晶科鑫:有源晶振与固态锂<span style='color:red'>电池</span>:科技界的 “好拍档”
  晶科鑫通过技术创新与管理优化,提升了品牌的影响力和市场竞争力。在国内外市场上,晶科鑫的知名度和客户认可度较高,这使得公司在激烈的市场竞争中占据有利位置。  有源晶振:新能源技术的核心节拍器:  晶振是锂电池的“心脏”,随着北京亦庄首条全固态锂电池量产线的投产,新能源领域迎来了一次技术飞跃。在这一变革中,有源晶振成为了确保电池稳定性和性能的关键技术。晶科鑫实业有限公司的有源晶振,以其高精度和高稳定性,成为新能源、通信、物联网等多个高精度电子领域的优选。  特别是在全固态锂电池的生产中,晶科鑫的3225有源晶振不仅监控电池稳定性,还调节其性能,确保了电池的安全与效率,凸显了晶振在智能设备中的核心作用。  有源晶振:晶科鑫的技术革新 :  晶科鑫的有源晶振产品在全固态锂电池生产线上发挥着不可替代的作用。这些晶振通过精确的频率控制,确保了电池的稳定性和安全性。  晶科鑫的SMD2016系列高基频晶振产品,覆盖76.8MHz、80MHz、96MHz等频率,为WIFI6、WIFI7等高频率应用提供了高稳定性和高可靠性的时钟信号,展现了晶科鑫在晶振技术领域的创新实力。  晶科鑫的低噪高频系列恒温晶振:  晶科鑫在晶振技术方面的最新研发成果,包括低噪高频系列恒温晶振OCXO,特别是频率为100MHz的恒温晶振,采用自产高Q值晶体,具有高可靠性、低相噪-170dBc/Hz、低老化率5ppb/天、精度高100ppb,工作电压5V。  这些创新产品不仅提升了晶振的性能,也进一步巩固了晶科鑫在晶振行业的领先地位。  应用于智能五孔插座和高压储能:  晶科鑫的有源晶振在智能设备中的应用同样引人注目。在智能五孔插座中,有源晶振用于时钟同步,确保插座的定时开关功能准确无误。  在高压储能新项目中,有源晶振则用于监测和控制储能单元的状态,通过提供稳定的时钟信号,实时监测储能单元的充放电状态,并控制充放电过程,确保能量的均衡和优化利用。  晶科鑫晶振的高精度和高稳定性:  晶科鑫SJK有源晶振以其高精度和高频率稳定性的卓越特性,成为市场上的热门选择。公司不仅掌握了MEMS光刻技术等关键核心技术,还拥有kHz、MHz、TSX等多种类型的无源晶体,以及有源晶振TCXO、SPXO、VCXO、OCXO等全系列产品。  晶科鑫引入的全新全自动流水线,极大地增强了产品的生产能力,有效满足了市场对于高精度有源晶振的需求。  总结:  晶振和全固态锂电池是科技界 “黄金搭档”,给电子硬件装上一颗安心的心脏。别再犹豫,选择晶科鑫晶振,就是选择科技前沿的品质保障。选择晶科鑫晶振,就是选择科技前沿的品质保障。
关键词:
发布时间:2024-12-16 14:06 阅读量:275 继续阅读>>
瑞萨推出全新Type-C端口控制器和升降压<span style='color:red'>电池</span>充电器,以及基于此两款产品的高性能USB PD EPR解决方案
  全球半导体解决方案供应商瑞萨电子(TSE:6723)宣布推出RAA489118升降压电池充电器和RAA489400 Type-C™端口控制器。这两款全新IC结合使用,共同打造出卓越的扩展功率范围(EPR)USB电力传输(PD)解决方案。  瑞萨作为USB-PD解决方案的全球领先供应商,为各类应用场景提供全面的产品,包括交钥匙解决方案;并凭借广泛的开发环境和预认证的USB-IF参考设计助力客户缩短产品上市时间。瑞萨的USB-PD解决方案带来卓越的质量及安全性,以及高效率和高功率密度。  RAA489118既可以作为支持2至7节串联电芯的电池充电器,也可以作为支持30V输入和30V输出的电压调节器。其采用瑞萨的专利R3™(鲁棒纹波调节器)技术,融合固定频率和滞环脉宽调制(PWM)技术的最佳特性。R3调制技术可实现无声学噪声运行、快速动态响应,和同类最佳的轻负载效率,从而延长电池寿命。  RAA489118包含SMBus(系统管理总线)接口,该接口广泛应用于电动工具、家用电器和轻工业产品。SMBus接口与升降压和双向特性相结合,使RAA489118能够与RAA489400,以及USB-C PD实施方案中的其它组件无缝协作。其输入和输出电压水平还与主流太阳能电源电压水平相匹配,是太阳能便携式电站应用的理想之选。  RAA489400端口控制器支持高达48V/5A的USB-PD VBUS电源,配备集成PHY、带外部NFET的Sink和Source功率路径门级驱动器、短路保护、VBUS放电、一个VCONN MUX和无电电池支持。  Chris Allexandre, Senior Vice President and General Manager of Power at Renesas表示:“多年来,瑞萨凭借先进技术、高度适应性和卓越的价值,在电池充电领域始终保持全球领先地位。RAA489118和RAA489400集成这些优势,并结合瑞萨在安全性和可靠性方面的优良传统,适用于电动工具及轻工业产品等新领域。我们预计该产品将在多个市场中受到客户的热烈欢迎,并引发强劲的需求。”  