35%!IGBT国产化率持续提升

发布时间:2023-06-09 11:18
作者:AMEYA360
来源:网络
阅读量:3405

  近日,业内资深分析师王艳丽在发表以《2023中国IGBT市场研究报告》为主题的演讲时透露,截至2022年,全球IGBT市场增长至76亿美元,并预计,今年风光储增速提升有望继续带动全球IGBT两位数增长,2023年全球IGBT市场规模将达86.2亿美元,增速约13%。

35%!IGBT国产化率持续提升

  IGBT是多类场景的核心器件

  资料显示,IGBT全称Insulate-Gate Bipolar Transistor,也叫绝缘栅双极型晶体管,可用于逆变器、车载充电机、DC-DC变换器等多类场景中,是光伏逆变器、风电变流器及储能变流器的核心器件,也是新能源汽车电机驱动系统的核心部件。

  从IGBT的产品分类来看,按照其封装形式的不同,可分为IGBT单管、IPM和IGBT模块。其中IGBT单管和IPM模块主要应用在中小功率场景,前者应用在小功率的家用电器、分部式光伏逆变器等;后者应用于变频空调、变频洗衣机等白色家电产品。而IGBT模块应用于大功率变频器、新能源车、集中式光伏等领域。IGBT模块占光伏逆变器成本的15%至20%。

  国内风光储IGBT市场规模约占全球33%

  王艳丽分析,风光储IGBT市场增速在未来几年有望超过汽车,市场份额逐年提升,2025年提升至9.7%。随着,2025年国内新型储能由商业化初期步入规模化发展阶段,预计未来新型储能所需的IGBT市场有望迎来爆发,CAGR(复合年均增长率)达54% 。整体来看,中国是全球最大的IGBT需求市场,需求量约占全球超四成,且需求占比有望持续提升。据东方财富研究,国内市场规模到2025年将增长至522亿,CAGR达22%。

  有数据显示,2022年全球风光储IGBT市场规模为72.3亿元,同比增长33.2%,预计2025年有望达133.7亿元,CAGR(2022-2025)为22.8%。其中,2022年中国风光储IGBT市场规模达到23.8亿元,同比增长48%,约占全球33%的市场份额。预计2025年有望达45亿元,CAGR为23.7%。

  整体IGBT国产化率已提升至约30%-35%

  目前全球IGBT市场前五大厂商分别为海外的英飞凌、三菱、富士电机、安森美和赛米控。国内方面,有分析,2021年及以前,我国8、9成IGBT产品均需要进口,2022年整体IGBT国产化率提升至约30%-35%,车规级IGBT厂商在中国的市场份额已经从2021年的32%提升到2022年的45%—50%。

  目前中国 IGBT 行业已经能够具备一定的产业链协同能力,士兰微、斯达半导、新洁能、时代电气、杨杰科技、闻泰科技等国内生产厂商已经IGBT国产替代方面取得了很大进展。士兰微以IGBT单管和IPM模块为主,2021年公司在全球IGBT单管/IPM模块市占率达2.6%、2.2%,均位列国内品类第一。其重点应用在工控和家电领域。

  值得注意的是,国内在IGBT制造工艺水平,模块封装的散热效率上与国外英飞凌等厂商存在一定差距。

  目前国产IGBT厂家产品在35KW以内的光伏应用场景性能指标已经基本满足需求,可以应用于全球户用光伏市场,但较大功率的逆变器所需的IGBT模块仍存在国产替代空间。

  从IGBT厂商产品电压覆盖范围来看,英飞凌、三菱电机、意法半导体、安森美等海外厂商基本覆盖600V—6500V全系列电压,在1700V以上中高压领域具有绝对优势,而国内厂商多集中在中低压领域,产品主要集中在1500V以下的IGBT市场。

  赛晶科技此前正式推出1700V IGBT芯片,各项性能都达到甚至超越了国际龙头的同类产品。该芯片能够应用在风力发电和储能及工控领域,尤其是在储能和风力发电领域。此外,公司还在新能源汽车上加速布局,其1200V的IGBT已经打入国内头部新能源汽车的供应链。同时,全新设计的车规级SiC产品也在蓄势待发。

  值得一提的还有,时代电气和斯达半导已经有高压3300V及以上的产品应用。时代电气2018年公司6英寸SiC生产线首批芯片试制成功,具备了完整的 SiC 芯片制造生产能力;2020年进行以第六代IGBT技术为基础的汽车用功率半导体生产线建设。公司表示,IGBT已经批量应用于输配电、轨道交通、新能源汽车、风力发电、光伏发电、高压变频器等领域。时代电气在轨交、电网领域大幅领先,在国内IGBT模块市场中位居第二位,仅次于斯达半导。

