、通讯设备与企业系统三个市场呈现周期性复苏,第3季通常是个人电子最旺季,未来整体业绩关键仍在于工业与车用(中国以外市场)的状况,工业目前仍在持续调整库存、但处于谷底附近。
2024-10-29 13:00 阅读量:389
从几大典型场景,看安森美赋能边缘智能应用的高性能“产品力”
  在数字化时代,海量数据的产生已经成为常态,从智能手机到物联网设备,数据源已经无处不在。传统的云计算模式虽然强大,但也存在着延迟、带宽和数据隐私等问题。边缘智能利用分布式计算,将AI算法和数据处理推向数据源附近的边缘设备,以实现低延迟、高效率和实时决策,这便是其兴起之由来。  边缘智能现阶段在多个领域都具有潜在的应用价值,例如工业自动化领域实现智能制造提工厂设备的效率和可维护性、在智能交通领域实现高级驾驶辅助与道路环境监控、医疗保健领域实现远程健康监护等。作为全球半导体行业的佼佼者,安森美(onsemi)也凭借其在图像传感器、低功耗蓝牙MCU以及助听器SoC产品设计的深厚技术积累,助力终端系统实现更智能的决策,为边缘智能的广泛应用铺设基石。  引领视觉系统革命,图像传感器开启智能视觉时代  边缘智能终端系统应能够实时地处理和分析数据,以便对环境和用户需求做出迅速响应,以图像传感器为例,随着技术的飞速发展,现代图像传感器被要求赋予更多智能化特性,不仅仅是视觉信息的捕捉者,更是智能分析与决策的前端执行者,便是边缘智能趋势的直观体现。  尽管边缘智能具有巨大的潜力,但也面临着一系列技术挑战,在智能可穿戴、智能家居乃至不断衍生出的新兴AI等细分应用领域,视觉系统便需要以尽可能低的成本、尺寸、功耗提供更高的分辨、理解和判断能力。安森美的图像传感器技术在全球汽车和工业市场占据领先地位,其核心竞争力在于智能感知能力的深度优化,Hyperlux LP系列传感器功耗超低,支持内置的运动侦测功能,可以只需要在侦测到运动物体时快速唤醒系统工作,进一步优化了系统的功耗,内部采用了堆栈式架构设计,能最大限度地减少产品体积,最小型号小如一粒米。  以AR0822传感器为典型,其内置了高动态范围融合算法和运动物体捕捉算法,能够在保证图像质量的同时,大大降低系统资源的消耗,支持多种多次曝光合成线性化拟合功能——DLO (Digital Lateral Overflow) 以及SCMAX (Smooth Combination Max) 智能拟合,这种模式降低了多次曝光合成时的亮度临界区域的噪声,实现了120dB的图像数据输出,有效减少了后端处理器的接收数据和处理时间,提升了图像细节的呈现效果。此外,AR0822还具备增强的近红外灵敏度和像素合并(binning)/开窗输出(windowing)等精密的摄像功能。  更进一步,结合深度学习和神经网络技术的图像传感器设计正引领着智能感知的新浪潮,这些传感器通过集成或紧密配合专用的AI处理单元,能在边缘侧直接执行复杂的目标识别、分类甚至预测任务。为了在更复杂多样的环境中更精准、快速的输出场景信息,安森美的图像传感器未来将会集成更高分辨率,更快速率,嵌入更多的智能算法甚至深度算法、以及非可见光波段的检测等,为边缘智能带来更精美、更细致的图像。  低功耗蓝牙构建边缘智能设备连接生态  由于边缘智能硬件的实时性要求极高,蓝牙低功耗(BLE)技术已经成为当前最热门的电子产品连接技术之一,广泛应用于消费电子、工业、汽车、医疗保健、计算机、智能建筑等领域,市场发展空间极为惊人。安森美推出的蓝牙低功耗5.2无线微控制器RSL10和最新RSL15低功耗蓝牙芯片,通过采用先进的半导体工艺和双核架构,确保了实时性要求较高的应用能够在终端层面完成相关计算,避免了数据传输至云端处理产生的时延。这一设计思路不仅优化了系统的整体能效,还确保了数据处理的即时性和系统的自主性。  低功耗蓝牙MCU方案充分利用了蓝牙标准的特性,如更高的数据传输速率、更远的传输距离和广播数据扩展功能,使得它们成为物联网设备,尤其是那些依赖电池供电智能设备的理想选择,极大地丰富边缘设备的通信能力和应用场景,包括设备资产监控,精准的定位服务在远程医疗场景等,在保持长时间运行的同时,快速响应用户指令或环境变化,执行数据采集、简单分析乃至决策任务,而无需频繁与云端交互,从而大幅降低了功耗,延长了设备的工作周期。  另一个典型的应用案例便是安森美近期发布的先进的微型AFE CEM102,可高精度测量电化学信息和安培电流,其设计为与RSL15蓝牙5.2认证无线微控制器配合使用,与单独的方案相比,该组合方案精度更高、噪声更小且功耗更低,能简化物料单并提高配置灵活性,最终释放更多开发资源。更重要的是,该方案的灵活性使其不仅适用于基于电化学测量的传感器,还能用于需准确测量小电流的多种传感器,让设计人员能够为传感应用开发出精度更高、功耗更低、外形更紧凑的边缘智能设备,例如可穿戴医疗监护方案进一步改善用户体验,真正将智能决策推向了设备边缘。  健康关怀升级,助听器SoC设计的智能芯意  边缘智能的浪潮同样也席卷了医疗市场,尤其是随着人口老龄化,用户对智能化诊疗体验需求的不断提升,个性化医护设备如助听器的设计不再是简单的音频放大组件,而需要变得更为专业及智能,从而进化为集成了高级数字信号处理、人工智能算法与低功耗管理的微型计算平台。通过采用先进的AI算法,助听器最好能够实时分析周围环境声音,智能识别并增强语音信号,同时有效抑制背景噪音,使得佩戴者即便在嘈杂环境下也能享受到清晰、自然的对话体验。