NOVOSENSE capacitive isolation technology to easily solve power challenges

发布时间:2023-08-25 16:12
作者:AMEYA360
来源:网络
阅读量:3935

  All electrical products involve power supply, and the common power supply includes voltage regulated power supply, switching power supply, inverter power supply, variable frequency power supply, and uninterruptible power supply. Most power supplies require isolation devices to ensure equipment and personal safety. Because of the different isolation technology used, the isolation effect is also different. Therefore, the choice of isolation products should promote the advantages and avoid the disadvantages, so as to achieve the best system performance as far as possible.

  I. Why does the power supply need to be isolated

  This is a commonplace problem, and the purpose is to prevent the high voltage of the power supply from endangering the human body. New energy vehicles are a common high-voltage power supply scenario, and the battery voltage is 400V or even 800V; such a high voltage will endanger the human body; another scenario is charging pile, which converts alternating current into high-voltage direct current, and also needs to isolate high and low voltages, which requires the use of isolation devices.

  In addition, power supplies in such applications as photovoltaic, data center server, industrial frequency conversion servo, industrial power modules or energy storage devices require measures taken to avoid the harm of high voltage to the human body, in addition to meeting the corresponding safety requirements.

  NOVOSENSE capacitive isolation technology to easily solve power challenges

  II. Isolation requirements and classification

  The isolation is subject to strict safety certification, including such common ones as the US’s UL certification, Germany’s VDE certification and IEC certification of the International Electrical Commission. Safety certification includes two types, one is the system level, such as IEC60065, IEC60950, etc., and the other is the device level, such as UL1577 and IEC60747 standards. The IEC standard defines three levels of energy sources from the perspective of safety, all of which are based on the intensity of voltage and current, and the corresponding protection measures are implemented. It is worth mentioning that all of NOVOSENSE's isolation products have passed UL, CUL, VDE and CQC safety certification.

  The isolation chip is widely used in the power system, for example, in vehicle’s OBC/DC-DC system, the input side of high-voltage battery charging is 220V to 380V, and the output side is 400V or 800V; it is 12V to 48V for low-voltage battery charging, which includes PFC and LLC two-stage topologies. The whole system topology is complex, often using two MCUs as the main control, and the communication between the two MCUs needs to be isolated. In addition, the power devices in these topologies, whether Silicon-based MOSFETs or third-generation semiconductor devices, need to be driven and isolated accordingly.

  In addition, according to the control accuracy requirements of the system, the functions of voltage sensing, current sensing and external communication of the system also need to be isolated.

  III. Several common isolation techniques and requirements

  At present, there are three isolation technologies used in the industry: traditional optocoupling, magnetic coupling and capacitive coupling technologies. Traditional optocoupling technology is the most widely used and has the longest history. It uses light as the medium to couple the input signal to the output end, but the volume of the device is large, the transmission speed is slow, the light decay will occur with the growth of the use time, and the operating temperature range is narrow. Magnetic coupling and capacitive coupling are the mainstream isolation technologies. The magnetic coupling has high voltage resistance, fast transmission speed and wide temperature range, but the process is complex with EMI radiation. Capacitive coupling technology has high voltage resistance, fast transmission speed, transmission delay of only twenty or thirty nanoseconds, and a very wide operating temperature range, and the process is not complicated, with high reliability.

  NOVOSENSE's isolation chip is based on capacitive coupling technology, using its patented Adaptive OOK® coding technology, with low EMI radiation and low bit error rate, which can effectively improve the isolation device's ability of common‐mode transient immunity (CMTI).

  Important indicators of isolation products include: isolation voltage rating, CMTI capability, EMC performance, transmission delay and operating temperature, isolation life, etc. The isolation voltage level of NOVOSENSE’s isolation products is up to 10kV, with CMTI of at least 100kV/μs, anti-surge capability of over 10kV, and bilateral ESD capability of over 15kV.

  IV. Power supply system trends and application challenges

  (1) Power system trends

  -High integration: Power systems are moving towards higher integration, so more integrated ICs are also required, such as integrating power supplies and digital isolators together to reduce the complexity of designing isolated power supplies by engineers.

  -High voltage and high frequency: The photovoltaic system has been transferred from 800V to 1500V, the third generation of semiconductors (GaN or SiC) is applied more and more widely, the system switching frequency is getting higher, and the speed is getting faster. Isolation products need to have higher CMTI capabilities, withstand higher voltages, and have better EMI performance.