  斯达半导优势在于IGBT模块,模块营收占比超80%,主要覆盖新能源汽车和工控领域,早在2013年就专注新能源汽车IGBT模块的研发,在高壁垒的IGBT行业,先发优势更为明显。综合来看,国内厂商中斯达半导在IGBT上的技术和产能相对领先,率先实现突围的几率较大。

  IGBT需求“高烧不退”

  随着新能源的爆火,IGBT缺货成了近年来的“家常便饭”,海外大厂交期普遍在50周以上。2022年英飞凌积压订单金额达430亿欧元,是同年营收142亿欧元的3倍有余。而安森美早在2022年5月就宣布到2023年底不再接受新订单。

  据业内人士透露,IGBT在工业、车用领域供货仍吃紧,且主流IDM厂一路看好其长期需求。业内人士分析,IGBT缺货有二大原因,一是当前太阳能逆变器采用IGBT的比重大幅提升,二是目前半导体产业正处于调整期,不仅产能有限,而且许多产能都被电动车厂抢走,在排挤效应下,导致IGBT缺货。


(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
IGBT的工作原理、作用和功能有哪些
  IGBT(Insulated Gate Bipolar Transistor)是一种高性能、高速度的功率半导体器件,是MOSFET和普通双极晶体管的集成体。IGBT融合了MOSFET的驱动特性和双极晶体管的低导通压降等优点,具有高效、低损耗和大电流承载能力等特点。IGBT广泛应用于各种电力电子设备中,如变频器、交流调速电机、UPS电源等。  1. IGBT的工作原理  IGBT的结构复杂,但其工作原理却比较简单。IGBT由PNP型双极晶体管和N型金属氧化物半导体场效应晶体管MOSFET组成,并在两者之间加入了隔离层,以实现双极晶体管和MOSFET的有机结合。IGBT的主要工作原理如下:  当IGBT的栅极施加正向电压时,会形成一个N型导通区,从而允许集电极和发射极之间的电流通过。  反之,当栅极施加反向电压时,则不允许电流通过。  在IGBT的工作过程中,当控制信号施加到栅极时,将会引起PNP晶体管的导通。在这种情况下,集电极和发射极之间的电流可通过,在控制信号撤回后,IGBT会自动关闭,此时不会通过任何电流。  2. IGBT的作用和功能  IGBT拥有多种特性,其主要作用和功能如下:  (1) 控制电流  IGBT具有单向导通特性,可控制电路的开关状态。当IGBT的栅极施加正向电压时,允许电流通过;反之,则不允许电流通过。这使得IGBT可以很好地控制电流大小和方向。  (2) 降低功率损耗  由于IGBT的导通电阻比双极晶体管低,开关速度又比MOSFET快,因此,IGBT具有较低的导通损耗和开关损耗。这使得IGBT成为高效、低损耗的功率半导体器件。  (3) 承载大电流  IGBT的承载电流能力较强,可达300A以上。同时,IGBT具有良好的热稳定性和抗击穿能力,可以在高温和高电压环境下工作,保证设备的安全运行。  (4) 广泛应用  IGBT广泛应用于各种电力电子设备中,如变频器、交流调速电机、UPS电源等。其稳定性和高效性的特点被广泛认可,并得到了市场的追捧。  IGBT是一种重要的功率半导体器件,具有控制电流、降低功率损耗、承载大电流等多种特点。其广泛应用于各种电力电子设备中,为产业的发展和进步做出了重要贡献。
2024-11-11 17:38 阅读量:313
IGBT的工作原理 IGBT的作用和功能
