<span style='color:red'>安森美</span>将收购碳化硅JFET技术,以增强其针对人工智能数据中心的电源产品组合
<span style='color:red'>安森美</span>推出业界领先的模拟和混合信号平台
  Treo平台基于65纳米节点的BCD工艺技术,支持同行业领先的1-90V宽电压范围和高达175°C的工作温度  Treo平台将帮助客户简化设计流程,降低系统成本,并加快在汽车、医疗、工业、AI数据中心等领域解决方案的上市速度  安森美现可提供基于Treo平台构建的多个产品系列样品,包括电压转换器、超低功耗模拟前端(AFE)、LDO、超声波传感器、多相控制器和单对以太网控制器  基于该平台构建的产品将在安森美(onsemi)位于纽约州East Fishkill的世界级300mm工厂制造  近日,安森美(onsemi,纳斯达克股票代号:ON)宣布推出Treo平台,这是一个采用先进的65nm节点的BCD(Bipolar-CMOS-DMOS)工艺技术构建的模拟和混合信号平台。该平台为安森美广泛的电源和感知解决方案奠定了强大的基础,包括高性能和低功耗感知、高效电源管理和专用通信器件。利用该可扩展的单一解决方案,客户可以简化和加快现有应用的产品开发,并快速把握新兴市场机遇。  当今汽车、工业和AI数据中心市场对电力的需求不断增加,同时环保法规也更加严格,促使这些行业需要提高能效,并在终端应用中也要求更高的性能和功能。此外,医疗可穿戴设备等低功耗设备正变得越来越复杂,需要更智能和更高能效来改善个人护理并降低设备成本。这就需要高度集成、先进的电源和感知解决方案,能够在提供更强智能化的同时,在整个功率范围实现更高的能效。  Treo平台在满足这些日益增长的需求方面具有得天独厚的优势,它不仅具有卓越的性能和功能,还能在领先的节点上支持同行业领先的宽电压范围。基于Treo平台制造的产品可在精度、性能和能效方面实现显著提升,从而改善功能、安全性和整个生命周期的质量。例如:  在汽车领域,高性能超声波传感器可将精度提高两倍,这意味着在泊车辅助应用中,它们可以探测到距离车辆更近的物体。由于具备探测更近距离物体的能力,泊车辅助系统可以帮助驾驶员在泊车时更有效地避开障碍物,从而提供更佳的防撞功能并提高整体安全性。  在医疗健康领域,用于连续血糖监测仪(CGM)的超低功耗模拟前端(AFE)可以更精确地测量小至纳安(nA)级的电流。这种精度对于检测血糖传感器产生的微小信号、确保准确的血糖读数至关重要。通过将多种功能集成到单个紧凑型芯片中,该平台能够将所需空间减半,并将电池寿命延长至数周。这意味着整个CGM 设备的体积更小,佩戴更舒适,同时减少了更换次数以节省医疗费用。  在数据中心应用中,Treo平台将使得安森美的智能功率级更紧凑,有助于提高向 GPU和CPU供电的能效。这可以减少冷却需求并大幅节能,从而降低运营成本,减少对环境的影响,实现可持续发展。  Treo平台采用类似系统单芯片(SoC)的模块化架构,拥有一套用于构成计算、电源管理、感知和通信子系统的不断演进且稳健的IP构建模块。Treo平台采用65纳米工艺节点,具有先进的数字处理能力和更好的模拟IP性能。凭借这些能力,该平台可以提供本地智能化和计算功能,实现灵活配置,并显著提高终端应用的性能和精度。此外,该平台支持业界领先的1-90V宽电压范围和高达175°C的工作温度,使客户能够集成从低功耗到高功耗的一系列功能。这些功能增强了安森美交付优化解决方案和定制产品组合的能力,使客户能够以前所未有的速度将产品推向市场。  安森美现可提供基于Treo平台的初始产品系列样品,包括电压转换器、超低功耗AFE、LDO、超声波传感器、多相控制器和单对以太网控制器。到2025年,安森美将提供更广泛的产品系列,增加更多系统级价值,包括:高性能传感器、DC-DC转换器、汽车LED驱动器、电气安全IC、连接产品等。
关键词:
发布时间:2024-11-12 11:06 阅读量:323 继续阅读>>
17.6亿!<span style='color:red'>安森美</span>最新业绩出炉
  据最新数据,安森美半导体第三季度营收环比增长2%至17.6亿美元,符合预期;非公认会计准则每股收益为0.99美元,同比增长0.02美元;调整后营业利润为4.965亿美元,超出分析师预期的4.834亿美元。  其中,汽车收入环比增长5%,主要由碳化硅和ADAS图像传感器驱动。工业收入环比下降6%,同比下降29%。毛利率保持强劲,为45.4%,自由现金流环比增长41%。  安森美半导体总裁兼首席执行官Hassane El-Khoury表示,尽管业绩超出预期,公司仍将专注于在当前环境下通过执行和审慎的财务管理实现持续业绩。随着主要市场的电力需求持续扩增以及效率要求成为最优先考虑目标,安森美将透过投资以扩大在汽车、工业和人工智能(AI)数据中心市场的占有率。  Hassane El-Khoury在 2020 年接任首席执行官后,安森美一直在增加对碳化硅的投资,碳化硅是电动汽车和数据中心的关键部件。