瑞萨USB EPR PD解决方案的关键特性  - 支持2至7节电芯串联的电池充电器  - 支持30V输入和30V输出的电压调节器  - 瑞萨R3™技术确保最小功率损耗,并提高效率  - 先进控制方案确保快速瞬态响应和系统性能  - 强大的热管理和保护功能带来安全性及可靠性  - 灵活的配置支持多种应用  - 内置过充、过热和电压异常保护功能  - 双向功率流  - USB-IF认证参考设计减少合规性测试时间及工作量  - 提供全面的设计支持和工具  成功产品组合  瑞萨还带来包含其它USB-PD控制器、电池管理IC和Type-C端口管理产品的一站式USB-PD充电器“成功产品组合”,最大限度减少客户将USB-PD和电池管理系统功能集成到其产品中的工作量。这些“成功产品组合”基于相互兼容且可无缝协作的产品,具备经技术验证的系统架构,带来优化的低风险设计,以加快产品上市速度。瑞萨现已基于其产品阵容中的各类产品,推出超过400款“成功产品组合”,使客户能够加速设计过程,更快地将产品推向市场。  供货信息  RAA489118采用4×4 32引脚TQFN封装,RAA489400采用32引脚3×5 FCQFN封装;两款产品现已可通过瑞萨订购。瑞萨还提供全面的设计支持和工具,包括VID Writer配置工具和电池充电器GUI软件,用于配置设计。  瑞萨电源管理技术优势  作为全球卓越的电源管理产品供应商,瑞萨近年来的平均年出货量超15亿颗;其中大量产品服务于计算行业,其余则广泛应用于工业、物联网、数据中心以及通信基础设施等领域。瑞萨拥有最广泛的电源管理器件产品组合,提供无与伦比的质量和效率,以及卓越的电池寿命。同时,作为一家值得信赖的供应商,瑞萨拥有数十年的电源管理IC设计经验,并以双源生产模式、业界先进的工艺技术,以及由250多家生态系统合作伙伴组成的庞大体系为后盾。
关键词:
发布时间:2024-12-12 11:20 阅读量:231 继续阅读>>
锂<span style='color:red'>电池</span>电动车新国标规范下,维安充电器方案亮点有哪些?
  为保护消费者安全以及净化市场,2024年4月25日,《电动自行车用锂离子蓄电池安全技术规范》正式发布,并且明确从2024年11月1日起将会正式实施,所有的锂电池和充电器都必须通过3C认证,才可以生产和销售。  GB43854  锂电池电动车新国标充电器“强制性国家标准”  该标准从单体电池和电池组两个层面规定了锂电电动车的安全要求和试验方法,主要考虑了过充电、过放电、外部短路、热滥用等安全要求。对于锂电池充电器的设计在满足多项技术标准和安全规范之外,根据厂商定制化需求,其智能化要求也有所提升。  基于新国标锂电充电器相关标准和规范,维安研发人员利用自研产品AC-DC控制器WD1092BAPT和可编程智能管理充电芯片WHA19003F4M7开发了一款基于一级半PFC反激AC-DC拓扑的锂电电动车充电器方案,实物如下图所示:  特征:  维安新国标锂电充电器方案  整机效率  ≥88.0%,包括可控硅和风机的功耗  高EMI裕量  传导和辐射骚扰 裕量≥10 dB  低成本  初级方案巧妙使用一级半和合封功率  MOSFET技术,次级同样采样集成LDO、  恒压恒流模块及可编程功能的智能管理  充电IC,大大减少了外围元件数量以及  布线复杂度,整体方案成本和性能具备  明显优势  保护功能  本方案设置了多种异常工作状态的检测  和保护功能,次级智能充电管理IC具备  过温、过压、风扇堵转这几种异常状态  的指示功能和保护功能,并同时具有可  供客户定制的充电器智能开发平台,整  体方案灵活性具有明显优势  输入输出规格  输入电压  180-240V/AC (输入最低电压165V/AC,  输入最高电压264V/AC)  输出规格  60V/3A (输出最低27V/3A,输出最高60V/3A)  功率因数PF  0.75  整机效率  ≥88.0 %  方案设计及优势  1  锂电充电管理模块设计  为满足新国标充电器强制性“通讯协议”充电这一要求,本方案的次级控制器采用了一款高度可编程数模混合智能充电管理芯片WHA19003F4M7,其内置的恒压恒流控制模块实现了对充电器对锂电池充电过程的精准控制以及充电异常行为的提醒和保护功能,从而提高了锂电池的使用寿命,以及充电过程的可靠性。  充电电压经由输出端分压网络得到的电压与内置的2.5V电压源相比较作为输出电压控制信号以及系统反馈信号,充电电流经由采样电阻取得的电压与控制器内置的50mV电压源作为输出电流控制信号以及系统反馈信号。  锂电池充电逻辑如下图2所示,该方案具备开机自检、修调模式、异常保护等功能,且具备明显的状态灯和风扇指示功能,符合新国标充电协议要求。  另外,次级控制器WHA19003F4M7提供一线通、485等协议接口,可根据客户需求定制具体化协议以及关键参数修调功能,输出电压精度在50mV以内,并同时提供充电器开发平台供客户使用,平台界面如图3。  智能化开发平台界面示意图  该平台同时具备铅酸蓄电池和锂电池两种充电协议,用户可根据实际电池充电需求配置充电模式分段式的关键参数,生成充电管理代码,提高了WHA19003F4M7在客户端的使用灵活性以及电池充电多样化的适配性。  此外,根据如上图2所示的锂电池充电逻辑状态机示意图,为保证充电器使用过程的安全性和可靠性,本方案智能化设置了过温、过压、风扇堵转等异常状态的保护动作,详情如表1所示。  