MOSFET的基本结构与工作原理

发布时间:2024-08-01 09:57
作者:AMEYA360
来源:发烧友研习社
阅读量:338

  MOS栅结构是MOSFET的重要组成部分,一个典型的N沟道增强型结构示意图如图1所示。其中栅极、源极和漏极位于同一个平面内,半导体的另一个平面可以称为体端,所以在一些书籍和资料中,也将MOSFET称为四端器件,实际上那个体端一般跟源极相连接,所以在此还是将MOSFET看成三端器件。N沟道增强型MOSFET的图形符号如图2a所示,跟结型场效应晶体管一样,存在3种类型的MOSFET,它们的图形符号如图2b、c和d所示。在实际应用中,一般不特指时的MOSFET都是增强型MOSFET,即在栅极不控制时,漏极-源极之间可以承受正偏置电压。

MOSFET的基本结构与工作原理

  在图1中,点划线框内就是典型的MOS结构,或者称为MOS栅结构。在金属和P型半导体之间的黑色部分就是氧化物绝缘层。需要补充说明的是,在早期的MOS栅结构中,金属侧只能使用金属材料,而在现代的MOS栅结构中,金属几乎完全被重掺杂的多晶硅或者金属-多晶硅合金所代替,这些材料在生产方便性和可靠性上都更具有优势。不妨碍对MOSFET结构和基本工作原理的理解,在此仍认为其是金属材料。和结型场效应晶体管一样,在MOSFET中载流子也是从源极经过沟道流向漏极,所以与源极和漏极相连接的都是重掺杂的N^+^区,以便更好地提供载流子。仔细观察,在MOSFET中,由于源极和体端相连接,从源极到漏极,即从体端到漏极还存在PN^+^结,即一个双极型二极管,显然它对 MOSFET的反向阻断和导通特性有明显的影响。

  为分析和表述方便,定义栅极到源极(就是栅极到体端)的电压为UGS,漏极到源极的电压为UDS,流经MOSFET的电流,即流入漏极的电流为ID。

  MOSFET的基本工作原理和特性主要体现在MOS结构的工作原理以及MOSFET中沟道的特性。此时要分两大类情况来分析MOSFET的基本工作原理,一类是MOSFET的漏-源极处于正偏置状态,另一类是漏-源极处于反偏置状态。

  当MOSFET的漏-源极处于正偏置状态,即UDS>0时,体端到漏极的二极管处于反偏置状态,PN^+^结的空间电荷区主要是在P区内展宽,从漏极到源极存在一个很小的漏电流。此时当栅极电压即UGS逐渐增高时,MOS栅结构就会经历耗尽、弱反型和强反型三个阶段,分别如图3b、c和d所示。

MOSFET的基本结构与工作原理

  在UGS刚大于零时,在氧化物绝缘层的下方P型半导体中出现了耗尽层,即空穴被门极电压产生的电场推开,留下受主离子;而当UGS增加到一定程度时,在氧化物绝缘层的下方的P型半导体中出现反型层,此时还处于弱反型阶段,即在反型层中有NA>>np>pp,载流子的浓度远小于半导体中受主原子的浓度,此时栅极电压并没有改变整个器件的导电特性。当UGS大于开启电压UT时,氧化物绝缘层的下方P型半导体中出现强反型层,在反型中有np>NA,此时的反型层中电子占优势,其导电行为主要是电子的漂移运动,形成从源极到漏极的电子流,即漏极到源极的电流ID,形成的强反型层称作沟道,根据其导电载流子性质,叫做N沟道(虽然在P型半导体中)。显然沟道的宽度和导电能力跟栅极电压有关,栅极电压越高,沟道的宽度和导电能力越强。可以认为,当栅极小于开启电压UT时,没有沟道形成。所以在MOSFET栅极零偏置时,MOSFET被关断,其间不会出现双极型器件因为储存载流子的抽出和复合而出现的开关延迟,其关断时间仅由MOS栅结构的电容放电时间决定,所以MOSFET相对于双极型器件来说,也是高开关频率器件。