El-Khoury 谈到数据中心时表示:“我们赢得了北美四大超大规模运营商中的三家的设计胜利,预计将在 2025 年为收入做出贡献。”  展望未来,该公司预计第四季度营收为17.1至18.1亿美元,预期为17.8亿美元,每股收益为0.92至1.04美元,分析师预期为1.00美元。  德州仪器也在稍早公布了第三季度财报,业绩也得到环比增长的走势。德州仪器第三季度营收为41.5 亿美元,环比增长 9%,超出分析师预期的41.2亿美元,净利润为13.6 亿美元,每股收益为1.47 美元。  虽然德州仪器认为工业市场疲软,但其它终端市场已经呈现回暖,如智能手机和PC供应商的订单有所改善,推动了德州仪器半导体(用于电力电子设备)的销售表现,该领域业绩呈现环比增长。德州仪器的其他终端市场包括汽车、个人电子及通讯设备领域。  值得注意的是,德州仪器指出,第3季中国车用业绩创新高,电动车是主要成长动能,个人消电、通讯设备与企业系统三个市场呈现周期性复苏,第3季通常是个人电子最旺季,未来整体业绩关键仍在于工业与车用(中国以外市场)的状况,工业目前仍在持续调整库存、但处于谷底附近。
关键词:
发布时间:2024-10-29 13:00 阅读量:506 继续阅读>>
从几大典型场景,看<span style='color:red'>安森美</span>赋能边缘智能应用的高性能“产品力”
  在数字化时代,海量数据的产生已经成为常态,从智能手机到物联网设备,数据源已经无处不在。传统的云计算模式虽然强大,但也存在着延迟、带宽和数据隐私等问题。边缘智能利用分布式计算,将AI算法和数据处理推向数据源附近的边缘设备,以实现低延迟、高效率和实时决策,这便是其兴起之由来。  边缘智能现阶段在多个领域都具有潜在的应用价值,例如工业自动化领域实现智能制造提工厂设备的效率和可维护性、在智能交通领域实现高级驾驶辅助与道路环境监控、医疗保健领域实现远程健康监护等。作为全球半导体行业的佼佼者,安森美(onsemi)也凭借其在图像传感器、低功耗蓝牙MCU以及助听器SoC产品设计的深厚技术积累,助力终端系统实现更智能的决策,为边缘智能的广泛应用铺设基石。  引领视觉系统革命,图像传感器开启智能视觉时代  边缘智能终端系统应能够实时地处理和分析数据,以便对环境和用户需求做出迅速响应,以图像传感器为例,随着技术的飞速发展,现代图像传感器被要求赋予更多智能化特性,不仅仅是视觉信息的捕捉者,更是智能分析与决策的前端执行者,便是边缘智能趋势的直观体现。  尽管边缘智能具有巨大的潜力,但也面临着一系列技术挑战,在智能可穿戴、智能家居乃至不断衍生出的新兴AI等细分应用领域,视觉系统便需要以尽可能低的成本、尺寸、功耗提供更高的分辨、理解和判断能力。安森美的图像传感器技术在全球汽车和工业市场占据领先地位,其核心竞争力在于智能感知能力的深度优化,Hyperlux LP系列传感器功耗超低,支持内置的运动侦测功能,可以只需要在侦测到运动物体时快速唤醒系统工作,进一步优化了系统的功耗,内部采用了堆栈式架构设计,能最大限度地减少产品体积,最小型号小如一粒米。  以AR0822传感器为典型,其内置了高动态范围融合算法和运动物体捕捉算法,能够在保证图像质量的同时,大大降低系统资源的消耗,支持多种多次曝光合成线性化拟合功能——DLO (Digital Lateral Overflow) 以及SCMAX (Smooth Combination Max) 智能拟合,这种模式降低了多次曝光合成时的亮度临界区域的噪声,实现了120dB的图像数据输出,有效减少了后端处理器的接收数据和处理时间,提升了图像细节的呈现效果。此外,AR0822还具备增强的近红外灵敏度和像素合并(binning)/开窗输出(windowing)等精密的摄像功能。  更进一步,结合深度学习和神经网络技术的图像传感器设计正引领着智能感知的新浪潮,这些传感器通过集成或紧密配合专用的AI处理单元,能在边缘侧直接执行复杂的目标识别、分类甚至预测任务。为了在更复杂多样的环境中更精准、快速的输出场景信息,安森美的图像传感器未来将会集成更高分辨率,更快速率,嵌入更多的智能算法甚至深度算法、以及非可见光波段的检测等,为边缘智能带来更精美、更细致的图像。  低功耗蓝牙构建边缘智能设备连接生态  由于边缘智能硬件的实时性要求极高,蓝牙低功耗(BLE)技术已经成为当前最热门的电子产品连接技术之一,广泛应用于消费电子、工业、汽车、医疗保健、计算机、智能建筑等领域,市场发展空间极为惊人。安森美推出的蓝牙低功耗5.2无线微控制器RSL10和最新RSL15低功耗蓝牙芯片,通过采用先进的半导体工艺和双核架构,确保了实时性要求较高的应用能够在终端层面完成相关计算,避免了数据传输至云端处理产生的时延。这一设计思路不仅优化了系统的整体能效,还确保了数据处理的即时性和系统的自主性。  