功率模块方案设计  新国标充电器方案的初级部分采用维安自研产品WD1092BAPT作为AC-DC PWM控制器,具备宽压输入、低功耗、高效率等特性。  WD1092BAPT内置的650V/0.85Ω 高功率MOSFET作为该部分的高频开关。充电器轻载或空载工作时,WD1092BAPT处于Burst模式以减小开关损耗,从而降低了待机功耗,提高了轻载效率;工作于正常负载模式时,WD1092BAPT采用电流模式控制技术,内置软驱设计不仅优化EMI特性,也提高了整机效率。  WD1092BAPT同时具备过流保护(OCP)、过载保护(OLP)、过温保护(OTP)、过压保护(OVP)等功能,大大提高了整机的可靠性。  总结  本方案设计的电动车新国标锂电充电器支持最大功率180W充电,具有整机效率高、低成本、充电平台定制化、高灵活性定制充电需求等优势。
关键词:
发布时间:2024-12-02 13:39 阅读量:264 继续阅读>>
思瑞浦推出17通道高精度<span style='color:red'>电池</span>管理产品—TPB76016
  聚焦模拟芯片和嵌入式处理器的供应商思瑞浦3PEAK(股票代码:688536)全新推出17通道高精度电池管理产品—TPB76016,内置高精度基准,工作温度支持-40°C to +125°C,可广泛应用于动力电池、储能电池、以及其他消费类电池的BMS控制板。  TPB76016产品优势  ±80V相邻两个通道耐压  2mV的电压采集精度,达到业内较高水平  17通道输入,高集成化,节省PCB空间和成本  17通道50mS采样周期,集成1MSPS SPI通信,满足大多数BMS应用领域  集成16位ADC,提高装置采样精度  内置高精度基准,初始精度±0.3%,温漂10ppm/℃  TPB76016产品特性  可测量多达17个串联电池电压  相邻采样通道耐压高达±80V  电压测量  电压采集范围0V~5V  电池电压测量精度可达2mV(典型值)±5mV(-20℃~65℃)  电流测量  检流电阻上的测量范围可到±100mV  ±0.2%电流测量精度(-20℃~65℃)  支持极低漏电流  深度睡眠模式:25μA  睡眠模式:30μA  关机模式:2.5μA  集成电压、电流、温度在内的多个保护功能  支持使用内部温度传感器和多达4个外部热敏电阻进行温度检测  集成可编程存储器供使用  集成二级化学熔断器驱动保护  内置均衡MOS,同时支持外接均衡管均衡  1Mbps SPI通信接口  产品内部框图和典型外围电路  TPB76016典型应用  下图以电动两轮车行业BMS典型应用框图,16节电池电压直接送到TPB76016的采样通道,通过内置高精度的AD转换得到精确的电压值,可达到2mV的采样精度,再通过SPI通信传输给单片机,同时可实现过流过压保护和均衡。  搭配思瑞浦高边驱动芯片TPB76200可以控制高边开关,如下图所示:
关键词:
发布时间:2024-09-27 11:20 阅读量:488 继续阅读>>
电容和<span style='color:red'>电池</span>的区别
  在现代科技领域,电容和电池都是重要的电子元件,用于储存和释放能量。尽管它们都涉及电能存储,但在工作原理、特性和应用方面存在明显差异。  电容  物理特性  构成:电容由两个导体间隔一层绝缘材料(介质)组成。  储能方式:电容通过在其两极板上存储电荷来储存能量。  单位:电容的单位为法拉(F)。  工作原理  电容器充电时,正极板获得正电荷,负极板获得负电荷,从而形成电场;放电时,电场能量转化为其他形式的能量。  优势  快速响应:电容器具有快速响应的特点,在瞬时能量需求较大的场合下表现出色。  长寿命:电容器通常有很长的使用寿命,可以进行多次充放电循环。  电池  物理特性  构成:电池由一个或多个电池单元组成,每个单元包含正极、负极和电解质。  储能方式:电池通过化学反应将化学能转化为电能,并在需要时释放。  单位:电池的电压通常以伏特(V)表示。  工作原理  电池内部的化学反应产生电子流动,从而产生电流;当电池放电时,化学能转变为电能,电池充电时,相反的过程发生。  优势  能量密度:电池通常具有较高的能量密度,适合长期储存能量或为设备提供持续供电。  便携性:电池体积小、重量轻,便于携带和应用于移动设备。  区别比较  1. 储能方式  电容:电容通过在两极板上存储电荷来储存能量,主要依赖电场能量。  电池:电池通过化学反应转化化学能为电能,主要依赖化学能。  2. 工作原理  电容:电容器的能量存储和释放是基于电场的能量转换。  电池:电池的能量转换则基于化学反应的能量转化。  3. 快速响应  电容:电容器具有快速响应的特点,适用于需要瞬时大电流的场合。  电池:电池响应速度相对较慢,不适合需要快速响应的场景。  4. 能量密度  电容:电容器的能量密度通常较低,适合短期能量存储和瞬时能量输出。  电池:电池通常具有较高的能量密度,适合长期能量存储和持续供电场景。  5. 使用寿命  电容:电容器通常具有较长的使用寿命,可进行多次充放电循环。  电池:电池的使用寿命受制于化学反应的耗损,循环次数有限且随着时间增长而缩短。  6. 应用领域  电容:主要用于平滑电路中的电压波动、调节功率因素、存储能量以及启动电机等需要瞬时大电流的场合。  电池:广泛应用于移动设备、电动车辆、储能系统、无线通信设备等需要稳定、长期供电的场合。  7. 环境友好性  电容:一般不涉及有害物质的使用,对环境影响较小,易于回收利用。  电池:部分电池类型含有重金属等有害物质,在处理废旧电池时需谨慎防范环境污染。  电容和电池作为重要的电子元件,分别以其特有的工作原理、能量存储方式和性能特点在各自的领域发挥着重要作用。电容适用于需要快速响应、瞬时大电流的场合,而电池则更适合长期能量储存和持续供电的应用环境中。