  以上就是MOSFET的漏-源极处于正偏置状态基本工作原理,还有必要关注MOSFET在通态时的特性,会出现与结型场效应晶体管一样的线性、过渡、饱和等区域。即MOS栅结构形成的沟道不但受栅极电压的影响,还受到漏-源之间电压的影响,由于沟道采用掺杂浓度不高的材料,其电阻率较高,当有电流在漏-源间流过时,其中必然出现压降。此时MOS栅结结构的偏置电压就不再均匀分布,MOS结构的空间电荷区的宽度从漏到源不再相等。

  当流经电流较小时,电流在沟道中产生的电位梯度很小,沟道的外形几乎不发生改变,认为沟道是一个固定阻值的电阻区,则MOSFET的端电压和流经的电流之间呈线性关系。随着器件流经的电流增加,器件压降增加,沟道形状开始发生改变,且可看成是随压降变化的电阻,端电压和流经的电流关系就偏离线性关系。随着流经的电流和压降的进一步增加,出现图4所示的沟道一段被夹断的情况,此时压降增加而流经的电流不再增加,从而发生饱和,电子在强电场作用下通过夹断的沟道进入漏极来维持饱和电流。

MOSFET的基本结构与工作原理

  图5给出一个实际MOSFET在室温下的正偏置时输出特性曲线,即在不同的栅极电压情况下,MOSFET端电压与流经的电流的关系曲线族。图中是以实验点的形式给出,将线性区和过渡区合称为非饱和区。随着栅极电压的增加,非饱和区和饱和区的分界电压有所增加。由此可以看出,MOSFET的导电行为同时受到栅极电压和端电压的影响。

MOSFET的基本结构与工作原理

  MOSFET的工作原理中,还有一类情况就是MOSFET的漏-源极处于反偏置状态,即UDS<0时的工作原理。此时体端到漏极的二极管处于正偏置状态,所以无论MOSFET的栅极电压如何变化,MOSFET都处于导通状态。只是导通的行为在不同情况下有所不同。存在两种情况:

  ·栅极电压UGS<ut时,mos栅结构中没有导电沟道的形成,mosfet的反向通态特性与一般的pn结二极管一样。

  ·栅极电压UGS>UT时,MOS栅结构中存在导电沟道,电子流可以从漏极流向源极,即电流可以从源极流向漏极,这部分的电流-电压特性关系可以看成图5所示的输出特性关于原点的对称。但是只要MOSFET的压降增加到一定程度,并联的PN结正偏置向P区注入电子,结果就会使MOSFET的反向导通特性变成二极管的导通特性。从电路的角度看,MOSFET反偏置状态可以看成MOS栅结构与PN结二极管的并联,两部分的电流-电压曲线不同,MOSFET总的反向导通特性取决于两者并联的均流关系。

  这两种情况的电流示意图如图6所示,图5所示的MOSFET的导通特性在绝对值坐标下的曲线关系如图7所示。

MOSFET的基本结构与工作原理

  可以看出,在二极管没有导通的区域内,MOSFET在相同栅极电压下,正反向的电流-电压关系基本一致;栅极没有触发时,MOSFET的反向导通是双极型二极管特性;栅极触发时,MOSFET的反向导通是单极型的沟道特性与双极型二极管特性的分段组合。当然这种分段组合在低压大电流的功率MOSFET中体现得比铰明显,此时沟道区电阻阻值相对较低,在相当大小的电流范围内形成的压降比PN结的压降要小;对于一些高承压的MOSFET,沟道电阻阻值比较大,仅在非常窄的电流范围内形成的压降比PN结的压降小,几乎看不出分段组合。