低功耗蓝牙MCU方案充分利用了蓝牙标准的特性,如更高的数据传输速率、更远的传输距离和广播数据扩展功能,使得它们成为物联网设备,尤其是那些依赖电池供电智能设备的理想选择,极大地丰富边缘设备的通信能力和应用场景,包括设备资产监控,精准的定位服务在远程医疗场景等,在保持长时间运行的同时,快速响应用户指令或环境变化,执行数据采集、简单分析乃至决策任务,而无需频繁与云端交互,从而大幅降低了功耗,延长了设备的工作周期。  另一个典型的应用案例便是安森美近期发布的先进的微型AFE CEM102,可高精度测量电化学信息和安培电流,其设计为与RSL15蓝牙5.2认证无线微控制器配合使用,与单独的方案相比,该组合方案精度更高、噪声更小且功耗更低,能简化物料单并提高配置灵活性,最终释放更多开发资源。更重要的是,该方案的灵活性使其不仅适用于基于电化学测量的传感器,还能用于需准确测量小电流的多种传感器,让设计人员能够为传感应用开发出精度更高、功耗更低、外形更紧凑的边缘智能设备,例如可穿戴医疗监护方案进一步改善用户体验,真正将智能决策推向了设备边缘。  健康关怀升级,助听器SoC设计的智能芯意  边缘智能的浪潮同样也席卷了医疗市场,尤其是随着人口老龄化,用户对智能化诊疗体验需求的不断提升,个性化医护设备如助听器的设计不再是简单的音频放大组件,而需要变得更为专业及智能,从而进化为集成了高级数字信号处理、人工智能算法与低功耗管理的微型计算平台。通过采用先进的AI算法,助听器最好能够实时分析周围环境声音,智能识别并增强语音信号,同时有效抑制背景噪音,使得佩戴者即便在嘈杂环境下也能享受到清晰、自然的对话体验。这种智能化的处理能力直接在助听器内部完成,无需依赖外部云服务,既保证了数据处理的即时性,又保护了用户的隐私安全,充分彰显了边缘智能在提升用户体验与保护个人隐私方面的双重价值。  安森美拥有30多年的助听器芯片设计经验,是行业内领先的助听器芯片供应商,打造了一系列先进的专业数字助听器/OTC辅听方案,包括Ezairo 7160、Ezairo 8300/8310、J10/J20低功耗蓝牙无线OTC等平台。针对个性化与智能化的行业需求,安森美的助听器解决方案与时俱进,从早期的130nm到现在的22nm工艺,从双核到6核,确保方案在性能、功耗和延时方面都得到了较大的提升,比如在语音延迟方面,安森美的主流方案可以做到3ms以下。此外由于蓝牙低功耗技术的发展,带蓝牙功能的无线助听器方案日渐流行,比如J10/Ezairo7160就是典型的无线助听器解决方案。  Ezairo 8300/8310则更适应未来助听器功能需求,Ezairo8300/8310的ADC位数更高,在常规处理基础上,扩展到了6核解决方案,处理能力提升了一倍以上。其中内置了一颗NNA神经网络加速器,可解决AI离线计算的需求,在低功耗状态下能够进行语音唤醒、调整音量、基本参数调整等本地处理,甚至可以根据用户听力曲线和使用情况,结合用户使用助听器的习惯,通过深度学习的算法来实现自动适配功能。另外,传统的环境场景分类功能靠特定算法来实现,如果有了神经网络加速器,环境分类算法就会更灵活,可以实现更加精准的环境场景识别和切换。AI功能的引入,可以提升对不同应用场景的自动切换,并增加了自动侦测语音阵列,可以更好地让使用者接收到有价值的语音而不受环境噪音的干扰。  未来,随着端侧设备变得更加强大和智能,边缘智能也将在智能家居、自动驾驶和医疗保健等领域持续发挥关键作用扩大应用市场。安森美凭借深厚的技术积累和市场洞察,从硬件到软件,从产品到解决方案全面布局,无论是提升智能感知的精度与效率,还是优化数据处理的即时性与能耗,都在不断突破创新为用户提供更高效、更可靠的智能解决方案,与客户共同推动边缘智能技术的边界,开启一个更加智能互联的世界。
关键词:
发布时间:2024-09-14 17:53 阅读量:591 继续阅读>>
<span style='color:red'>安森美</span>发布升级版功率模块,助力太阳能发电和储能的发展
  今日,安森美 (onsemi) 推出采用 F5BP 封装的最新一代硅和碳化硅混合功率集成模块 (PIM),非常适合用于提高大型太阳能组串式逆变器或储能系统 (ESS) 的功率。与前几代产品相比,这些模块在相同尺寸下提供了更高的功率密度和效率,将太阳能逆变器的总系统功率从 300 kW提高到 350 kW。这意味着,使用最新一代模块的装机容量为一千兆瓦的大型太阳能发电场,每小时可实现近两兆瓦的节能效果,相当于每年为超过 700 户家庭供电。此外,要达到与上一代产品相同的功率,所需的模块数量更少,可将功率器件的元器件成本降低 25% 以上。  由于太阳能发电的平准化能源成本 (LCOE) 最低,太阳能正日益成为全球可再生能源发电的首选。为了弥补太阳能发电的不稳定性,公用事业运营商也在增设大型电池储能系统 (BESS) ,以确保电网的稳定供能。为了支持这种系统组合,制造商和公用事业公司需要能够提供最高效率和可靠电力转换的解决方案。每提高 0.1% 的效率,对于每千兆瓦装机容量,每年可节省 25 万美元的运营成本。  “作为一种依赖阳光的波动性能源,我们需要不断提高系统效率和可靠性,并采用先进储能解决方案,以确保全球电网在电力需求高峰期和非高峰期的稳定性和可靠性。”