  IGBT(Insulated Gate Bipolar Transistor)是一种高性能、高速度的功率半导体器件,是MOSFET和普通双极晶体管的集成体。IGBT融合了MOSFET的驱动特性和双极晶体管的低导通压降等优点,具有高效、低损耗和大电流承载能力等特点。IGBT广泛应用于各种电力电子设备中,如变频器、交流调速电机、UPS电源等。  1. IGBT的工作原理  IGBT的结构复杂,但其工作原理却比较简单。IGBT由PNP型双极晶体管和N型金属氧化物半导体场效应晶体管MOSFET组成,并在两者之间加入了隔离层,以实现双极晶体管和MOSFET的有机结合。IGBT的主要工作原理如下:  当IGBT的栅极施加正向电压时,会形成一个N型导通区,从而允许集电极和发射极之间的电流通过。  反之,当栅极施加反向电压时,则不允许电流通过。  在IGBT的工作过程中,当控制信号施加到栅极时,将会引起PNP晶体管的导通。在这种情况下,集电极和发射极之间的电流可通过,在控制信号撤回后,IGBT会自动关闭,此时不会通过任何电流。  2. IGBT的作用和功能  IGBT拥有多种特性,其主要作用和功能如下:  (1) 控制电流  IGBT具有单向导通特性,可控制电路的开关状态。当IGBT的栅极施加正向电压时,允许电流通过;反之,则不允许电流通过。这使得IGBT可以很好地控制电流大小和方向。  (2) 降低功率损耗  由于IGBT的导通电阻比双极晶体管低,开关速度又比MOSFET快,因此,IGBT具有较低的导通损耗和开关损耗。这使得IGBT成为高效、低损耗的功率半导体器件。  (3) 承载大电流  IGBT的承载电流能力较强,可达300A以上。同时,IGBT具有良好的热稳定性和抗击穿能力,可以在高温和高电压环境下工作,保证设备的安全运行。  (4) 广泛应用  IGBT广泛应用于各种电力电子设备中,如变频器、交流调速电机、UPS电源等。其稳定性和高效性的特点被广泛认可,并得到了市场的追捧。  IGBT是一种重要的功率半导体器件,具有控制电流、降低功率损耗、承载大电流等多种特点。其广泛应用于各种电力电子设备中,为产业的发展和进步做出了重要贡献。
2024-09-04 15:16 阅读量:622
第7代IGBT正开始在储能领域大放异彩
  在储能技术高速发展的今天,更强的发电与蓄电能力,更高的能源管理效率,更稳定的输送能力都是相关企业追求的方向,这就需要功能更强的IGBT来满足当前储能技术的高需求,而第七代IGBT的出现,正好契合当前储能的发展需要。  第7代IGBT正加速发展  IGBT的发展可以追溯至20世纪80年代,最初的IGBT采用了平面穿通(PT),这种IGBT通过重掺杂的P+衬底开始,但是存在负温度系数、通态压降一致性差等问题,不利于并联使用。尽管如此,它开启了IGBT在电力电子领域的应用。       随着时间的推移,IGBT经历了多次迭代,从非穿通( NPT)结构到场截止( FS)结构的转变,栅极结构也从平面型转向沟槽型(Trench)。这些改进逐步提升了IGBT的性能,包括降低导通压降、缩短开关时间、提高断态电压等,这也是IGBT从第二代到第五代的变化。       到了第六代,IGBT进一步优化了沟槽结构和场截止技术,显著提高了电流密度和能效,降低了开关损耗,同时在高温工作表现上有了显著提升。       而在2018年前后,市场中开始推出的第七代IGBT,引入了微沟槽栅+场截止(Micro Pattern Trench)技术,这是IGBT技术的一次重大飞跃。第七代IGBT的特点包括更高的沟道密度、优化的元胞设计、更低的寄生电容,以及在极端开关速度(如5kV/μs)下仍能保持最佳性能。这使得IGBT7在降低静态损耗、提高开关速度、增强高温工作能力等方面达到新的高度,特别适合于高性能的电动汽车、可再生能源系统和高压直流输电等应用。       其中微沟槽技术能够改善载流子传输特性,从而在不牺牲开关速度的情况下降低静态损耗。这意味着在相同工作条件下,第七代IGBT能更高效地转换电能,减少发热。并且相比第六代IGBT,第七代的静态损耗降低了约30%,这对于提升系统能效和减少冷却需求至关重要。       此外,有数据显示,在相同封装体积下,第七代IGBT的电流输出能力增加了50%以上,这得益于更高的电流密度,使得设备小型化成为可能,或者在不改变体积的前提下提高系统的功率输出。       