MOSFET的基本结构与工作原理


(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
上海雷卯:MOSFET器件参数:TJ、TA、TC到底讲啥?
  作为上海雷卯电子的一名资深工程师,我经常被问及MOSFET器件的参数计算问题。在本文中,我将分享关于MOSFET中几个关键温度参数的计算方法:TJ(结温)、TA(环境温度)和TC(外壳温度)。  1. MOSFET温度参数的重要性  在电力电子应用中,温度是影响MOSFET性能和寿命的关键因素。过高的温度会导致器件性能下降,甚至损坏。因此,了解和计算这些温度参数对于确保MOSFET器件的稳定运行至关重要。  2. 温度参数定义TJ、TA、TC  l TJ(结温)(Junction Temperature):是指 MOSFET 芯片内部 PN 结的温度。它是 MOSFET 工作时所能承受的最高温度限制,超过这个温度可能会导致器件性能下降、损坏甚至失效。  l TA(环境温度)(Ambient Temperature)”,指 MOSFET 所处的周围环境的温度。  TC(外壳温度)Case Temperature):MOSFET外壳表面的温度。 计算结温需要用到热阻参数,下面介绍热阻参数。  3. 热阻定义及计算  热阻(Rθ)是衡量热量传递难易程度的参数。  l 结到壳的热阻(RθJC):表示从 MOSFET 的结(Junction)到壳(Case)的热阻。  l 壳到环境的热阻(RθCA):表示从 MOSFET 的壳到周围环境的热阻。  l 结到环境的热阻(RθJA):RθJA = RθJC + RθCA。  MOSFET 通常会给出结到壳(RθJC)、结到环境(RθJA)等热阻参数。热阻可以通过数据手册获取。  4. TJ、TA、TC 三个温度参数关系  TJ(结温)= TC(壳温)+ 功率损耗×(结到壳的热阻 RθJC); 公式1  TC(壳温)= TA(环境温度)+ 功率损耗×(壳到环境的热阻 RθCA);公式2  代入公式1,综合可得:  TJ(结温)= TA(环境温度)+ 功率损耗×(结到壳的热阻 RθJC + 壳到环境的热阻 RθCA)  其中功率损耗(Pd)主要由导通损耗和开关损耗组成。  导通损耗 = I² × Rds(on) (其中 I 是导通电流,Rds(on) 是导通电阻)  开关损耗的计算较为复杂,通常需要考虑开关频率、驱动电压等因素,并且可能需要参考 MOSFET 的数据手册提供的公式或曲线。  5.温度计算实例  以下为您提供几个 MOSFET 温度参数计算的实际案例:  例一:  一个 MOSFET 的导通电阻 RDS(on) 为 0.1Ω,导通电流 Id 为 10A,结到环境的热阻 RθJA 为 50°C/W,环境温度 TA 为 25°C。首先计算功率损耗:P = Id²×RDS(on) = 10²×0.1 = 10W  然后计算结温:TJ = TA + P×RθJA = 25 + 10×50 = 525°C  例二:  另一个 MOSFET 的导通电阻 RDS(on) 为 0.05Ω,导通电流 Id 为 5A,结到壳的热阻 RθJC 为 2°C/W,壳到环境的热阻 RθCA 为 30°C/W,环境温度 TA 为 20°C。  先计算导通损耗:P = Id²×RDS(on) = 5²×0.05 = 1.25W  由于热阻是串联的,总热阻 RθJA = RθJC + RθCA = 2 + 30 = 32°C/W结温 TJ = TA + P×RθJA = 20 + 1.25×32 = 60°C  例三:  某 MOSFET 在高频开关应用中,开关损耗为 5W,导通损耗为 3W,结到环境热阻 RθJA 为 60°C/W,环境温度 TA 为 30°C。  总功率损耗 P = 5 + 3 = 8W  结温 TJ = TA + P×RθJA = 30 + 8×60 = 510°C  6.