安森美电源方案事业群工业电源部副总裁 Sravan Vanaparthy 表示,“更高效的基础设施会促进采用,并确保随着更多太阳能发电设施的建成,减少能源浪费,推动我们在摆脱化石燃料的道路上不断前进。”  F5BP-PIM集成了1050V FS7 IGBT和1200V D3 EliteSiC二极管,实现高电压和大电流转换的同时降低功耗并提高可靠性。FS7 IGBT 关断损耗低,可将开关损耗降低达 8%,而EliteSiC二极管则提供了卓越的开关性能,与前几代产品相比,导通压降 (VF) 降低了15%。  这些PIM包含了一种创新的I型中点箝位 (INPC) 拓扑结构的逆变器模块和飞跨电容拓扑结构的升压模块。这些模块还使用了优化的电气布局和先进的直接铜键合 (DBC) 基板,以降低杂散电感和热阻。此外,铜基板进一步将结到散热片的热阻降低了9.3%,确保模块在重载下保持冷却。这种热管理对于保持模块的效率和使用寿命至关重要,使其在需要可靠和持续供电的苛刻应用中非常有效。
关键词:
发布时间:2024-08-28 14:54 阅读量:595 继续阅读>>
<span style='color:red'>安森美</span>:OBC设计不断升级,揭秘如何适应更高功率等级和电压
  消费者需求不断攀升,电动汽车(EV)必须延长续航里程,方可与传统的内燃机(ICE)汽车相媲美。解决这个问题主要有两种方法:在不显著增加电池尺寸或重量的情况下提升电池容量,或提高主驱逆变器等关键高功率器件的运行能效。为应对电子元件导通损耗和开关损耗造成的巨大功率损耗,汽车制造商正在通过提高电池电压来增加车辆的续航里程。  由此,800 V 电池架构越来越普及,并可能最终取代目前的400 V 技术。然而,电池容量越大,所需的充电时间就越长,这正是车主的另一个顾虑,意味着若在抵达目的地前需中途充电,将要等待很长时间。  因此,就像需要提高电池电压一样,汽车整车厂商也必须跟上电动汽车车载充电器(OBC)的发展步伐,而首先要考虑的是必须支持800 V 电池架构和处理更高的电压。为此,现行的标准650 V 额定芯片元件需过渡到额定电压最高达1200 V 的芯片元件。此外,为加快电池充电速率,对更高额定功率OBC的需求也在日益增长。  消费者迫切需要更出色的性能  OBC能够将交流电转换为直流电,因而可以让汽车利用电网等交流电源进行充电。充电站的输出峰值会明显限制充电速度,同样的,OBC的峰值功率处理能力也是充电速度的一大影响因素。  在目前的充电基础设施中,充电桩分为三个等级:  1 级的最大功率为 3.6 kW  2 级的功率为 3.6 kW 到大约 22 kW ,与 OBC 的最大容量相当  3 级提供直流电,无需使用 OBC,功率为 50 kW 到 350+ kW  尽管速度较快的3级直流充电站已投入使用,但其在全球范围内分布有限,因此OBC仍然不可或缺。此外,许多企业正尽可能提高现有2级充电基础设施的性能并促进更高电压电池技术的采用,市场对更高能效OBC的需求预计仍将持续增长。  表1:OBC的不同功率等级及其对80 kWh 电池充电时间的影响  表1列举了常见的OBC功率等级及大致充电时间。为加快充电速度、满足消费者需求,行业已开始转向更强大的三相OBC。然而,电动汽车的实际充电时间取决于多个因素。  首先我们需要明确一点,充电并不是一个线性过程。当电池接近满容量(通常超过80%)时,充电速度会减慢,以保护电池健康。简单来说,电池电量越满,接受电能的速度就越慢。电动汽车通常不是满电状态,许多电动汽车制造商通常也不建议频繁待电量耗至0%再充满至100%,而是只需充一部分(例如最高充到80%),这样可显著缩短充电时间。此外,电气化趋势正逐渐延伸到公共汽车、货车、重型车辆和农业用车等各种车辆类型甚至是船舶,OBC还将继续发展,目标是实现22 kW 以上更高功率等级。  汽车整车厂商可以通过构建更强大的OBC来提高2级充电站的充电速度,但这需要利用经济高效且性能可靠的电子元件,来实现更高的电压(800 V,而非400 V)和更高的功率等级。  更高性能OBC的关键设计考虑因素  对于更高性能的OBC,除了额定功率和电池电压之外,还有许多因素需要考虑。其中包括散热管理、封装限制、器件成本、电磁兼容性(EMC)以及对双向充电的潜在需求。  谈到散热管理,很容易想到增加OBC的尺寸和重量。然而,这种简单的方案并不理想,因为电动汽车的空间有限,难以容纳过于庞大OBC,而且重量增加也会导致缩短车辆的续航里程。  800 V 电池架构可以带来诸多益处,例如减少导通损耗、提高性能、加快充电和电力输送速度等,但也为设计师带来了许多复杂难题:  器件供应:寻找适合 800 V 安全运转的器件可能会很困难。  降额以确保可靠性:即使是合格的器件也可能需要降额,也就是以低于最大容量的功率运转,以确保长期可靠性。  安全问题:更高电压的系统需要强大的绝缘和安全功能。  测试和验证:验证高电压系统更为复杂,可能需要专门的设备和专业知识。  为此,需要用到击穿电压更高的元件,对于MOSFET而言尤其如此。