关键词:
发布时间:2024-09-24 10:43 阅读量:445 继续阅读>>
车规级低功耗蓝牙芯片新品不断,胎压监测、<span style='color:red'>电池</span>状态监控等成为潜力的应用市场
  随着全球汽车行业向智能化、自动化和电气化的快速发展,车规级芯片已经成为现代车辆中不可或缺的核心组件。在众多车规级芯片种类中,低功耗蓝牙芯片因其独特的通信优势正日益受到重视。  车规级认证提升芯片可靠性和安全性  当前,根据功能分类,车规级芯片可以分为计算控制芯片(包括功能芯片MCU和主控芯片SOC等)、存储芯片、功率半导体(包括IGBT和MOSFET等)、通信芯片、传感器芯片(包括CIS、MEMS、陀螺仪等)五大类。       随着新能源汽车对电子元器件的安全性、可靠性等各个方面的要求越来越高,电子元器件完成车规级认证成为衡量产品性能的要素之一。车规级的认证包括AEC-Q100、ISO 26262、IATF 16949等。这些认证确保了汽车电子部件的可靠性、功能安全性和制造质量。       AEC -Q100是针对集成电路的车规级应力测试标准,涉及加速环境应力测试、封装组装完整性测试、加速生命周期模拟测试、芯片制造可靠性测试等。加速环境应力测试包括预处理、有偏温湿度测试、无偏高温高湿测试等封装组合完整性测试包括绑线剪切测试、绑线拉力测试等;芯片晶元可靠度测试包括电迁移测试、经时介质击穿测试。       进行车规级认证,能够提升产品的可靠性和安全性、增强市场竞争力。因此当前大多数芯片厂商都在加速完成车规级认证,进入庞大的汽车市场。       海通国际证券在2023年的报告中指出,车规级芯片在传统汽车中的成本约为2270 元/车,在新能源汽车中的成本约为4540 元 /车。随着汽车智能化、电动化的发展,车规级芯片所占的成本还会持续增加。与此同时,车规级汽车芯片的市场的规模也会进一步提升。       在众多车规级芯片中,低功耗蓝牙芯片因其低功耗、高可靠性的通信优势,正逐渐成为车载通信不可或缺的一部分,能够为驾驶员和乘客提供更加便捷、安全和智能化的驾乘体验。       车规级低功耗蓝牙芯片通常需要满足AEC-Q100标准,能够在不同的驾驶条件中稳定运行。车规级低功耗蓝牙芯片可用于车载数字钥匙、胎压检测、工业无线信号采集、无钥匙进入(PKE)钥匙等场景,提升了汽车智能化水平。  多款新品亮相,打开低功耗、传感监测新应用市场  当前,国际芯片厂商和国内芯片厂商都已经推出了多款车规级低功耗蓝牙芯片,电子发烧友网统计了恩智浦、桃芯科技、昂瑞微、琻捷电子、汇顶科技的产品。       恩智浦推出了车规级低功耗蓝牙芯片 KW45 系列,采用三核架构在内存、安全性、隔离性上都得到了提升。       根据介绍,KW45系列的Cortex-M33 Main Core主要用于应用程序和无线连接堆栈,Narrowband Radio Core专用窄带无线电单元,减少主核的资源负荷;还有用于密钥存储,加密加速的EdgeLock Secure Enclave,这是恩智浦推出的一款经过预配置的自管理式自主片上安全子系统。       车规级蓝牙芯片的应用场景包括信息娱乐系统、车辆状态监测、车辆访问控制、驾驶辅助功能、数字钥匙等,为了让 KW45系列支持更多的汽车应用场景,恩智浦在KW45系列增加了多种系列,例如可以选择不同Flash/RAM 的 Part Number,以及有无集成 CAN等。       琻捷电子在2023年年底推出了车载无线传输芯片SNJ32W103,支持BLE 5.1协议,其中2.4G RF部分可单独作为2.4G收发器,80KB RAM和512KB Flash。       根据介绍,BLE系统最多支持8路同时连接,发送功率为-20dBm~+6dBm可调,其中2.4G RF部分可单独作为2.4G收发器。SNJ32W103支持深度睡眠和睡眠模式,支持RSSI,精度为±1dB。       琻捷电子为SNJ32W103集成了丰富的外设,ADC和传感器接口,可以接入16bitsADC、温度传感器、温度报警模块。在接入传感器后,SNJ32W103应用到电池包传感采样的场景,可以监测电池状态,实现安全预警、性能优化和故障诊断等功能,确保电动汽车在高效运行时,也有足够的安全性和可靠性。       另外,蓝牙胎压监测系统已经成为汽车智能化的重要发展方向,车规级低功耗蓝牙芯片为该技术的实现提供了重要通讯能力。蓝牙胎压监测技术能够实时检测轮胎压力和温度,再通过无线传输将数据发送到车载信息系统或驾驶员的智能手机上,提高了驾驶安全性。       毫无疑问,蓝牙胎压监测已经成为低功耗蓝牙技术在车载领域的重要应用方向,多家蓝牙芯片厂商相继宣布各自的新品支持该技术。