并且,第七代IGBT也满足了电子行业对更高效率、更小尺寸、更高功率密度和更低损耗的需求。第七代IGBT技术通过实现面积减小20%、芯片厚度从120微米减少到80微米、导通压降从1.7V降到1.4V,大幅提升了IGBT的性价比。       举个例子,在储能系统中使用第七代IGBT,可以设计出发电和蓄电能力更强的系统,提高能源管理效率,增强储存能力,从而更平稳地将太阳能电力并网到电网中。此外,通过第七代IGBT设计的模块还支持将多余的电力储存在储能系统中,有效缓解太阳能发电的间歇性问题,确保供电的可靠性和稳定性。  七代IGBT赋能储能产业  由于七代IGBT的优秀表现,已经有越来越多的企业将这款产品用在储能领域。比如近期上能电气采用了英飞凌IGBT7 EconoDUAL™3实现单机2MW储能变流器PCS,这是使用了英飞凌最新的EconoDUAL 3封装的750A 1200V模块,型号为FF750R12ME7_B11。       而EH-2000-HA-UD采用的FF750R12ME7,这是一款1200V/750A的IGBT模块,芯片采用的是英飞凌最新一代IGBT7技术。与英飞凌上一代IGBT4技术不同,IGBT7采用更加精细化的MPT微沟槽栅技术,沟道密度更高,芯片厚度更薄,元胞结构及间距也经过精心设计,并且优化了寄生电容参数,从而实现了最佳开关性能。       此外,在近期,安森美也发布了第七代1200V QDual3 IGBT功率模块。与其他同类产品相比,该模块的功率密度更高,且提供高10%的输出功率。       据安森美介绍,该800A QDual3模块基于新的场截止第七代(FS7)IGBT技术,应用于150KW的逆变器中时,QDual3模块的损耗比同类最接近的竞品少200W,从而缩减散热器尺寸,适合用于太阳能发电站中央逆变器、储能系统、商用农业车辆和工业电机驱动器等大功率变流器。       国内也有许多企业相继推出了七代IGBT,如斯达半导体,在2022年便推出了基于第七代微沟槽技术的新一代车规级IGBT芯片,产品型号包括650V/750V/1200V IGBT芯片,采用第七代微沟槽Trench Field Stop技术,可实现面积减小20%、芯片厚度从120微米减少到80微米、导通压降从1.7V降到1.4V。       此外如贝茵凯也在2023年末研发出了全系列第七代IGBT芯片,并成功实现大批量生产,成功突破国产化领域的技术壁垒。这款第七代IGBT产品在性能方面显著优于同类中采用传统制程的IGBT芯片,有效解决了导通损耗与开关损耗难以平衡的问题,具备低导通损耗与低开关损耗的双重优势,适用频率范围也得以拓宽,最高适用频率从15kHz-20kHz提升至30kHz-40kHz。       目前该产品已经通过多家行业领军企业的严格测试与认证,并已在电动汽车、风力发电、光伏逆变器及高端化学储能等领域实现小规模供应。       韦尔股份近期也新获得了一项实用新型专利授权,专利名为“一种新型沟槽IGBT结构”,该专利提供了一种新型沟槽IGBT结构,该结构通过减少栅极接触孔的方式,将对应的栅极沟槽中的多晶硅转变成第一发射极沟槽的多晶硅,从而减小栅极电容,使器件开通速度变快,降低开通损耗。而新型沟槽正是七代IGBT的显著特点。       此外如新洁能、振华科技、安建科技等都已经在第七代IGBT中有所建树,为中国乃至全球的新能源汽车、光伏储能、工业控制等领域提供了先进的功率半导体解决方案。  小结  在国际上,安森美等欧美日企业凭借其深厚的技术积累和资金实力,在第七代IGBT技术开发及商业化方面走在前列。而中国IGBT企业如斯达半导、新洁能等也在加速追赶,成功研发并推出了第七代IGBT产品,标志着国内企业在IGBT核心技术上的重大突破。尤其储能产业的快速发展,也为七代IGBT提供了巨大的应用市场,反过来七代IGBT也加速了储能市场的发展。
2024-08-05 09:24 阅读量:657
如何选择IGBT?
行业新闻

