NOVOSENSE capacitive isolation technology to easily solve power challenges

发布时间:2023-08-25 16:12
作者:AMEYA360
来源:网络
阅读量:3883

  All electrical products involve power supply, and the common power supply includes voltage regulated power supply, switching power supply, inverter power supply, variable frequency power supply, and uninterruptible power supply. Most power supplies require isolation devices to ensure equipment and personal safety. Because of the different isolation technology used, the isolation effect is also different. Therefore, the choice of isolation products should promote the advantages and avoid the disadvantages, so as to achieve the best system performance as far as possible.

  I. Why does the power supply need to be isolated

  This is a commonplace problem, and the purpose is to prevent the high voltage of the power supply from endangering the human body. New energy vehicles are a common high-voltage power supply scenario, and the battery voltage is 400V or even 800V; such a high voltage will endanger the human body; another scenario is charging pile, which converts alternating current into high-voltage direct current, and also needs to isolate high and low voltages, which requires the use of isolation devices.

  In addition, power supplies in such applications as photovoltaic, data center server, industrial frequency conversion servo, industrial power modules or energy storage devices require measures taken to avoid the harm of high voltage to the human body, in addition to meeting the corresponding safety requirements.

  NOVOSENSE capacitive isolation technology to easily solve power challenges

  II. Isolation requirements and classification

  The isolation is subject to strict safety certification, including such common ones as the US’s UL certification, Germany’s VDE certification and IEC certification of the International Electrical Commission. Safety certification includes two types, one is the system level, such as IEC60065, IEC60950, etc., and the other is the device level, such as UL1577 and IEC60747 standards. The IEC standard defines three levels of energy sources from the perspective of safety, all of which are based on the intensity of voltage and current, and the corresponding protection measures are implemented. It is worth mentioning that all of NOVOSENSE's isolation products have passed UL, CUL, VDE and CQC safety certification.

  The isolation chip is widely used in the power system, for example, in vehicle’s OBC/DC-DC system, the input side of high-voltage battery charging is 220V to 380V, and the output side is 400V or 800V; it is 12V to 48V for low-voltage battery charging, which includes PFC and LLC two-stage topologies. The whole system topology is complex, often using two MCUs as the main control, and the communication between the two MCUs needs to be isolated. In addition, the power devices in these topologies, whether Silicon-based MOSFETs or third-generation semiconductor devices, need to be driven and isolated accordingly.

  In addition, according to the control accuracy requirements of the system, the functions of voltage sensing, current sensing and external communication of the system also need to be isolated.

  III. Several common isolation techniques and requirements

  At present, there are three isolation technologies used in the industry: traditional optocoupling, magnetic coupling and capacitive coupling technologies. Traditional optocoupling technology is the most widely used and has the longest history. It uses light as the medium to couple the input signal to the output end, but the volume of the device is large, the transmission speed is slow, the light decay will occur with the growth of the use time, and the operating temperature range is narrow. Magnetic coupling and capacitive coupling are the mainstream isolation technologies. The magnetic coupling has high voltage resistance, fast transmission speed and wide temperature range, but the process is complex with EMI radiation. Capacitive coupling technology has high voltage resistance, fast transmission speed, transmission delay of only twenty or thirty nanoseconds, and a very wide operating temperature range, and the process is not complicated, with high reliability.

  NOVOSENSE's isolation chip is based on capacitive coupling technology, using its patented Adaptive OOK® coding technology, with low EMI radiation and low bit error rate, which can effectively improve the isolation device's ability of common‐mode transient immunity (CMTI).

  Important indicators of isolation products include: isolation voltage rating, CMTI capability, EMC performance, transmission delay and operating temperature, isolation life, etc. The isolation voltage level of NOVOSENSE’s isolation products is up to 10kV, with CMTI of at least 100kV/μs, anti-surge capability of over 10kV, and bilateral ESD capability of over 15kV.

  IV. Power supply system trends and application challenges

  (1) Power system trends

  -High integration: Power systems are moving towards higher integration, so more integrated ICs are also required, such as integrating power supplies and digital isolators together to reduce the complexity of designing isolated power supplies by engineers.

  -High voltage and high frequency: The photovoltaic system has been transferred from 800V to 1500V, the third generation of semiconductors (GaN or SiC) is applied more and more widely, the system switching frequency is getting higher, and the speed is getting faster. Isolation products need to have higher CMTI capabilities, withstand higher voltages, and have better EMI performance.