事实证明,在需要更快MOSFET开关的更高电压应用(例如OBC)中,改用高性能碳化硅(SiC)元件将大有裨益。开发PCB布局时,考虑电压等级也至关重要,因为可能需要相应地扩大元件间距和PCB走线之间的距离。同样,暴露于更高电压的其他器件(例如连接器、变压器、电容)也需要更高的额定值。  改进OBC设计,提升性能和功能  安森美(onsemi)是一家值得信赖的高功率汽车应用功率模块供应商,可以为向800 V 电池系统过渡提供强大支持。安森美先进的EliteSiC 1200 V MOSFET和汽车功率模块(APM)能够实现更高的功率密度,在汽车设计领域一直深受认可。  图2:EliteSiC 1200V MOSFET 采用TO247-4L封装,提供开尔文源极连接(第3根引线),可消除栅极驱动环路内共源极寄生电感的影响  APM32功率模块系列集成安森美先进的1200 V SiC 器件,针对800 V 电池架构进行了优化,更适用于高电压和功率级OBC。APM32系列包括用于功率因数校正(PFC)级的三相桥模块,例如采用1200 V 40 mΩ EliteSiC MOSFET(集成温度感测)的NVXK2VR40WDT2。该模块专为11 – 22 kW OBC 终端应用而设计。  相较于分立方案,APM32模块技术具有多种优势,包括尺寸更小、散热设计更佳、杂散电感更低、内部键合电阻更低、电流能力更强、EMC性能更好、可靠性更高等,从而有助于创建高性能双向OBC(图3)。这不仅能够增强车辆OBC的功能,还能让电动汽车充当移动的电池储能器。   图3的OBC功率级示例中包含升压型三相PFC和双向CLLC全桥转换器,用于提供必要的功率和电压处理及先进的双向充电功能。  在全球各地逐渐转向太阳能和风能等可持续能源之际,电网的电力供应有时可能供不应求。充满电的电动汽车能够作为重要的储能资源,用来支援电网的峰值需求,或者在建筑物主要电源受损的紧急情况下使用。利用安森美APM32等模块,OBC可以实现电动汽车电池的双向能量传输。由此,电池存储的能量可以短暂地为房屋供电,之后还能随时充电。  可靠的设计和供应  与一些将封装技术外包的竞争对手不同,安森美的APM系列均在内部设计和制造,因而能够更好地掌控散热优化。此外,安森美为制造商提供了一系列封装和制造选项,包括裸片、分立元件或模块,从而确保有合适的方案支持任何先进的OBC设计。  结论  OBC技术正蓬勃发展,不仅能帮助汽车制造商满足消费者对电动汽车的需求,还能有效应对800 V 电池架构等新技术趋势。利用安森美系统方案(例如APM32功率模块),汽车设计人员可以简化流程并有效满足新需求,从而在大量减少设计工作的同时,确保更高的质量、可靠性和供应链一致性。  此外,安森美还提供广泛的技术支持、仿真及其他电源方案,其中包含EliteSiC 1200 V M1和M3SMOSFET、EliteSiC 1200V D1和D3二极管,以及电隔离栅极驱动器、CAN收发器和可复位保险丝等配套器件,旨在助力实现全面、高性能的OBC设计。
关键词:
发布时间:2024-08-15 09:20 阅读量:719 继续阅读>>
<span style='color:red'>安森美</span>:利用Bluetooth®低功耗技术进行定位跟踪方案解析
  随着蓝牙低功耗(Bluetooth Low Energy,简称BLE)技术发展到5.2及更高版本,其中最重要的进步之一就是定位跟踪技术,该技术可在室内用于资产的移动和定位跟踪。  蓝牙测向方法包括无连接模式和面向连接模式,因其具有的这种多功能性,该技术可在各种不同的应用场景中得到运用。这种适应性为无线通信和定位服务带来了新的可能,有望在未来取得令人振奋的进步。  图1:零售店内的客流分析,显示热门行走路线  这项技术的主要市场之一是零售业,大型商店希望更好地了解顾客在店内的流动情况,从而最大程度地挖掘销售潜力。  除了零售业,资产追踪技术在工业效率提升方面也能产生深远影响。它可用于监控物料运输车辆,减少时间浪费,提高工作效率。该技术还可以用于驱动复杂的数字孪生(digital twins)系统,实现在虚拟环境中准确复制动作。  资产追踪不仅能提高效率,还能在确保安全方面发挥重要作用。在仓库和配送中心,跟踪标签的应用使员工和工业机器人能够安全共存,通过让机器人追踪员工的行动,消除了发生碰撞的可能。  基本系统设计原则  为了建立位置检测系统,需要在建筑物内(无论是零售店、仓库、医院、机场还是其他类型的建筑物)放置天线阵列。该阵列可以进行高精度的位置测量。  使用的方法可以是"到达角"(AoA)或"出发角"(AoD)。虽然两者都使用相同的射频(RF)信号测量,但信号处理和天线配置却各不相同。  图2:位置检测系统示意图  通常情况下,系统由三个主要部分组成:蓝牙发射器(AoA标签)、接收器/天线阵列(AoA定位器)以及角度和位置计算系统。工作时,AoA标签会发送固定频率扩展(constant tone extension,CTE)信号。  