如何选择IGBT?

  碳化硅 (SiC) 和氮化镓 (GaN) 等宽禁带半导体的应用日益增多,然而,在这些新技术出现之前,许多高功率应用都是使用高效、可靠的绝缘栅双极型晶体管 (IGBT),事实上,许多此类应用仍然适合继续使用 IGBT。在本文中,我们介绍 IGBT 器件的结构和运行,并列举多种不同 IGBT 应用的电路拓扑结构,然后探讨这种多用途可靠技术的新兴拓扑结构。  IGBT 器件结构简而言之,IGBT 是由 4 个交替层 (P-N-P-N) 组成的功率半导体晶体管,通过施加于金属氧化物半导体 (MOS) 栅极的电压进行控制。这一基本结构经过逐渐调整和优化后,可降低开关损耗,且器件厚度更薄。近期推出的 IGBT 将沟槽栅与场截止结构相结合,旨在抑制固有的寄生 NPN 行为。该方法有助于降低器件的饱和电压和导通电阻,从而提升整体功率密度。  应用与拓扑结构如今,IGBT 通常用于特定应用的拓扑结构,下面列举了其中的几种。  焊接机如今许多焊接机使用逆变器,而非传统的焊接变压器,因为直流输出电流可以提高焊接过程的控制精度。使用逆变器还有其他优势,比如直流电流比交流电流安全,而且采用逆变器的焊接机具有更高的功率密度,因此重量更轻。功率级(单相或三相)将交流输入电压转换为逆变器的直流母线电压。输出电压通常为 30 V,但一旦启动焊弧,在开路负载操作几乎低至 0 V 的情况下(短路条件),输出电压可能高达 60 V DC。   焊接逆变器中常用的拓扑结构包括全桥、半桥和双管正激,而恒定电流是最常用的控制方案。占空比因负载电平和输出电压而异。全桥和半桥拓扑结构的 IGBT 开关频率通常在 20 至 50 kHz 之间。  电磁炉电磁炉的原理是,当高磁导率材质的锅靠近线圈时,通过励磁线圈推动(或耦合)锅内的电流循环。其运行方式与变压器大致相同,其中线圈负责初级侧,电磁炉底部负责次级侧。产生的大部分热量来源于锅底层形成的涡电流循环。这些系统的能量传输效率约为 90%,而顶部光滑的无感电器装置的能效仅为 71%,相比之下,(对于同量热传递)前者可节省大约 20% 的能量。逆变器将电流导入铜线圈,从而产生电磁场,电磁场穿透锅底,形成电流。产生的热量遵循焦耳效应公式,即锅的电阻乘以感应电流的平方。   对于电磁炉,比较重要的要求包括:  高频开关  功率因数接近一  宽负载范围  感应加热应用的输出功率控制通常基于可变频率方案。这是一种根据负载或线路频率变化来应用的基本方法。然而,该方法存在一个主要缺点:若要在宽范围内控制输出功率,频率需要大幅变化。  感应加热最常用的拓扑结构基于谐振回路。谐振转换器的主要优势是高开关频率范围,同时能效不会降低。谐振转换器采用零电流开关 (ZCS) 或零电压开关 (ZVS) 等控制技术来降低功率损耗。谐振半桥 (RHB) 转换器和准谐振 (QR) 逆变器是备受欢迎的拓扑结构。RHB 结构的优势包括负载工作范围大,并且能够提供超高功率。  QR 转换器的主要优势是成本较低,因此非常适合低至中功率范围(峰值功率高达 2 kW)、工作频率介于 20 至 35 kHz 之间的应用。  电机驱动半桥转换器 (HB) 是电机驱动应用中一种最常见的拓扑结构,频率介于 2kHz 至 15kHz 之间。HB 输出电压取决于开关状态和电流极性。   考虑到电感负载,电流随后会增加。如果负载汲取正电流 (Ig>0),它将流经 T1,为负载提供能量 (Vg)。相反,如果负载电流 Ig 为负,电流经由 D 流回,将能量返回至直流电源。同样,如果 T4 开通(且 T1 关闭),会有 −Vbus/2 的电压施加于负载,且电流会减小。如果 Ig 为正,电流流经 D4,将能量返回至母线电源。  适合IGBT应用的多电压等级拓扑结构快速开关给 HB 拓扑结构带来的局限性包括:  只有两个输出电压等级  无源和有源元件受到应力  高开关损耗  栅极驱动难度加大  纹波电流升高  EMI变高  电压处理(无法与高电压母线结合使用)  器件串联增加了实施工作的复杂性  难以达到热平衡  高滤波要求  为了摆脱这些局限性,在不间断电源 (UPS) 和太阳能逆变器等应用中,采用新的多电压等级拓扑结构。常见结构包括单极性开关 I 型和 T 型转换器,它们能够在较高的母线电压下工作。随着可用输出状态增多,滤波器元件之间的电压相应减小,因此滤波损耗也更低,元件更小。开关损耗有所降低,而导通损耗则小幅增加(适合 16kHz - 40kHz 的较高频率,可达到约 98% 的高能效)。  IGBT 的未来尽管 IGBT 已经问世很多年,但该技术仍是许多高电压和电流应用的理想之选。IGBT 不仅越来越多地应用于传统设计,还应用于新设计,因为新推出的器件在不断地推动 Vcesat 降低至 1V,并通过新型结构来提高电流密度和开关损耗。若要在使用 IGBT 的过程中获得最大效益,一个关键因素是先了解应用要求,然后选择合适的电路拓扑结构加以实施。
2024-06-25 11:22 阅读量:915
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
TL431ACLPR Texas Instruments
型号 品牌 抢购
BP3621 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
TPS63050YFFR Texas Instruments
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。