这种智能化的处理能力直接在助听器内部完成,无需依赖外部云服务,既保证了数据处理的即时性,又保护了用户的隐私安全,充分彰显了边缘智能在提升用户体验与保护个人隐私方面的双重价值。  安森美拥有30多年的助听器芯片设计经验,是行业内领先的助听器芯片供应商,打造了一系列先进的专业数字助听器/OTC辅听方案,包括Ezairo 7160、Ezairo 8300/8310、J10/J20低功耗蓝牙无线OTC等平台。针对个性化与智能化的行业需求,安森美的助听器解决方案与时俱进,从早期的130nm到现在的22nm工艺,从双核到6核,确保方案在性能、功耗和延时方面都得到了较大的提升,比如在语音延迟方面,安森美的主流方案可以做到3ms以下。此外由于蓝牙低功耗技术的发展,带蓝牙功能的无线助听器方案日渐流行,比如J10/Ezairo7160就是典型的无线助听器解决方案。  Ezairo 8300/8310则更适应未来助听器功能需求,Ezairo8300/8310的ADC位数更高,在常规处理基础上,扩展到了6核解决方案,处理能力提升了一倍以上。其中内置了一颗NNA神经网络加速器,可解决AI离线计算的需求,在低功耗状态下能够进行语音唤醒、调整音量、基本参数调整等本地处理,甚至可以根据用户听力曲线和使用情况,结合用户使用助听器的习惯,通过深度学习的算法来实现自动适配功能。另外,传统的环境场景分类功能靠特定算法来实现,如果有了神经网络加速器,环境分类算法就会更灵活,可以实现更加精准的环境场景识别和切换。AI功能的引入,可以提升对不同应用场景的自动切换,并增加了自动侦测语音阵列,可以更好地让使用者接收到有价值的语音而不受环境噪音的干扰。  未来,随着端侧设备变得更加强大和智能,边缘智能也将在智能家居、自动驾驶和医疗保健等领域持续发挥关键作用扩大应用市场。安森美凭借深厚的技术积累和市场洞察,从硬件到软件,从产品到解决方案全面布局,无论是提升智能感知的精度与效率,还是优化数据处理的即时性与能耗,都在不断突破创新为用户提供更高效、更可靠的智能解决方案,与客户共同推动边缘智能技术的边界,开启一个更加智能互联的世界。
2024-09-14 17:53 阅读量:492
安森美发布升级版功率模块,助力太阳能发电和储能的发展
  今日,安森美 (onsemi) 推出采用 F5BP 封装的最新一代硅和碳化硅混合功率集成模块 (PIM),非常适合用于提高大型太阳能组串式逆变器或储能系统 (ESS) 的功率。与前几代产品相比,这些模块在相同尺寸下提供了更高的功率密度和效率,将太阳能逆变器的总系统功率从 300 kW提高到 350 kW。这意味着,使用最新一代模块的装机容量为一千兆瓦的大型太阳能发电场,每小时可实现近两兆瓦的节能效果,相当于每年为超过 700 户家庭供电。此外,要达到与上一代产品相同的功率,所需的模块数量更少,可将功率器件的元器件成本降低 25% 以上。  由于太阳能发电的平准化能源成本 (LCOE) 最低,太阳能正日益成为全球可再生能源发电的首选。为了弥补太阳能发电的不稳定性,公用事业运营商也在增设大型电池储能系统 (BESS) ,以确保电网的稳定供能。为了支持这种系统组合,制造商和公用事业公司需要能够提供最高效率和可靠电力转换的解决方案。每提高 0.1% 的效率,对于每千兆瓦装机容量,每年可节省 25 万美元的运营成本。  “作为一种依赖阳光的波动性能源,我们需要不断提高系统效率和可靠性,并采用先进储能解决方案,以确保全球电网在电力需求高峰期和非高峰期的稳定性和可靠性。”安森美电源方案事业群工业电源部副总裁 Sravan Vanaparthy 表示,“更高效的基础设施会促进采用,并确保随着更多太阳能发电设施的建成,减少能源浪费,推动我们在摆脱化石燃料的道路上不断前进。”  F5BP-PIM集成了1050V FS7 IGBT和1200V D3 EliteSiC二极管,实现高电压和大电流转换的同时降低功耗并提高可靠性。FS7 IGBT 关断损耗低,可将开关损耗降低达 8%,而EliteSiC二极管则提供了卓越的开关性能,与前几代产品相比,导通压降 (VF) 降低了15%。  这些PIM包含了一种创新的I型中点箝位 (INPC) 拓扑结构的逆变器模块和飞跨电容拓扑结构的升压模块。这些模块还使用了优化的电气布局和先进的直接铜键合 (DBC) 基板,以降低杂散电感和热阻。此外,铜基板进一步将结到散热片的热阻降低了9.3%,确保模块在重载下保持冷却。这种热管理对于保持模块的效率和使用寿命至关重要,使其在需要可靠和持续供电的苛刻应用中非常有效。
2024-08-28 14:54 阅读量:515
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
BD71847AMWV-E2 ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
MC33074DR2G onsemi
型号 品牌 抢购
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
TPS63050YFFR Texas Instruments
BP3621 ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。