这种CTE信号以不断扩大的球形模式向外传播,并被天线接收。由于信号的波长/频率是已知的,接收器之间的距离也是已知的,因此可以使用相对简单的三角法计算信号的角度,从而根据信号到达每个天线时的相位差确定发射器的位置。  替代方法和更高的精确度  通过使用两对天线进行两次探测,就能以极高的精度三角定位出AoA标签的确切位置。  另一种无需角度测量的方法是三坐标法(trilateration)。这种方法基于使用蓝牙5.4的信道探测(Channel Sounding,CS)特性或超宽带(Ultra-Wideband,UWB)技术,测量飞行时间(Time-of-Flight,ToF)来得出距离。  CS也被称为高精度距离测量(HADM),许多人认为它是基于RSSI的距离测量的一种非常精确的替代方法。  安森美RSL15 AoA 解决方案  安森美推出的RSL15是一款通过蓝牙5.2认证的安全无线微控制器,专为包括工业、医疗和到达角定位(AoA)在内的超低功耗应用进行了优化。该器件基于一颗运行频率高达48 MHz 的Arm® Cortex®-M33处理器构建,并具备加密安全功能。它提供了业界极低的功耗水平,发射时的峰值电流仅为4.3 mA,在等待GPIO 唤醒的睡眠模式下更是降低至36 nA。RSL15微控制器旨在满足从零售业、临床环境、制造业和配送中心等广泛跟踪应用的需求。  安森美的AoA 解决方案在发射器(AoA标签)和扫描器/定位器中都使用了RSL15。这可以使用RSL15 和安森美的软件开发工具包(SDK)实现,或者,对于集成度更高的解决方案,可以使用集成了RSL15 的Murata 2EG 射频SIP 模块。  图3:安森美的端到端 AoA系统由多个模块组成  在系统中,发射器(Advertiser)生成CTE信号,由扫描器接收。由此产生的IQ 样本被发送到本地PC或云端运行的应用程序,以计算扫描器与标签之间的角度。然后将这些角度转换为笛卡尔坐标,并映射到二维或三维空间。  这两种应用的示例代码均可从安森美的网站上免费获取,同时还有一个功率估算工具,可根据电池寿命选择通信协议。  参与该项目的其他安森美合作伙伴还有CoreHW 和Unikie。CoreHW提供多达16个单端天线端口的天线阵列板。有一个AoA / AoD开关,用于选择天线以及连接射频和数字控制信号。  Unikie提供了一款专为实时追踪标签而设计的蓝牙低功耗(Bluetooth Low Energy,BLE)电子定位引擎。该引擎支持在边缘服务器或云端处理数据,既保证了灵活性也实现了成本效益(图4)。  图4:用于定位应用的Unikie 软件引擎  API接口促进了与企业系统的无缝集成,提供了访问复杂数据建模的能力。这样就能更深入地了解物料流向、利用率和行为模式,标志着基于位置的服务和资产管理取得了显著进步。  结语  要成功实现蓝牙低功耗测向,关键是解决方案要持久耐用且经济实惠。凭借业界功耗极低的安全蓝牙低功耗MCU,安森美技术走在了实现AoA 未来创新的前沿。
关键词:
发布时间:2024-08-12 09:35 阅读量:473 继续阅读>>
以创新为引擎,<span style='color:red'>安森美</span>推动数据中心能效革新
  随着数据中心为了满足人工智能(AI)计算的庞大处理需求而变得越来越耗电,提高能效变得至关重要。与一般的搜索引擎请求相比,搭载AI的引擎需要消耗超过10倍的电力。加快功率半导体的创新以改善能效是实现这些技术大趋势的关键。安森美(onsemi)的PowerTrench® T10系列和EliteSiC 650V MOSFET的强大组合可以显著降低能量转换过程中的功率损耗,将对下一代数据中心的需求产生积极的影响。  该方案在更小的封装尺寸下提供了无与伦比的能效和卓越的热性能。通过使用PowerTrench® T10系列和EliteSiC 650V解决方案,数据中心能够减少约1%的电力损耗。如果在全球的数据中心实施这一解决方案,每年可以减少约10太瓦时的能源消耗,相当于每年为近百万户家庭提供全年的用电量 。  EliteSiC 650V MOSFET提供了卓越的开关性能和更低的器件电容,可在数据中心和储能系统中实现更高的效率。与上一代产品相比,新一代SiC MOSFET的栅极电荷减半,并且将储存在输出电容(Eoss)和输出电荷(Qoss)中的能量均减少了44%。与超级结 (SJ) MOSFET 相比,它们在关断时没有拖尾电流,在高温下性能优越,能显著降低开关损耗。这使得客户能够在提高工作频率的同时减小系统元件的尺寸,从而全面降低系统成本。  PowerTrench® T10 系列专为处理对DC-DC功率转换级至关重要的大电流而设计,以紧凑的封装尺寸提供了更高的功率密度和卓越的热性能。这是通过屏蔽栅极沟槽设计实现的,该设计具有超低栅极电荷和小于 1 毫欧的导通电阻RDS(on)。此外,软恢复体二极管和较低的 Qrr 有效地减少了振铃、过冲和电气噪声,从而确保了在应力下的最佳性能、可靠性和稳健性。