  -High reliability: Isolation chips need to pass strict safety certification.

  (2) The application challenges of the power supply system

  The application challenge of power system is that the third-generation power device puts forward higher requirements for the driver chip, such as CMTI of greater than 100kV/μs. Due to the higher drive voltage of SiC, the driver output voltage range is required to swing wider. In addition, the product switching rate is faster, and the switching loss is reduced, the driver has the ability to output greater Source or Sink current, the internal rise or fall time is shorter, and the transmission delay is shorter.

  The new function of the SiC driver chip is "Miller clamp". with the SiC switching, the middle point of the bridge arm has a large dv/dt, the low side Cgd capacitor will generate a Miller current; even if the low side is in the OFF state, it will also generate a voltage drop through the low side Rgoff . Considering that the on-threshold of the SiC device is relatively low (about 2V), if the voltage drop is large, the low side will be mistaken turn-on of the low side SiC power transistor, and the system will have the risk of short circuit.

  The "Miller clamp" function addresses this problem in SiC applications. Adding a MOSFET to the chip can directly connect GND to the SiC grid. After the low side is turned off, the low side driver resistance will be skipped and the grid will be directly short-circuited to GND to eliminate the voltage difference caused by Miller current, thus avoiding the risk of mis-connection of the low side caused by Miller effect.

  V. NOVOSENSE isolation products

  NOVOSENSE has a wide range of isolation products, including digital isolators, isolated drivers, isolated voltage/current amplifiers, isolated CAN transceivers. In terms of drivers, whether it is MOS, IGBT or SiC, NOVOSENSE has corresponding isolation products. In terms of sampling, it has both analog output isolated operational amplifier and digital output isolated ADC, which can meet the requirements of sampling rate and sampling accuracy in different application scenarios. In terms of interfaces, NOVOSENSE has a wealth of isolated I2C interfaces, and RS485 or CAN interface products, which can provide a one-stop solution for customers' power supply design.

  Click the link below to view the corresponding technical articles of the product:

  1. Isolated single channel driver with Miller clamp function NSi6601M

  2. 5A dual-channel non-isolated driver NSD1624

  3. Isolated voltage amplifier NSI1312

  The products of NOVOSENSE adopt capacitive coupling technology, which conforms to the current application trend of integrated, high-voltage and reliable power supply, and meets the higher requirements of the third-generation power devices for driver chips. Its isolation product range is very complete, including digital isolators, isolation drivers, isolation voltage/current amplifier, isolated CAN transceivers, providing engineers with a variety of options.