结论  通过上述计算,我们可以看到,MOSFET的结温可能达到非常高的水平。一般来说,MOSFET 所能承受的最高结温是有限制的,在设计和使用时,需要确保结温不超过这个极限值,因此,设计合适的散热方案和监控温度是至关重要的。作为上海雷卯电子的工程师,我们始终致力于提供高性能的MOSFET器件,并为客户提供准确的参数计算指导,以确保器件的长期稳定运行。  请注意,本文中的计算仅为示例,实际应用中应根据具体的器件参数和工作条件进行计算。上海雷卯电子提供的器件数据手册和技术支持将帮助您更准确地进行温度参数的计算和评估。  雷卯电子专业为客户提供电磁兼容EMC的设计服务,提供实验室做摸底免费测试,为客户高效,控本完成设计,能快速通过EMC的项目,提高产品可靠性尽力。
2024-08-23 11:15 阅读量:325
MOS管小电流发热怎么处理?
  Source、Drain、Gate —— 场效应管的三极:源级S、漏级D、栅级G。(这里不讲栅极GOX击穿了啊,只针对漏极电压击穿)  先讲测试条件,都是源栅衬底都是接地,然后扫描漏极电压,直至Drain端电流达到1uA。所以从器件结构上看,它的漏电通道有三条:Drain到source、Drain到Bulk、Drain到Gate。  Drain→Source穿通击穿:  这个主要是Drain加反偏电压后,使得Drain/Bulk的PN结耗尽区延展,当耗尽区碰到Source的时候,那源漏之间就不需要开启就形成了通路,所以叫做穿通(punch through)。  那如何防止穿通呢?这就要回到二极管反偏特性了,耗尽区宽度除了与电压有关,还与两边的掺杂浓度有关,浓度越高可以抑制耗尽区宽度延展,所以flow里面有个防穿通注入(APT:AnTI Punch Through),记住它要打和well同type的specis。  当然实际遇到WAT的BV跑了而且确定是从Source端走了,可能还要看是否 PolyCD或者Spacer宽度,或者LDD_IMP问题了,那如何排除呢?这就要看你是否NMOS和PMOS都跑了?POLY CD可以通过Poly相关的WAT来验证。对吧?  对于穿通击穿,有以下一些特征:  ✦穿通击穿的击穿点软,击穿过程中,电流有逐步增大的特征,这是因为耗尽层扩展较宽,产生电流较大。另一方面,耗尽层展宽大容易发生DIBL效应,使源衬底结正偏出现电流逐步增大的特征。  ✦穿通击穿的软击穿点发生在源漏的耗尽层相接时,此时源端的载流子注入到耗尽层中,被耗尽层中的电场加速达到漏端,因此,穿通击穿的电流也有急剧增大点,这个电流的急剧增大和雪崩击穿时电流急剧增大不同,这时的电流相当于源衬底PN结正向导通时的电流,而雪崩击穿时的电流主要为PN结反向击穿时的雪崩电流,如不作限流,雪崩击穿的电流要大。  ✦穿通击穿一般不会出现破坏性击穿。因为穿通击穿场强没有达到雪崩击穿的场强,不会产生大量电子空穴对。  ✦穿通击穿一般发生在沟道体内,沟道表面不容易发生穿通,这主要是由于沟道注入使表面浓度比浓度大造成,所以,对NMOS管一般都有防穿通注入。  ✦一般的,鸟嘴边缘的浓度比沟道中间浓度大,所以穿通击穿一般发生在沟道中间。  ✦多晶栅长度对穿通击穿是有影响的,随着栅长度增加,击穿增大。而对雪崩击穿,严格来说也有影响,但是没有那么显著。  Drain→Bulk雪崩击穿:  这就单纯是PN结雪崩击穿了(Avalanche Breakdown),主要是漏极反偏电压下使得PN结耗尽区展宽,则反偏电场加在了PN结反偏上面,使得电子加速撞击晶格产生新的电子空穴对 (Electron-Hole pair),然后电子继续撞击,如此雪崩倍增下去导致击穿,所以这种击穿的电流几乎快速增大,I-V curve几乎垂直上去,很容烧毁的。(这点和源漏穿通击穿不一样)  那如何改善这个junction BV呢?所以主要还是从PN结本身特性讲起,肯定要降低耗尽区电场,防止碰撞产生电子空穴对,降低电压肯定不行,那就只能增加耗尽区宽度了,所以要改变 doping profile了,这就是为什么突变结(Abrupt junction)的击穿电压比缓变结(Graded junction)的低。