该组合解决方案还符合超大规模运营商所需的严格的开放式机架 V3 (ORV3) 基本规范,支持下一代大功率处理器。  安森美加速SiC创新  安森美提供智能电源和智能感知技术,加速推动汽车功能电子化和汽车安全、可持续电网、工业自动化以及5G和云基础设施等细分领域的变革创新。安森美位列《财富》美国500强,也被纳入纳斯达克100指数和标普500指数。  SiC是电动汽车和光伏逆变器等应用的关键技术。安森美是业内少有的端到端SiC制造商,包括 SiC 晶锭批量生长、晶圆制造、外延、器件制造、出色的集成模块和分立封装方案,掌控着从衬底到最终模块的每一个生产步骤,在保持产品质量和性能的同时还能优化成本、简化运营、优化效率并保证供应。  为推进全球电气化转型,安森美加速SiC创新,宣布计划在 2030 年前加速推出多款新一代SiC产品。最新推出的EliteSiC M3e MOSFET 能将电气化应用的关断损耗降低多达 50%,该平台采用经过实际验证的平面架构,以独特方式降低了导通损耗和开关损耗。由于能够在更高的开关频率和电压下运行,EliteSiC M3e MOSFET可有效降低电源转换损耗,这对于电动汽车动力系统、直流快速充电桩、太阳能逆变器和储能方案等广泛的汽车和工业应用至关重要。此外,EliteSiC M3e MOSFET 将促进数据中心向更高效、更高功率转变,以满足可持续人工智能引擎指数级增长的能源需求。  此外,安森美还提供更广泛的智能电源技术,包括栅极驱动器、DC-DC 转换器、电子保险丝等,并均可与 EliteSiC M3e 平台配合使用。通过这些安森美优化和协同设计的功率开关、驱动器和控制器的端到端一体化技术组合,可实现多项先进特性集成,并降低整体系统成本。  安森美因其在智能电源和智能感知技术领域的卓越贡献,已成功入围由elexcon 2024深圳国际电子展和电子发烧友网联合发起的年度领军企业奖。
关键词:
发布时间:2024-08-08 09:47 阅读量:589 继续阅读>>
<span style='color:red'>安森美</span>:被称为热泵电机控制“能效搭子”,这款IGBT有什么优势?
  热泵是一种既高效又环保的供暖方式,其可靠性和实用性已得到充分验证。它是推动全球向可持续供暖趋势发展的核心力量,运行所需的电力具有低排放的特点。在与传统锅炉、低排放氢能以及其他可再生能源和常规建筑系统相比时,能效是评估热泵的关键因素。  通过改用热泵,欧盟(EU)可以大幅减少用于取暖的天然气用量。由于俄罗斯与乌克兰之间持续冲突导致天然气价格涨至最高点,这也将有助于减少天然气的使用量。2021年全球热泵销售增长率超过15%,是前十年增长率的两倍。欧盟的销售额增长了惊人的35%,这是推动这一增长的主要因素。  预计2021-2026 年的复合年增长率(CAGR)为9.5%,全球热泵市场的收入将从2021 年的532 亿美元增至2026 年的835 亿美元。欧盟的热泵安装量预计将比2021 年大幅增长335%,到2030 年将超过670 万台。根据一份EIA 报告指出,到2030 年,全球热泵安装量将从2020 年的1.8 亿台增加到约6 亿台。  功率模块对提高热泵效率的重要性  热泵是一种用于制冷和供暖的多功能、高能效技术。热泵可以通过换向阀改变制冷剂的流动方向,从而实现供暖或制冷。在此过程中,空气通过蒸发器盘管,促进热能从空气转移到制冷剂。热能在制冷剂中循环,然后通过冷凝器盘管释放出来,同时风扇将空气吹过盘管。  在此过程中,热能从一个位置传递到另一个位置,如下图1所示。随着我们努力实现未来无碳排放,具有高效电机控制能力的功率半导体需求量很大。在提高效率的同时减小系统的整体尺寸和成本至关重要。  图 1:热泵的工作原理  实施针对压缩机和泵的新能效规定,需要将电子控制电机融入设计中,这为电力电子设计人员带来了额外的挑战。在冷却系统中使用带有智能功率模块(IPM)技术的变频系统,已被广泛认可能比非变频系统减少30%的电力消耗。  IPM通过精确调节输送到三相电机的电流的频率和电压,来调节热泵系统中变频压缩机和风扇的功率流(图2)。高效控制电机有助于达到压缩机和泵更高的能效标准。选择高能效、结构紧凑的IPM产品不仅能节约能源,还能让设计人员节省安装空间,提高性能,同时缩短开发周期。例如,安森美(onsemi)公司的SPM31系列1200V IGBT就是三相热泵应用的理想解决方案。  图 2:三相热泵方框图  SPM 31:高能效电机控制  SPM31系列IPM集成了最新的场截止7(FS7)IGBT技术和第七代二极管技术,实现了卓越的效率和稳固性。这两项技术显著降低了电磁干扰(EMI),减少了功率损耗,并提高了功率密度。这些模块配备了栅极驱动IC以及诸如欠压锁定、过流关断、温度监控和故障报告等其他保护功能(图3)。  图 3:热泵系统中的1200 V SPM31系列IPM产品  此外,与上一代解决方案和其他IPM 替代产品相比,SPM31 IPM 的尺寸更小(54.5 mm x 31mm x 5.6 mm)(图4)。