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
NOVOSENSE's NCA1044-Q1 CAN Transceiver Successfully Passes the IBEE/FTZ-Zwickau EMC Certification
  NOVOSENSE announced that its newly launched NCA1044-Q1, an automotive-grade CAN transceiver, had received the EMC certification test reports from IBEE/FTZ-Zwickau, a prestigious European testing organization. NCA1044-Q1 successfully passed all test items. NOVOSENSE now can provide the test report to support automakers in streamlining their system certification process and accelerating their product launches.  CAN transceivers are commonly used in automotive CAN bus networks typically for critical control and diagnostics functions, such as battery, motor control, electronic control, braking, steering, and airbag systems. These applications are prone to various sources of electromagnetic interference (EMI), including battery, motor and electronic control systems for EVs, engine, frequency converter and wireless communication devices. Such disturbances can adversely affect data transmission, leading to signal errors or system failures, and even compromised system safety.  In addition, due to the long distance of CAN bus wiring in automotive systems, CAN transceivers can easily radiate noise through the CAN bus acting as an antenna. This can result in radiated emission and conducted emission from modules or the entire system that exceed the requirements for vehicle. Therefore, CAN transceivers that provide good electromagnetic compatibility (EMC) performance are essential for ensuring system reliability.  Full compliance with IBEE/FTZ-Zwickau certification  Given the critical role of CAN transceiver's EMC performance in automotive safety, countries or regions have established stringent automotive EMC standards and certification procedures for automakers to follow. For example, both the SAE J2962 standard and the European IBEE/FTZ-Zwickau certification set clear requirements for the EMC performance of automotive electronics.  The IBEE/FTZ-Zwickau certification is carried out according to the IEC 62228-3 standard. Compared with SAE J2962, IEC 62228-3 excludes the effects of peripheral circuits, focuses more on the EMC property of the CAN transceiver itself, and specifies higher performance level requirements. The IEC 62228-3 standard is also extensively adopted by automakers outside of Europe. The IBEE/FTZ-Zwickau certification includes four tests: Emission RF Disturbances, Immunity RF Disturbances, Immunity Transients, and Immunity ESD. NCA1044-Q1 from NOVOSENSE successfully passed all four tests.  Industry-leading interference immunity  NCA1044-Q1 features an ingenious circuit design that addresses the issue of output signal errors caused by abnormal high-voltage interference affecting its output circuit. This enhances its EMC performance, helping customers substantially reduce their EMC design complexity, simplify peripheral components, and lower costs.  Furthermore, NCA1044-Q1 boasts industry-leading interference immunity. According to IEC 62228-3, when external RF noise at different frequency bands couples to the CAN bus, a higher pass-through power indicates stronger interference immunity. This means a lower risk of errors in the system.  Even without the use of a common-mode inductor filter on the bus, NCA1044-Q1 from NOVOSENSE can still meet the highest power requirements specified in the standard (as shown in Figure-1 and Table-2). Although this test is typically not required at the application level, NCA1044-Q1 still successfully passed the test. This capability helps users reduce peripheral circuits, lower costs, and enhance system robustness.  Packages and selection  NCA1044-Q1 is now in mass production and is available in SOP8 and DFN8 packages. Compliant with the AEC-Q100 Grade 1 requirements, it operates in a wide temperature range from -40°C to 125°C, and provides over-temperature protection. NCA1044-Q1 also supports TXD dominant timeout function and remote wake-up in standby mode. 
2024-12-16 17:06 阅读量:362
NOVOSENSE Launches Automotive-Grade High-Side Switches for Body Control Modules and Zone Control Units
  NOVOSENSE Microelectronics, a semiconductor company specializing in high-performance analog and mixed-signal chips, has announced a range of high-side switches for driving traditional resistive, inductive, and halogen lamp loads in automotive body control modules (BCM) as well as large capacitive loads commonly found in the first-level and second-level power distribution within zone control units (ZCU).  At time of launch, the NSE34 and NSE35 families includes 26 single-, dual- and quad-channel devices developed for operation across 11 separate load currents intervals (11 A to sub-2 A). These devices have an Rds(on) resistance range from 8 mΩ to 140 mΩ and feature industry-leading load-driving capabilities and advanced diagnostic and protection functions such as advanced over-current protection and over-voltage clamping protection.  All devices in the two families are fully compliant with multiple automotive standards, including AEC-Q100, AEC-Q100-006, AEC-Q100-012 Grade A, ISO7637, ISO16570 and CISPR25-2021 Class 5.  Yang WANG, Product Line Marketing Director of NOVOSENSE said: “For electric and autonomous vehicles, body domain controllers have become increasingly important, enabling smart power distribution and functional integration. Indeed, they are essential for many applications, whether in resistive loads such as a seat heater, capacitive or halogen lamp loads for surge-current handling, or inductive loads such as in wipers, solenoids and relays, where it protects against negative voltage spikes.”  The NSE34 and NSE35 families of high-side switches are available in 14- and 16-pin HSSOP packages measuring 4.9mm x 3.9mm respectively.
2024-11-06 14:11 阅读量:599
NOVOSENSE Introduces the NSIP605x Series of Cost-Effective Push-Pull Transformer Drivers to Support Customers' Diverse and Flexible Designs