例如,昂瑞微电子的车规级低功耗蓝牙芯片OM6650AM同样支持胎压检测。       官方介绍,OM6650AM支持蓝牙5.1协议栈与2.4GHz私有协议,是一款双模无线连接SoC芯片。具有QSPI/SPI、I2C、12-bit通用ADC等外设接口,1Mbps传输速率下,接收灵敏度达-95.5dBm。在安全性方面,昂瑞微表示OM6650AM内部集成硬件随机数发生器以及支持AES128加密。       桃芯科技的车规级低功耗蓝牙芯片ING91870CQ也支持蓝牙5.1协议,48M主频,内置512KB eFlash,128KB RAM,能够用于汽车的多种应用场景。汇顶科技在近期也展示了车规级低功耗蓝牙芯片GR5405,具备优异的射频性能、蓝牙链路监听系统方案。       低功耗蓝牙由于低功耗特性,具备延长设备使用寿命、增强汽车电池续航、减少热量产生等优势,使得低功耗蓝牙技术在汽车行业中得到了广泛应用。例如能在深度睡眠模式下具有极低的电流消耗,或者应用在需要进行持续监测的蓝牙胎压监测系统中,都能够通过低功耗的特性延长使用寿命。       根据ABI Research预测,未来每辆汽车中都将采用4到6个蓝牙无线传感器,用于信息娱乐、数字钥匙、汽车胎压监测和状态警报等应用场景。为了随着需求的上升,车规级低功耗蓝牙芯片在汽车领域的应用需求将保持上升趋势。
发布时间:2024-07-30 13:00 阅读量:602 继续阅读>>
Littelfuse:新增ITV2718 5安培额定电流<span style='color:red'>电池</span>保护器系列,用于防止锂<span style='color:red'>电池</span>组损坏
  下一代智能手机、游戏机和其他消费电子产品的理想之选  Littelfuse宣布对其ITV2718表面安装锂电池保护器系列进行扩展。这些保险丝可保护锂电池组在快速充电当中免受过流和过充(过压)情况的影响。  ITV2718电池保护器  最新推出的ITV2718尺寸为2.7 x 1.8mm,提供5安培、三端子保险丝。这种创新设计可利用嵌入式保险丝和加热器元件组合快速做出反应,在过充或过热情况发生之前中断电池组的充电或放电电路。  IITV2718电池保护器适用于各种消费电子产品,包括:  游戏控制台  自动紧急呼叫系统  便携式路由器  便携式调制解调器  智能手机  笔记本电脑和平板电脑  "通过进一步扩展我们的ITV锂电池组保护保险丝系列,将这些额定电流为5安培的新器件纳入其中,Littelfuse为电子工程师的下一代消费电子产品设计提供了更多选择。”Littelfuse全球产品经理Stephen Li谈到,“继续扩大我们的表面安装、三端子电池组保护器产品组合,使我们能够为这些产品开发团队提供更强大、更创新的电池保护解决方案。”  ITV2718提供以下关键优点:  通过快速响应时间和低内阻防止电池组过流和过充损坏;  表面安装设计简化了印刷电路板 (PCB) 的自动组装流程;  通过UL和TUV认证满足行业安全要求,以加快合规性审批;  无卤素且符合RoHS标准的环保组件。  工作原理  嵌入式三端子保险丝在发生过流情况时立即切断电路。加热器元件直接嵌入保险丝元件下方,一旦集成电路或场效应管检测到过充,就会产生足够的热量来熔断保险丝。
关键词:
发布时间:2024-07-23 10:57 阅读量:807 继续阅读>>
南孚高质量耐漏液碱性<span style='color:red'>电池</span>系列介绍!
  如今,在科技迅猛发展的时代,各种电子产品充斥着我们生活的各个角落,然而,就像宇航员需要稳定的氧气供应一样,这些高科技产品也离不开其“生命之源”——电池的支持。其中碱性电池以其稳定的性能和广泛的应用,成为了许多电子设备的首选电源,广泛应用于各种设备中,如遥控器、儿童玩具、无线话筒、无线门铃等上面。市面上的碱性电池品牌繁多,那么,碱性电池哪个牌子好呢?说到碱性电池,那就不得不提南孚电池啦,可能有人会质疑,南孚的碱性电池真的有那么出色吗?别急,让AMEYA带你揭开这款电池的神秘面纱,一探究竟!  南孚电池品牌介绍  南孚电池成立于1954年,是中国百强、电池行业龙头企业,世界三大碱性电池生产商之一。  工厂坐落于福建省南平市,建有园林式生态厂区面积近18万平方米,厂房、产线及配套设备均稳居国际先进水平。拥有技术中心和博士后科研工作站,并与全国重点大学、中科院研究所合作成立多个新型能源研究中心,形成了科研创新机制,致力于为用户提供拥有科技和体验的电源产品和服务。自主开发的全自动电池生产线,装配速度最快可达700只/分钟,碱性电池年年产能高达33亿只。  南孚电池始终致力于微型电池的研发、制造和销售,经过70年的发展,中国市场占有率已超过86%,连续31年全国销量遥遥领先,系亿万中国家庭电池消费的首选品牌。在国外市场,出口产品行销世界五大洲超过60个国家和地区,系诸多世界五百强、行业头部客户的战略合作伙伴。  下面AMEYA着重介绍南孚以下几款高质量耐漏液碱性电池系列:  南孚作为国内碱性电池行业的重量级品牌,它以电池为媒,把满满能量输送到家庭生活当中。未来南孚还将继续聚焦消费新需求,始终以用户为中心,为消费者打造更加耐用、更加环保、更加安全的电池。
关键词:
发布时间:2024-07-12 13:36 阅读量:521 继续阅读>>