  -High reliability: Isolation chips need to pass strict safety certification.

  (2) The application challenges of the power supply system

  The application challenge of power system is that the third-generation power device puts forward higher requirements for the driver chip, such as CMTI of greater than 100kV/μs. Due to the higher drive voltage of SiC, the driver output voltage range is required to swing wider. In addition, the product switching rate is faster, and the switching loss is reduced, the driver has the ability to output greater Source or Sink current, the internal rise or fall time is shorter, and the transmission delay is shorter.

  The new function of the SiC driver chip is "Miller clamp". with the SiC switching, the middle point of the bridge arm has a large dv/dt, the low side Cgd capacitor will generate a Miller current; even if the low side is in the OFF state, it will also generate a voltage drop through the low side Rgoff . Considering that the on-threshold of the SiC device is relatively low (about 2V), if the voltage drop is large, the low side will be mistaken turn-on of the low side SiC power transistor, and the system will have the risk of short circuit.

  The "Miller clamp" function addresses this problem in SiC applications. Adding a MOSFET to the chip can directly connect GND to the SiC grid. After the low side is turned off, the low side driver resistance will be skipped and the grid will be directly short-circuited to GND to eliminate the voltage difference caused by Miller current, thus avoiding the risk of mis-connection of the low side caused by Miller effect.

  V. NOVOSENSE isolation products

  NOVOSENSE has a wide range of isolation products, including digital isolators, isolated drivers, isolated voltage/current amplifiers, isolated CAN transceivers. In terms of drivers, whether it is MOS, IGBT or SiC, NOVOSENSE has corresponding isolation products. In terms of sampling, it has both analog output isolated operational amplifier and digital output isolated ADC, which can meet the requirements of sampling rate and sampling accuracy in different application scenarios. In terms of interfaces, NOVOSENSE has a wealth of isolated I2C interfaces, and RS485 or CAN interface products, which can provide a one-stop solution for customers' power supply design.

  Click the link below to view the corresponding technical articles of the product:

  1. Isolated single channel driver with Miller clamp function NSi6601M

  2. 5A dual-channel non-isolated driver NSD1624

  3. Isolated voltage amplifier NSI1312

  The products of NOVOSENSE adopt capacitive coupling technology, which conforms to the current application trend of integrated, high-voltage and reliable power supply, and meets the higher requirements of the third-generation power devices for driver chips. Its isolation product range is very complete, including digital isolators, isolation drivers, isolation voltage/current amplifier, isolated CAN transceivers, providing engineers with a variety of options.