  NOVOSENSE today announced the launch of the NSIP605x series of cost-effective push-pull transformer drivers, consisting of NSIP6051 with an output power of 1W and NSIP6055 with an output power of 5W. NSIP6055 is available in two versions: NSIP6055A with a switching frequency of 160kHz, for system applications with more stringent EMI requirements; and NSIP6055B with a switching frequency of 420kHz, for system applications that require improved conversion efficiency and reduced transformer size.  The cost-effective NSIP605x series is designed for cost-sensitive systems with no particular requirements for footprint size, and offers a higher cost effectiveness than comparable devices with internally integrated transformers while providing similar system performance. The NSIP605x series complements NOVOSENSE's existing product portfolio and supports customers' diverse system design needs with flexible, lightweight configurations in a wide range of industrial, automotive and renewable energy applications.  Excellent EMI and ESD performance helps reduce system design time  Thanks to NOVOSENSE's proven EMI optimization technology, the NSIP605x series achieves ultra-low noise and EMI through slew rate control of output switching voltage and spread spectrum clocking (SSC), and the peripheral circuit requires only simple configuration to meet CISPR25 Class 5 requirements. In terms of ESD performance, NSIP605x achieves ±8kV ESD (HBM) and ±2kV ESD (CDM) performance. Excellent EMI and ESD characteristics enable customers to complete overall system debugging more quickly and easily, shortening design time.  NOVOSENSE's extensive product portfolio meets different design needs  The NSIP605x series of push-pull transformer drivers is a new addition to the cost-effective product line introduced by NOVOSENSE. NOVOSENSE also offers a selection of other high-performance, highly-integrated products, including: the NSIP88/89xx series and the NIRSP31x series with integrated transformers and multi-channel digital isolators; the NSIP83086 series of isolated RS485 transceivers and the NSIP1042 series of isolated CAN transceivers, integrated with transformers and isolation interfaces. NOVOSENSE's comprehensive product portfolio can meet the diverse system design needs of various types of customers, providing one-stop semiconductor solutions for different customers.
2024-05-21 17:27 阅读量:1307
NOVOSENSE Introduces New Solid State Relays: Supporting 1700V Withstand Voltages and Meeting CISPR25 Class 5 Requirements
  Building on its long history in isolation technology, NOVOSENSE today announced the launch of its new NSI7258 series of capacitive isolation-based solid state relays, available in both industrial and automotive grades. Designed specifically for high-voltage measurement and insulation monitoring, NSI7258 provides industry-leading voltage withstand capability and EMI performance to help improve the reliability and stability of high-voltage systems such as industrial BMS, PV, energy storage, charging piles, and BMS and OBCs for new energy vehicles.  Integrated SiC MOSFETs, supporting 1700V withstand voltages  High-voltage systems are becoming increasingly prevalent in both the industrial and automotive sectors. In order to match the trend of high-voltage industrial and automotive platforms, NSI7258 integrates two SiC MOSFETs developed with NOVOSENSE's participation in a back-to-back format, each supporting up to 1700V withstand voltages; in the standard 1-minute avalanche test, NSI7258 withstands an avalanche voltage of 2100V and an avalanche current of 1mA, achieving industry-leading voltage and avalanche resistance. At the same time, under the test conditions of 1000V high voltage and 125°C high temperature, the leakage current of NSI7258 can be controlled within 1μA, which greatly improves the insulation impedance and detection accuracy of the battery pack in the BMS and enables safer human-machine interaction.  Compliance with various safety requirements, reducing system verification time  The popularity of high-voltage applications requires compliance with various stringent safety requirements. With NOVOSENSE's proprietary technology, NSI7258 achieves industry-leading creepage distance of 5.91mm on the secondary side and 8mm on the primary side in a SOW12 package, which meets the requirements of IEC60649 formulated by the International Electrotechnical Commission (IEC). In addition, with NOVOSENSE's superior capacitive isolation technology, NSI7258's voltage withstand capability is up to 5kVrms, which fully meets the relevant UL, CQC and VDE certifications, reducing customers' system verification time and accelerating the product-to-market process.  Significant EMI optimization, accelerating optocoupler relay replacement  Traditional optocoupler relay solutions suffer from light decay problems and their performance degrades over time, but the advantage of optocoupler relays is that they have no EMI problems, which is one of the important factors limiting optocoupler replacement in high-voltage systems. NOVOSENSE's NSI7258 is cleverly designed to achieve industry-leading EMI performance, easily passing the CISPR25 Class 5 test without magnetic beads on the single board and leaving sufficient margin in the full-band test. NSI7258 is produced based on an all-semiconductor process for higher reliability in long-term use. Superior EMI performance and increased reliability allow customers to use multiple devices in the system at the same time without being affected, significantly reducing design difficulty and enabling customers to accelerate optocoupler replacement in system designs.
2024-05-20 15:39 阅读量:1456
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
MC33074DR2G onsemi
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
CDZVT2R20B ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
型号 品牌 抢购
ESR03EZPJ151 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
BP3621 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
TPS63050YFFR Texas Instruments
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。

请输入下方图片中的验证码:

验证码