蔡司:探索太阳能<span style='color:red'>电池</span>板内部的质量奥秘
  人类的经济活动是建立在能源体系之上的,经济的增长往往伴随着能源需求的不断提高,而传统化石能源的使用会对生态环境造成不可逆的损害。2023年12月9日,第28届联合国气候大会(COP28)进行到后半段,中国代表团举行首次新闻发布会,时任中国气候变化事务特使的解振华出席。解振华特使重申了能源转型的方向,表示用清洁高效的可再生能源来替代化石能源,这是最终目标。2023年12月13日,会上全球190多个国家达成了“阿联酋共识”,各国被呼吁“以公正、有序、公平的方式在能源系统中摆脱化石能源(transitioning away from fossil fuels),在这个关键的十年中加快行动”。  “阿联酋共识”为全球碳排放设定了新的目标:温室气体排放量至2030年较2019年减少43%,到2030年将全球可再生能源产能增加两倍,能效提升一倍。太阳能是可再生能源中非常重要的组成部分,太阳发射到地球的总功率达到1.77*1012kW,如何高效利用太阳能是学术界和产业界共同的话题。  光生伏特效应1839年,法国科学家贝克雷尔首次发现了“光生伏特效应”,1954年美国科学家恰宾和皮尔松在贝尔实验室首次制成了实用单晶硅太阳能电池。至今人类已经在太阳能电池技术上取得了长足的进步,各种技术路线百花齐放。  太阳能电池  太阳能电池根据其材料不同可分为晶体硅太阳能电池和薄膜太阳能电池。以P型硅片为基础的PERC电池(背面钝化电池)是目前市场上的主流技术路线,以N型硅片为基础的TOPCon电池(隧穿氧化层钝化接触电池)和HJT电池(异质结电池)则已经成为了近年来各厂商发展的重点。  太阳能电池的生产步骤十分复杂,包括,制绒,扩散,界面钝化,刻蚀,丝网印刷等步骤。制造商在生产过程中必须保证硅片上离子扩散的均匀性,钝化层厚度的均一性等。利用蔡司的工业显微镜技术可以实现对硅片微观形貌的观察和管控。如在P-N结的制结中需要扩散磷或硼元素,利用EDS(X射线能谱仪)可实现对样品元素分布的分析。在进行界面钝化或镀膜制备中会用到如PVD技术,CVD技术,ALD技术等,而不同技术手段则各有优劣,膜层的均匀性,致密性对产品性能有着举足轻重的影响,利用聚焦离子束(FIB)切割截面,配合扫描电镜(SEM)可实现对微观样品截面的形貌观测。  ZEISS Sigma系列  扫描电子显微镜(SEM)  Sigma 360  分析测试平台的理想之选,直观的图像采集  从设置到获取基于人工智能的结果,均提供专业向导,为您保驾护航,助您探索直观的成像工作流。  可在1 kV和更低电压下分辨差异,实现更高的分辨率和优化的衬度。  可在极端条件下执行可变压力成像,获得出色的非导体成像结果。  蔡司Crossbeam系列  聚焦离子束扫描电镜(FIB-SEM)  专为高通量三维分析和样品制备量身打造的FIB-SEM  将高分辨率场发射扫描电子显微镜(FE-SEM)的成像和分析性能与新一代聚焦离子束(FIB)的加工能力相结合。无论在科研机构还是工业实验室,您都可以在多用户实验平台中工作。利用蔡司Crossbeam的模块化平台概念,根据日益增长的需求升级您的系统,例如使用LaserFIB进行大规模材料加工。在切割、成像或执行三维分析时,Crossbeam将提升您的FIB应用效率。  使您的SEM具备强大的洞察力  使用Gemini电子光学系统从高分辨率扫描电子显微镜(SEM)图像中获取真实的样品信息。  在进行敏感表面二维成像或三维断层扫描时,Crossbeam的SEM性能值得您信赖。  加速电压非常低时也可获得高分辨率、高衬度和高信噪比的清晰图像。  借助一系列探测器实现样品的全方位表征。使用Inlens EsB探测器获得更纯的材料成分衬度。  研究不受荷电伪影干扰的非导电样品。  提升您的FIB样品制备效率  智能FIB扫描策略快速且精准,移除材料比以往实验快40%以上。  Ion-sculptor FIB镜筒采用了一种全新的加工方式:您可以尽可能减少样品损伤,提升样品质量,从而加快实验进程。  使用高达100 nA的离子束束流,高效而精准地处理样品,并保持高FIB分辨率。  制备TEM样品时使用Ion-sculptor FIB的低电压功能,以获得超薄样品,同时尽可能降低非晶化损伤。  在您的FIB-SEM分析中体验出色的三维空间分辨率  体验整合的三维EDS和EBSD分析所带来的优势。  在切割、成像或执行三维分析时,Crossbeam将提升您的FIB应用效率。  使用我们快速准确的断层扫描及分析软硬件包蔡司Atlas 5来扩展您Crossbeam的性能。  使用Atlas 5中集成的三维分析模块可在断层扫描的过程中进行EDS和EBSD分析。  尽享FIB-SEM断层扫描中优异的三维空间分辨率和各向同性的三维体素尺寸。使用Inlens EsB探测器探测小于3 nm的深度,并可获得表面敏感的材料成分衬度图像。  在切割过程中收集连续切片图像以节省时间。尽享可跟踪的三维体素尺寸和保证图像质量的自动流程为您带来的优势。  晶硅电池在一定意义上习惯被称为第一代太阳能电池技术,目前技术上仍然在不断取得突破,第二代太阳能电池技术以砷化镓,碲化镉等薄膜电池为代表,但由于其成本较高,技术受控等原因在我国发展相对受限,以钙钛矿为代表的第三代太阳能电池则在我国遍地开花,各大企业纷纷布局。