这就是学以致用,别人云亦云啊。  当然除了doping profile,还有就是doping浓度,浓度越大,耗尽区宽度越窄,所以电场强度越强,那肯定就降低击穿电压了。而且还有个规律是击穿电压通常是由低 浓度的那边浓度影响更大,因为那边的耗尽区宽度大。公式是BV=K*(1/Na+1/Nb),从公式里也可以看出Na和Nb浓度如果差10倍,几乎其中一 个就可以忽略了。  那实际的process如果发现BV变小,并且确认是从junction走的,那好好查查你的Source/Drain implant了。  Drain→Gate击穿:  这个主要是Drain和Gate之间的Overlap导致的栅极氧化层击穿,这个有点类似GOX击穿了,当然它更像Poly finger的GOX击穿了,所以他可能更care poly profile以及sidewall damage了。当然这个Overlap还有个问题就是GIDL,这个也会贡献Leakage使得BV降低。  上面讲的就是MOSFET的击穿的三个通道,通常BV的case以前两种居多。Off-state下的击穿,也就是Gate为0V的时候,但是有的时候Gate开启下Drain加电压过高也会导致击穿的,我们称之为On-state击穿。这种情况尤其喜欢发生在Gate较低电压时,或者管子刚刚开启时,而且几乎都是NMOS。所以我们通常WAT也会测试BVON。  02、如何处理MOS管小电流发热严重情况?  MOS管,做电源设计,或者做驱动方面的电路,难免要用到MOS管。MOS管有很多种类,也有很多作用。做电源或者驱动的使用,当然就是用它的开关作用。  无论N型或者P型MOS管,其工作原理本质是一样的。MOS管是由加在输入端栅极的电压来控制输出端漏极的电流。MOS管是压控器件它通过加在栅极上的电压控制器件的特性,不会发生像三极管做开关时的因基极电流引起的电荷存储效应,因此在开关应用中,MOS管的开关速度应该比三极管快。  我们经常看MOS管的PDF参数,MOS管制造商采用RDS(ON)参数来定义导通阻抗,对开关应用来说,RDS(ON)也是最重要的器件特性。数据手册定义RDS(ON)与栅极(或驱动)电压VGS以及流经开关的电流有关,但对于充分的栅极驱动,RDS(ON)是一个相对静态参数。一直处于导通的MOS管很容易发热。  另外,慢慢升高的结温也会导致RDS(ON)的增加。MOS管数据手册规定了热阻抗参数,其定义为MOS管封装的半导体结散热能力。RθJC的最简单的定义是结到管壳的热阻抗。  03、MOS管小电流发热的原因  ✦电路设计的问题,就是让MOS管工作在线性的工作状态,而不是在开关状态。这也是导致MOS管发热的一个原因。如果N-MOS做开关,G级电压要比电源高几V,才能完全导通,P-MOS则相反。没有完全打开而压降过大造成功率消耗,等效直流阻抗比较大,压降增大,所以U*I也增大,损耗就意味着发热。这是设计电路的最忌讳的错误。  ✦频率太高,主要是有时过分追求体积,导致频率提高,MOS管上的损耗增大了,所以发热也加大了。  ✦没有做好足够的散热设计,电流太高,MOS管标称的电流值,一般需要良好的散热才能达到。所以ID小于最大电流,也可能发热严重,需要足够的辅助散热片。  ✦MOS管的选型有误,对功率判断有误,MOS管内阻没有充分考虑,导致开关阻抗增大。  04、MOS管小电流发热严重怎么解决  ✦做好MOS管的散热设计,添加足够多的辅助散热片。  ✦贴散热胶。  05、MOS管为什么可以防止电源反接?  电源反接,会给电路造成损坏,不过,电源反接是不可避免的。所以,我们就需要给电路中加入保护电路,达到即使接反电源,也不会损坏的目的。  一般可以使用在电源的正极串入一个二极管解决,不过,由于二极管有压降,会给电路造成不必要的损耗,尤其是电池供电场合,本来电池电压就3.7V,你就用二极管降了0.6V,使得电池使用时间大减。  