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
Leading Performance for High Voltage Applications: NOVOSENSE Launches the NSI67X0 Series of Smart Isolated Drivers
  NOVOSENSE has officially launched the NSI67X0 series of smart isolated drivers with Isolated Analog Sensing function. Suitable for driving power devices such as SiC, IGBTs and MOSFETs, and available in both automotive (AEC-Q100 compliant) and industrial variants, this series can be widely used in new energy vehicles, air conditioners, power supplies, photovoltaics and other applications.  This series of isolated gate drivers equates an isolated analog to PWM sensor, which can be used for temperature or voltage detection. The design further enhances driver versatility, simplifies system design, effectively reduces system size and lowers overall cost.  High-voltage Drive and Ultra-high Common-mode Immunity  Designed to drive IGBTs or SiC up to 2121V DC operating voltage, NSI67X0 offers advanced protection functions, excellent dynamic performance, and outstanding robustness. This series uses SiO2 capacitor isolation technology to isolate the input side from the output side, providing ultra-high common-mode immunity (CMTI>150kV/μs) while ensuring extremely small offset between devices, which is at the leading level in the industry.  Powerful Output Capability and Miniaturized Package  The NSI67X0 series has powerful output capability, supporting ±10A drive current and a maximum output drive voltage of 36V, far exceeding most similar products. Its SOW16 package design further enhances safety by achieving a creepage distance of more than 8mm while maintaining miniaturization.  Comprehensive Protection Functions and Automotive Certification  With comprehensive protection functions, including fast overcurrent protection, short-circuit protection, fault soft turn off, 4.5A Miller clamp, and undervoltage protection, this series is a reliable choice for driving power devices such as IGBTs. The entire product family meets the AEC-Q100 standard for automotive applications and can be widely used in new energy vehicles, industrial control and energy management.  Features of NSI67X0 Series  ◆ Smart isolation drivers up to 2121Vpk for driving SiC and IGBTs  ◆ High CMTI: 150 kV/μs  ◆ Input side supply voltage: 3V ~ 5.5V  ◆ Driver side supply voltage: up to 32V  ◆ Rail-to-rail output  ◆ Peak source and sink current: ±10A  ◆ Typical propagation delay: 90ns  ◆ Operating ambient temperature: -40°C ~ +125°C  ◆ Compliant with AEC-Q100 for automotive applications  ◆ RoHS compliant package type: SOW16, creepage distance > 8mm  Protection Functions  ◆ Fast over-current and short-circuit protection, with optional DESAT threshold voltage of 9V and 6.5V and OC threshold voltage of 0.7V  ◆ Integrated soft turn off function in case of fault, with optional soft turn off current of 400mA and 900mA  ◆ Integrated Miller clamp function, with clamp current up to 4.5A  ◆ Independent undervoltage protection UVLO on both HV and LV sides  ◆ Fault alarm (FLT/RDY pin indication)  Isolated Analog Sampling Function  ◆ Isolated analog sampling function  ◆ AIN input voltage range: 0.2V ~ 4.7V  ◆ APWM output duty cycle: 96% ~ 6%  ◆ Duty cycle accuracy: 1.6%  ◆ APWM output frequency: 10kHz  ◆ Optional AIN integrated constant current source output  Safety Related Certification  ◆ UL Certification: 1 minute 5700Vrms  ◆ VDE Certification: DIN VDE V 0884-11:2017-01  ◆ CSA Certification: Approved under CSA Component Acceptance Notice 5A  ◆ CQC Certification: Compliant with GB4943.1-2011  Introduction to Principle of High-precision Temperature Sampling of NSI67X0 Series  The AIN interface of the NSI6730 has a built-in 200uA current source. When an external NTC is connected, a voltage drop will be generated and demodulated into a 10kHz PWM signal for isolated output. The PWM signal is captured by the processor MCU, and the corresponding voltage value and temperature are obtained by calculating the duty cycle.  When the AIN voltage is in the range of 0.2V ~ 4.7V, the AIN input voltage and APWM output duty cycle are linearly related. When the AIN voltage is converted to a PWM signal, the PWM duty cycle conforms to the following formula:  That is, the AIN voltage of 0.2V ~ 4.7V corresponds to a PWM duty cycle of 96% ~ 6%.  Model Selection Chart of NSI67X0 Series  This series offers a variety of models to meet the needs of different applications. Specifically, in the NSI67X0 series, when X is 3, the AIN interface integrates a constant current source; when X is 7, the AIN interface does not integrate a constant current source.
2025-02-24 16:18 阅读量:369
NOVOSENSE Launches NSIP3266 Full-Bridge Transformer Driver with Integrated Crystal Oscillator, Simplifying Isolated Driver Power Supply Design