太阳能电池的效率受到其半导体材料带隙间隙的影响,传统晶硅电池的理论极限效率约在28-29%左右,而钙钛矿叠层电池的理论极限效率则可达到40%以上。钙钛矿叠层电池可以继续使用晶硅电池产线实现钙钛矿-晶硅叠层电池的生产,其中以晶硅为衬底涂布钙钛矿材料制备太阳能电池需要用到涂布工艺,其生产过程与锂电池和燃料电池极片涂布技术类似,但要求更加严苛,涂层更薄(约0.5-1.5微米),生产工艺控制难度更高。  对太阳能电池来说其使用寿命是非常重要的话题,业界一般使用T80寿命评价太阳能电池性能,即在户外工作条件下,组件效率衰减为初始值80%所需时间。提升太阳能电池稳定性的重要影响因素除了电池材料本身之外还包括电池的封装。如常用的EVA封装胶膜,金属背板,表面钢化玻璃等。对电池老化的研究以及失效分析中需要对材料微观形貌以及对引入杂质离子进行检测分析。  蔡司显微镜技术凭借其先进的光电子技术,独特的物镜结构,优秀的镜筒设计能够实现高分辨率的微观形貌观察,在太阳能电池应用中无论是涂层颗粒度,涂层厚度,孔隙率分析,材料失效分析等都能发挥其独到的优势。  光伏产业的声势此起彼伏,伴随着陈旧产能出清,新技术的不断发展,行业布局不断更迭,对不同技术的选择和开拓也离不开对产品技术路线的不断深入探索。“十四五”规划中对光伏产业也提出了很多重要指标,光伏产业量质并举,势在必行。  蔡司电力与能源质量解决方案  蔡司作为应对气候变化的先行者,能够提供传统及新型绿色能源系统的质量保证,助力能源行业及产业链企业零碳转型。蔡司电力与能源行业质量解决方案覆盖从传统燃气、蒸汽轮机到风能、太阳能、氢能、新型储能系统等新型清洁能源的“源-网-荷-储”全路径,通过先进硬件设备与智能软件相结合,为能源企业的研发、设计、生产、维护维修等环节提供高效质量控制,提升产品质量的同时大大降低产品后期的维修维护成本,赋能绿色工业体系,加速能源行业及产业链企业构建零碳能源体系,实现能源的经济性、可靠性和可持续性之间的平衡。  蔡司工业显微镜  作为先进的显微镜制造商,蔡司为您提供用于生命科学和材料研究领域日常工作的全套解决方案及服务。此外,我们的产品组合还包括用于教育和临床常规领域多种讨论目的的显微镜。值得信赖的蔡司显微镜系统在全球高科技产业中广泛应用于质量保证和质量控制。  从一系列光学、共聚焦、电子和X射线显微镜中选择适合您的任务与应用的理想解决方案。技术娴熟且训练有素的应用专家将为您的工作提供支持,确保您获得出色的投资回报。
关键词:
发布时间:2024-06-21 09:52 阅读量:621 继续阅读>>
安森美:<span style='color:red'>电池</span>储能系统的 DC-DC 功率转换拓扑结构
  近年来, 太阳能等可再生能源的应用显著增长。推动这一发展的因素包括政府的激励措施、技术进步以及系统成本降低。虽然光伏(PV)系统比以往任何时候都更加合理, 但仍然存在一个主要障碍, 即我们最需要能源时,太阳能并不产生能源。清晨,当人们和企业开始一天的工作时,对电网的需求会上升;晚上,当人们回到家中时,对电网的需求也会上升。然而,太阳能发电是在太阳升起后逐渐攀升的,但在需求量大的时段,如傍晚太阳落山后,还是无法提供能源。因此,太阳能等可再生能源越来越多地与储能系统集成, 以储存能源供后续使用。  与太阳能光伏发电配套的储能系统通常采用电池储能系统(BESS)。关于BESS的进步,如更优质、更廉价的电池已显而易见,但较少提及的是更高效功率转换方法的应用。在深入探讨现代功率转换拓扑结构之前,应该先讨论一些重要的设计考虑因素。  隔离型与非隔离型  隔离型功率转换拓扑在DC-DC阶段通过使用变压器来实现初级侧与次级侧的电磁隔离。因此,初级侧与次级侧各自拥有独立的地线,而非共用接地。由于增加了变压器,隔离型拓扑成本更高、体积更大且效率略低,在并网应用中,出于安全考虑, 电流隔离至关重要。  双向功率转换  双向拓扑结构减少了连接低压 BESS 至相应高压直流母线所需的功率转换模块数量。安森美(onsemi)的 25 kW快速直流电动汽车充电桩参考设计就是利用两个双向功率转换模块的一个例子。该双向转换器与电网连接,为电动汽车的直流电池充电。AC-DC转换阶段采用三相 6组(6-pack) 升压有源前端,而DC-DC阶段采用双有源桥 (DAB) 拓扑。DC-DC双有源桥是较为流行的拓扑结构之一,稍后将对其进行讨论。  硬开关与软开关  传统的功率转换器采用硬开关控制方案。硬开关的问题在于,当晶体管从导通状态切换到关断状态时(反之亦然) ,漏极至源极电压(VDS)会降低,而漏极电流(ID)会增加。两者存在重叠, 这种重叠会产生功率损耗,称为导通损耗和关断开关损耗。软开关是一种用于限制开关损耗的控制方案,其方法是延迟 ID 斜坡到 VDS 接近于零时导通;延迟 VDS 斜坡到 ID 接近于零时关断。这种延迟被称为死区时间,电流/电压斜坡分别被称为零电压(ZVS) 和零电流开关(ZCS) 。软开关可通过谐振开关拓扑(如 LLC 和 CLLC 转换器)实现,以大幅降低开关损耗。  两电平与三电平拓扑(单相与双相)  三电平转换器拓扑结构比两电平拓扑结构更具优势,原因有以下几点。首先,三电平拓扑结构的开关损耗低于两电平拓扑结构。