SPM31解决方案实现了高功率密度、更高性能和更低的系统总成本。由于在较小的封装尺寸内具有很强的稳定性,因此是节省安装空间的理想解决方案。  图 4:SPM 31 IPM 封装  SPM31产品结构的目标是实现减小占用面积及增强可靠性的低功耗模块。为此,SPM31采用了新型 FS7 IGBT 技术、基于压铸模型封装的增强型直接覆铜(Direct Bonded Copper, DBC)衬底,以及新型栅极驱动高压集成电路(HVIC)来实现。  SPM31用于驱动低压侧IGBT 的低压集成电路(LVIC)具有温度感应功能,可提高系统的整体可靠性。LVIC可产生与其温度成正比的模拟信号。该电压用于监控模块的温度,并实施必要的保护措施以防止过热。  SPM31的一个相关特性是其集成的HVIC能高效工作,将逻辑电平的栅极输入转换为隔离的、不同电平的栅极驱动,这对于模块内高压侧IGBT的高效运行至关重要。每个相位都有独立的IGBT 负极端子,以适应各种控制方法。  对于大功率应用而言,封装的散热能力对于确保所需性能至关重要。高质量封装技术的关键在于能够保持出色散热性能的同时优化封装尺寸,且不降低绝缘等级。SPM31器件采用了DBC衬底技术,使其具备卓越的散热性能。这项技术提高了可靠性和散热能力。功率芯片被物理固定在DBC衬底上(图5)。  图 5:SPM 31 封装的横截面图  结语  热泵的性能预计将是普通燃料锅炉的三倍,到2030 年,热泵的安装量将增加三倍,从每月150 万台增加到约500 万台。像安森美SPM31 IPM系列等功率半导体技术不仅能提高热泵系统的效率,还将减少能源消耗和碳排放。
关键词:
发布时间:2024-08-07 10:51 阅读量:577 继续阅读>>
<span style='color:red'>安森美</span>将为大众汽车集团的下一代电动汽车提供电源技术
  安森美(onsemi)与大众汽车集团签署了一项多年期协议,为集团旗下多个品牌的车系提供解决方案。  安森美将提供全套碳化硅(SiC)技术,作为可扩展至所有电源平台的集成模块解决方案的一部分 。  大众集团将受益于安森美在欧洲扩大生产的计划,该计划将打造一个端到端的主驱逆变器生产基地。  近日,安森美宣布与大众汽车集团签署了一项多年协议,成为其可扩展系统平台(SSP)下一代主驱逆变器的主要供应商,提供完整的电源箱解决方案。该解决方案在集成模块中采用了基于碳化硅的技术,可扩展至所有功率级别,从大功率到小功率主驱逆变器,兼容所有车辆类别。  "通过提供涵盖整个功率子组件的完整电源系统解决方案,我们为大众汽车集团提供了一个单一、简化的模块化可扩展平台,最大程度地提高了其各车系的效率和性能。"安森美总裁兼首席执行官Hassane El-Khoury表示,“这种新方法可以在不影响性能的前提下,为不同车辆定制功率需求和增加特性,同时降低成本。”  EliteSiC裸片  基于EliteSiC M3e MOSFET,安森美独特的电源箱解决方案能够在更小的封装内处理更大功率,并能显著降低能耗。三个集成的半桥模块安装在冷却通道上,通过确保热量从半导体器件到冷却液外壳的高效管理,进一步提高了系统效率。这将带来更好的性能、更佳的散热控制和更高的效率,使电动汽车在一次充电后可以行驶更远的距离。通过使用这一集成解决方案,大众汽车集团将能够轻松过渡到未来基于EliteSiC的平台,并保持处于电动汽车创新的前沿。  “我们非常高兴安森美能成为SSP平台首批主驱逆变器电源箱的战略供应商。从原材料生长到电源箱组装,安森美的深度垂直化供应链让我们信服。”大众汽车品牌“采购”董事会成员兼集团采购扩展执行委员会成员Dirk Große-Loheide先生表示。  M3e晶圆  大众汽车集团动力总成采购高级副总裁Till von Bothmer补充指出:“除了垂直整合之外,安森美还依托其亚洲、欧洲和美国等地区布局碳化硅(SiC)晶圆厂,进一步提出了弹性供应概念。此外,安森美将不断提供最新一代的碳化硅技术,以确保我们在市场上的竞争力。”  大众汽车集团也将受益于安森美在捷克共和国扩大碳化硅生产的投资计划。这项投资将在欧洲建立一个主驱逆变器电源系统的端到端生产基地。安森美工厂的邻近优势将加强大众汽车集团的供应链,同时改善物流,更快地整合进生产流程。
关键词:
发布时间:2024-07-24 13:16 阅读量:475 继续阅读>>

跳转至

/ 16

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
TL431ACLPR Texas Instruments
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
型号 品牌 抢购
BP3621 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
ESR03EZPJ151 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。