MOS管防反接,好处就是压降小,小到几乎可以忽略不计。现在的MOS管可以做到几个毫欧的内阻,假设是6.5毫欧,通过的电流为1A(这个电流已经很大了),在他上面的压降只有6.5毫伏。由于MOS管越来越便宜,所以人们逐渐开始使用MOS管防电源反接了。  NMOS管防止电源反接电路:  正确连接时:刚上电,MOS管的寄生二极管导通,所以S的电位大概就是0.6V,而G极的电位,是VBAT,VBAT-0.6V大于UGS的阀值开启电压,MOS管的DS就会导通,由于内阻很小,所以就把寄生二极管短路了,压降几乎为0。  电源接反时:UGS=0,MOS管不会导通,和负载的回路就是断的,从而保证电路安全。  PMOS管防止电源反接电路:  正确连接时:刚上电,MOS管的寄生二极管导通,电源与负载形成回路,所以S极电位就是VBAT-0.6V,而G极电位是0V,PMOS管导通,从D流向S的电流把二极管短路。  电源接反时:G极是高电平,PMOS管不导通。保护电路安全。  连接技巧:NMOS管DS串到负极,PMOS管DS串到正极,让寄生二极管方向朝向正确连接的电流方向。  感觉DS流向是“反”的?仔细的朋友会发现,防反接电路中,DS的电流流向,和我们平时使用的电流方向是反的。  为什么要接成反的?利用寄生二极管的导通作用,在刚上电时,使得UGS满足阀值要求。  为什么可以接成反的?如果是三极管,NPN的电流方向只能是C到E,PNP的电流方向只能是E到C。不过,MOS管的D和S是可以互换的。这也是三极管和MOS管的区别之一。  06、MOS管功率损耗测量  MOSFET/IGBT的开关损耗测试是电源调试中非常关键的环节,但很多工程师对开关损耗的测量还停留在人工计算的感性认知上,PFC MOSFET的开关损耗更是只能依据口口相传的经验反复摸索,那么该如何量化评估呢?  功率损耗的原理图和实测图  一般来说,开关管工作的功率损耗原理图下图所示,主要的能量损耗体现在“导通过程”和“关闭过程”,小部分能量体现在“导通状态”,而关闭状态的损耗很小几乎为0,可以忽略不计。  实际的测量波形图一般下图所示。  MOSFET和PFC MOSFET的测试区别  对于普通MOS管来说,不同周期的电压和电流波形几乎完全相同,因此整体功率损耗只需要任意测量一个周期即可。但对于PFC MOS管来说,不同周期的电压和电流波形都不相同,因此功率损耗的准确评估依赖较长时间(一般大于10ms),较高采样率(推荐1G采样率)的波形捕获,此时需要的存储深度推荐在10M以上,并且要求所有原始数据(不能抽样)都要参与功率损耗计算,实测截图下图所示。
2024-07-17 14:18 阅读量:342
多个MOS管并联应用场景的四大要点
  功率MOS管具有优异的热稳定性,不会发生热失控,因此 并联多个MOSFET是一种很常见的使用方法,它可以减少传导损耗和分散功耗,以便限制最大结温。  1.功率MOS并联要点  在高速下空中高功率下,进行并行连接时,最主要的是需要避免电流集中,以及过电流,能够确保在所有可能的负载条件下,很好地平衡、均匀所有流过器件的电流。  2.功率MOS并联时的静态/动态动作  静态:  Rds(on)较低的MOS管能够导通更多的电流。  当它升温时,Rds(on)增加,部分电流将转移到其它MOS管上,电流共享取决于每个MOS的相对的电阻值。  注意:a.每个MOS的电流与其接通电阻的Rds(on)的倒数成正比关系;  b.热耦合良好的平行放置MOS的结温度大致相同。  动态:  动态运行时,阈值电压Vgsth最低的MOS管首先打开,最后关闭。这种MOS管一般会占据更多的开关损耗,并且在开关转换过程中,承担了更高的电应力。  3.开启、关断阈值保持一致  由于功率MOS切换时间会有所差异,因此在通电和断电期间容易出现不平衡,而在开关时间上的变化很大程度是由门-源阈值电压Vth的值。即:Vth的值越小,通电时间越快。相反,断电期间,Vth的值越大,截止的速度就越快。  