开关损耗与施加在开关上的电压平方(V2)成正比,在三电平拓扑结构中, 只有一半的总输出电压被(部分)开关所承受。其他优势来自于更低的电流纹波和 EMI。同样,只有一半的总输出电压被施加到升压电感器上,从而降低了电流纹波,使其更易于滤波。EMI 与电流纹波直接相关,降低电流纹波也就降低了 EMI。由于峰值-峰值开关电压降低, dV/dt 和 dI/dt 也随之降低,从而进一步减少了 EMI。  宽禁带技术  如碳化硅(SiC) 等宽禁带技术进一步提高了功率转换系统的效率。由于这些器件的固有特性,它们相比传统的硅基MOSFET具有许多优势。其中一些重要因素包括:  由于击穿电场和禁带能量更高, 器件的击穿电压更高;  热传导率更高,从而降低了冷却要求;  导通电阻更低,从而改善了导通损耗;  电子饱和速度更高,从而实现了更快的开关速度。  DC-DC拓扑  1.同步降压、同步升压以及反激式转换器  同步转换器源自经典的降压和升压转换器。之所以称为同步转换器,是因为它用一个额外的有源开关取代了二极管。反激式转换器与同步转换器类似, 不同之处在于通过用耦合电感器(也称为 1:1 变压器)取代电感器,增加了隔离功能。  增加这种变压器可以起到隔离的作用,但可能需要一个电压箝位缓冲电路来抑制变压器的漏电流。由于结构和调制方案简单,这些转换器的成本较低,但与一些更先进的拓扑结构相比,损耗和电磁干扰(EMI)往往较高。  2.对称升压-降压  对称降压-升压转换器是一种应用于高功率系统中的三电平拓扑结构实例。如前所述,对于标准的两电平转换器,开关上的电压应力来自于总母线电压,而对于更高功率的系统,这一数值可能达到1000V或更高。这就需要在高功率系统中使用额定电压为1200V及以上的晶体管。  与此相反,像对称降压-升压转换器这样的三电平拓扑仅需使用额定电压为母线电压一半的器件,且还具有降低开关损耗、减小电磁干扰(EMI)以及更小的磁性元件体积等额外优势。其缺点主要源于对更多开关和更复杂控制算法的要求。  3.飞跨电容转换器(FCC)  飞跨电容转换器(FCC)是一种三电平转换器,这种配置能够实现双向功率流。它由四个开关、一个电感器和一个跨接在中间两个开关的飞跨电容组成。由于这是一种三电平拓扑结构,飞跨电容充当了箝位电容(或恒压源)的角色, 该结构还具有开关电压应力减半的优点。  因此,这种拓扑结构的优点包括使用较低电压、 具有更高性能开关、无源元件尺寸较小以及减少了电磁干扰。这种电路拓扑结构的缺点是必须配备启动电路,将飞跨电容的电压调节到母线电压的一半, 从而充分利用低电压开关的优势。  4.双有源桥(DAB)  双有源桥(DAB)是最常见的隔离型双向拓扑之一。如图7所示,其在初级侧和次级侧均采用了全桥配置。每个桥通过移相控制,即控制相对于彼此相位偏移的方波,来控制功率流方向。  此拓扑的一些优点包括:每个开关上的电压应力限于母线电压、 两侧所有开关上的电流应力大致相等,以及无需额外元件(如谐振电路)即可实现软开关。一些缺点则是由于高电流纹波,滤波电路至关重要,且在轻载条件下转换器的软开关能力可能会失效。  5.LLC谐振转换器  LLC 转换器是一种可利用软开关技术的谐振拓扑结构。下图显示了这种拓扑结构在初级侧可以采用半桥或全桥配置。LLC 转换器通常以单向模式运行,但也可以通过将现有的二极管换成有源开关来实现双向运行。该电路的谐振回路包括一个谐振电感器、一个谐振电容器和一个磁化电感器。与之前的 DAB 拓扑相比,该电路的一个优点是在整个负载范围内保持软开关特性。  6.CLLC谐振转换器  CLLC 转换器是另一种可利用软开关技术和双向功率流的谐振拓扑结构。它在初级侧和次级侧均包含一个谐振电感器和一个谐振电容器。该电路和其他在初级侧和次级侧都包含全桥的电路的一个共同优点在于,其控制原理是相同的。此外,与之前的 LLC 转换器一样, CLLC 可在整个负载范围内实现软开关特性。不过, CLLC 优于 LLC 拓扑的一个原因是对称谐振回路。LLC 拓扑具有非对称谐振回路,导致反向操作与正向操作不同。具有对称谐振回路的 CLLC解决了这一问题,因此更容易实现双向充电。  电池储能系统持续演进,并伴随可再生能源发电技术得到更广泛的应用,这催生了对更高效、更可靠功率转换系统的需求。本文探讨了现代功率转换系统的重要特征以及实现这些特征的一些常见DC-DC电路拓扑。
关键词:
发布时间:2024-06-04 14:30 阅读量:610 继续阅读>>

跳转至

/ 12

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
TL431ACLPR Texas Instruments
CDZVT2R20B ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
型号 品牌 抢购
TPS63050YFFR Texas Instruments
IPZ40N04S5L4R8ATMA1 Infineon Technologies
STM32F429IGT6 STMicroelectronics
BU33JA2MNVX-CTL ROHM Semiconductor
BP3621 ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。