  NOVOSENSE today announced the launch of the NSIP3266 full-bridge transformer driver with integrated crystal oscillator, multiple protection functions and soft start support, which can be widely used in isolated driver power supply circuits in automotive on-board chargers (OBCs), traction inverters and charging piles, photovoltaic power generation and energy storage, server power supply and other systems. NSIP3266 supports a full-bridge topology with a wide range of inputs, and with clever pin and function design, it greatly simplifies the design of isolated driver’s power supply circuits, facilitating system manufacturers to optimize system circuits and shorten product time to market.  Currently, isolated driver's power supply in high-voltage systems is available in three architectural forms: centralized, fully distributed, and semi-distributed. Centralized architecture has only one stage of power supply, and the auxiliary power input voltage has a wide input range, requiring closed-loop operation. At the same time, the transformer design is complicated, and especially when a single low-cost isolated power supply is used, there are problems of multi-output load regulation and long wiring, which increase the difficulty of system design and debugging.  Fully distributed architecture uses independent isolated power modules to supply power to isolated drivers. The advantage is that 1-to-1 power supply and targeted protection can be achieved for isolated drivers, but a corresponding number of isolated power modules need to be configured, and the system cost is high.  Semi-distributed architecture adopts a balanced strategy. Through a two-stage auxiliary power architecture, the first stage uses devices with a wide input voltage range to generate regulated rails, and the second stage can be a compact open-loop form using other devices to provide isolated power supply for isolated drives. Semi-distributed architecture is gaining popularity among engineers because of its simplicity in design and balance of system cost, performance, and protection requirements.  Simplified circuit design with full-bridge topology  NOVOSENSE's NSIP3266 full-bridge transformer driver is designed for semi-distributed architecture with isolated driver power supply. Common topology options for semi-distributed architecture include push-pull, LLC, and full-bridge. NSIP3266 adopts full-bridge topology. Compared with other solutions, the principle of full-bridge topology is simple, the transformer structure does not require a center tap, the working principle does not involve the design and selection of external L and C, and the peripheral BOM is often minimal. At the same time, the full-bridge topology is more tolerant to transformer design, including leakage inductance and parasitics, which saves engineers' efforts in system design and debugging.  Ingenious design releases MCU resources  It is worth mentioning that NSIP3266, through the internal integrated crystal oscillator circuit and RT pin design, allows engineers to complete the switching frequency configuration with only external resistors, achieving decoupling of MCU control and more flexible layout. At the same time, it can still provide safe power supply when the MCU fails, promoting higher system safety. In addition, the built-in soft-start function of NSIP3266 also eliminates the need for MCU control. While not requiring MCU domain routing, it saves secondary-side current limiting resistors, greatly simplifying board design and improving architectural flexibility.  Wide voltage input and comprehensive protection  NSIP3266 supports a wide operating voltage range of 6.5V~26V. No additional TVS protection tube is required in the system circuit, allowing engineers to choose the pre-stage power supply more flexibly. In addition, NSIP3266 provides multiple protection functions, including undervoltage protection, overcurrent protection, over-temperature protection, etc. The comprehensive protection functions enable engineers to focus on the optimization and innovation of the core system functions, and to design the system quickly and efficiently to meet the reliability requirements.  Packaging and selections  NSIP3266 is available in EP-MSOP8 package (3.0 x 3.0mm x 0.65mm, with thermal pad). The industrial version, NSIP3266-D, and the automotive version, NSIP3266-Q1, which meets the requirements of AEC-Q100, will be mass-produced in the first half of 2025. Please contact NOVOSENSE's sales team (sales@novosns.com) for product details or to request samples.  Rich isolation products meet diverse needs  With its expertise and leadership in isolation technology, NOVOSENSE provides a series of isolation and "isolation+" products covering digital isolators, isolated sampling, isolated interfaces, isolated power supply, and isolated drivers. NSIP3266 is a new addition to NOVOSENSE's isolated power supply family. NOVOSENSE also offers a selection of other cost-effective and high-performance, high-integration options, including: the NSIP605x series of push-pull transformer drivers; the NSIP88/89xx and NIRSP31x series with integrated transformers and multi-channel digital isolators; the NSIP83086 isolated RS485 transceiver and the NSIP1042 isolated CAN transceiver with integrated transformers and isolated interfaces. NOVOSENSE's comprehensive "isolation+" product portfolio can meet the diverse system design needs of various types of customers and provide one-stop chip solutions for them.
2025-02-19 09:59 阅读量:488
NOVOSENSE's NCA1044-Q1 CAN Transceiver Successfully Passes the IBEE/FTZ-Zwickau EMC Certification