此外,当电流集中在一个具有较小Vth的功率MOS上时,通电与断电的过程中会出现电流不平衡,这会让设备功率损耗过大,导致故障。因此,最好使用相近Vth值以及开关时间的变化,在每个MOS之间插入一个电阻,可以确保稳定运行以及防止异常振荡。  4. 其他要点  A.每个MOS需要栅极电阻,且阻值在几Ω到几十Ω,防止电流共享和振荡;  B.MOS管具备良好的热耦合,确保电流和热平衡;  C.避免在GS之间添加外部器件,可以适当调整电阻值,优化开关速度。  问题来了,那并联多个双极晶体管和MOS管有什么主要区别吗?  双极晶体管由于是基极电流驱动,因此电流平衡更容易被基极-发射极电压Vbe的波动所破坏,这样会导致并联连接均衡会变得困难。  而功率MOS管,由于是电压驱动,因此只需要向并联连接的每个MOS管提供驱动电压就可以保持相当不错的均衡性,使并联更加容易,因此MOS管相比双极晶体管,在多个并联的场景中会更有优势。
2024-07-16 11:13 阅读量:292
增强型和耗尽型MOSFET之间的区别是什么
  在现代电子领域中,MOSFET(金属氧化物半导体场效应晶体管)是一种关键的器件,被广泛用于数字集成电路、模拟电路和功率电路中。其中,增强型和耗尽型MOSFET是两种常见类型,它们在工作原理、特性以及应用方面存在着明显的区别。  1. 增强型MOSFET  增强型MOSFET是一种N沟道或P沟道MOSFET,在没有栅极电压的情况下,处于截止状态。当栅极电压施加到增强型MOSFET上时,会形成一个导电通道,使得器件能够导通电流。主要特点包括:  需要正向栅压:增强型MOSFET需要在栅极上施加正向电压,才能形成导电通道。  高输入阻抗:由于没有直接的电流流过栅极,增强型MOSFET具有较高的输入阻抗。  用途广泛:在数字集成电路和大多数应用中,增强型MOSFET是最常用的器件之一。  2. 耗尽型MOSFET  耗尽型MOSFET在没有栅极电压的情况下是导通的,而当施加负向栅极电压时,会在沟道中形成势垒,使其截止导通。耗尽型MOSFET的特点包括:  需要负向栅压:耗尽型MOSFET需要在栅极上施加负向电压,才能实现截止导通。  低输入阻抗:由于栅极上的电流会直接影响器件导通状态,耗尽型MOSFET通常具有较低的输入阻抗。  适用于某些特定应用:耗尽型MOSFET通常用于一些特殊场合,如功率放大器和特定模拟电路。  阅读更多行业资讯,可移步与非原创,AI产业链光模块企业分析之二——新易盛、产研:消费先行,车载可期,星闪的主战场?、MCU主要新品梳理 | 2024年上半年 等产业分析报告、原创文章可查阅。  3.区别总结  1. 工作状态不同:  增强型MOSFET:需正向栅压激活。  耗尽型MOSFET:无需栅极电压即可导通,需要负向栅压来截止导通。  2. 输入阻抗不同:  增强型MOSFET:具有高输入阻抗。  耗尽型MOSFET:具有低输入阻抗。  3. 应用范围不同:  增强型MOSFET:在数字集成电路和大多数应用中普遍使用。  耗尽型MOSFET:通常用于功率放大器等特殊应用。  无论是在数字电路设计还是在模拟电路方面,深入了解它们的特性可以帮助工程师更好地优化系统性能,并确保所选器件符合特定应用的要求。
2024-07-04 10:17 阅读量:374
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
RB751G-40T2R ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
MC33074DR2G onsemi
型号 品牌 抢购
TPS63050YFFR Texas Instruments
ESR03EZPJ151 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
BP3621 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。