  NOVOSENSE announced that its newly launched NCA1044-Q1, an automotive-grade CAN transceiver, had received the EMC certification test reports from IBEE/FTZ-Zwickau, a prestigious European testing organization. NCA1044-Q1 successfully passed all test items. NOVOSENSE now can provide the test report to support automakers in streamlining their system certification process and accelerating their product launches.  CAN transceivers are commonly used in automotive CAN bus networks typically for critical control and diagnostics functions, such as battery, motor control, electronic control, braking, steering, and airbag systems. These applications are prone to various sources of electromagnetic interference (EMI), including battery, motor and electronic control systems for EVs, engine, frequency converter and wireless communication devices. Such disturbances can adversely affect data transmission, leading to signal errors or system failures, and even compromised system safety.  In addition, due to the long distance of CAN bus wiring in automotive systems, CAN transceivers can easily radiate noise through the CAN bus acting as an antenna. This can result in radiated emission and conducted emission from modules or the entire system that exceed the requirements for vehicle. Therefore, CAN transceivers that provide good electromagnetic compatibility (EMC) performance are essential for ensuring system reliability.  Full compliance with IBEE/FTZ-Zwickau certification  Given the critical role of CAN transceiver's EMC performance in automotive safety, countries or regions have established stringent automotive EMC standards and certification procedures for automakers to follow. For example, both the SAE J2962 standard and the European IBEE/FTZ-Zwickau certification set clear requirements for the EMC performance of automotive electronics.  The IBEE/FTZ-Zwickau certification is carried out according to the IEC 62228-3 standard. Compared with SAE J2962, IEC 62228-3 excludes the effects of peripheral circuits, focuses more on the EMC property of the CAN transceiver itself, and specifies higher performance level requirements. The IEC 62228-3 standard is also extensively adopted by automakers outside of Europe. The IBEE/FTZ-Zwickau certification includes four tests: Emission RF Disturbances, Immunity RF Disturbances, Immunity Transients, and Immunity ESD. NCA1044-Q1 from NOVOSENSE successfully passed all four tests.  Industry-leading interference immunity  NCA1044-Q1 features an ingenious circuit design that addresses the issue of output signal errors caused by abnormal high-voltage interference affecting its output circuit. This enhances its EMC performance, helping customers substantially reduce their EMC design complexity, simplify peripheral components, and lower costs.  Furthermore, NCA1044-Q1 boasts industry-leading interference immunity. According to IEC 62228-3, when external RF noise at different frequency bands couples to the CAN bus, a higher pass-through power indicates stronger interference immunity. This means a lower risk of errors in the system.  Even without the use of a common-mode inductor filter on the bus, NCA1044-Q1 from NOVOSENSE can still meet the highest power requirements specified in the standard (as shown in Figure-1 and Table-2). Although this test is typically not required at the application level, NCA1044-Q1 still successfully passed the test. This capability helps users reduce peripheral circuits, lower costs, and enhance system robustness.  Packages and selection  NCA1044-Q1 is now in mass production and is available in SOP8 and DFN8 packages. Compliant with the AEC-Q100 Grade 1 requirements, it operates in a wide temperature range from -40°C to 125°C, and provides over-temperature protection. NCA1044-Q1 also supports TXD dominant timeout function and remote wake-up in standby mode. 
2024-12-16 17:06 阅读量:846
NOVOSENSE Launches Automotive-Grade High-Side Switches for Body Control Modules and Zone Control Units
  NOVOSENSE Microelectronics, a semiconductor company specializing in high-performance analog and mixed-signal chips, has announced a range of high-side switches for driving traditional resistive, inductive, and halogen lamp loads in automotive body control modules (BCM) as well as large capacitive loads commonly found in the first-level and second-level power distribution within zone control units (ZCU).  At time of launch, the NSE34 and NSE35 families includes 26 single-, dual- and quad-channel devices developed for operation across 11 separate load currents intervals (11 A to sub-2 A). These devices have an Rds(on) resistance range from 8 mΩ to 140 mΩ and feature industry-leading load-driving capabilities and advanced diagnostic and protection functions such as advanced over-current protection and over-voltage clamping protection.  All devices in the two families are fully compliant with multiple automotive standards, including AEC-Q100, AEC-Q100-006, AEC-Q100-012 Grade A, ISO7637, ISO16570 and CISPR25-2021 Class 5.  Yang WANG, Product Line Marketing Director of NOVOSENSE said: “For electric and autonomous vehicles, body domain controllers have become increasingly important, enabling smart power distribution and functional integration. Indeed, they are essential for many applications, whether in resistive loads such as a seat heater, capacitive or halogen lamp loads for surge-current handling, or inductive loads such as in wipers, solenoids and relays, where it protects against negative voltage spikes.”  The NSE34 and NSE35 families of high-side switches are available in 14- and 16-pin HSSOP packages measuring 4.9mm x 3.9mm respectively.
2024-11-06 14:11 阅读量:871
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
CDZVT2R20B ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
MC33074DR2G onsemi
型号 品牌 抢购
STM32F429IGT6 STMicroelectronics
BP3621 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
TPS63050YFFR Texas Instruments
IPZ40N04S5L4R8ATMA1 Infineon Technologies
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码