锗二极管型号及参数 <span style='color:red'>硅</span>管和锗管有什么区别
  锗二极管是一种常用于电子电路中的半导体器件。在选择合适的锗二极管时,了解其型号和参数非常重要。此外,还需要清楚硅管和锗管之间的区别。  1.锗二极管型号及参数  锗二极管的型号通常由制造商根据该器件的特性指定。常见的锗二极管型号包括但不限于:1N34、1N60、OA81等。这些型号具有各自独特的电性能和应用场景。  在选择锗二极管时,关注以下参数至关重要:  最大反向电压(VRM):即锗二极管可承受的最大反向电压值。  最大正向电流(IFM):锗二极管可通过的最大正向电流。  正向压降(VF):锗二极管正向导通时的电压降。  尺寸:锗二极管的物理尺寸对于某些应用也是一个重要考量因素。  2.硅管和锗管的区别  尽管硅管和锗管都是半导体材料,但它们在一些方面存在显著区别:  材料特性:硅管比锗管更普遍,在许多应用中使用。硅管具有较低的功耗和较高的工作温度范围。  电学特性:锗管的导电性能优于硅管,因此在一些特定应用中,如高频应用,锗管可能更适合。  价格和稳定性:通常情况下,硅管比锗管便宜,且具有更好的稳定性和一致性。  反向饱和电压:锗管的反向饱和电压较硅管低,这在一些电路设计中具有优势。  锗二极管作为一种重要的半导体器件,其型号和参数决定了其在电路中的具体应用。在实际选型时需要结合具体需求进行选择。同时,与硅管相比,锗管在电学特性等方面有着明显的差异,合理选择器件能够有效提高电路性能和稳定性。
关键词:
发布时间:2024-11-21 11:53 阅读量:153 继续阅读>>
在沉积多晶<span style='color:red'>硅</span>时,如何控制晶粒尺寸和结构
  多晶硅(Polycrystalline Silicon,简称poly-Si)是一种重要的半导体材料,广泛应用于电子、光电器件等领域。在多晶硅的制备过程中,控制晶粒尺寸和结构对其性能至关重要。本文将探讨在沉积多晶硅时,如何有效地控制晶粒尺寸和结构的方法。  1.沉积多晶硅及晶粒生长机制  1. 多晶硅的制备:多晶硅通常通过化学气相沉积(CVD)或物理气相沉积(PECVD)等技术制备,其中主要前驱体为硅源气体(如硅烷气体)。  2. 晶粒生长机制:在沉积过程中,硅原子会沉积在基底表面并形成晶核,随后晶核逐渐增长形成多晶硅薄膜,晶粒的尺寸和结构取决于沉积条件和影响因素。  2.控制晶粒尺寸和结构的策略  1. 温度控制:适当选择反应温度可以影响晶粒生长速率和晶粒尺寸,通常较高温度会促进晶粒长大,但过高的温度可能导致晶粒聚集和过大晶粒产生。  2. 气氛调节:调节反应气氛中的气体流量和比例,以控制气相中的硅浓度和扩散速率,从而影响晶粒的成核和生长速率。  3. 压力优化:合适的反应压力有助于维持稳定的气相传输速率,避免非均匀的沉积和晶粒不规则生长,提高晶粒尺寸均匀性。  4. 添加掺杂物:通过向多晶硅中掺入适量的掺杂物(如磷、硼等),可以调节晶格结构,限制晶粒长大,抑制异质晶界的形成,改善多晶硅的电学性能。  5. 表面处理:在多晶硅生长之前对基底表面进行预处理,如氢气退火等,可改善表面平整度、去除杂质层,促进晶核的均匀分布和生长。
关键词:
发布时间:2024-08-23 11:41 阅读量:434 继续阅读>>
英飞凌600 V CoolMOS™ 8 新一代<span style='color:red'>硅</span>基MOSFET技术助力电力电子行业变革
  在日新月异的电力电子行业,对更高效、更强大、更紧凑元器件的需求持续存在。对于新一代硅基MOSFET,英飞凌进行了巨大的研发投入,以重新定义系统集成标准,使其在广泛的电力电子应用中能够实现更高功率密度和效率。  在英飞凌,CoolMOS™ 8的推出意味着这些投入已经取得了成效。它是一项先进的MOSFET技术,集成快速体二极管,能够让设计人员和工程师前所未有地获益。该技术是对英飞凌现有宽禁带半导体技术的有力补充,将对数据中心、可再生能源和消费电子等行业产生深远影响。  在了解关键特性和益处之前,我们先来看看CoolMOS™ 8的起源。CoolMOS™ 8是英飞凌新一代硅基MOSFET技术,旨在取代现有的高/低功率开关电源(SMPS)的CoolMOS™ 7产品系列。它是CoolGaN™和CoolSiC™宽禁带半导体技术的有力补充。该产品组合将使设计人员能够满足不同类型的电力电子应用需求。CoolMOS™ 8主要面向消费和工业终端市场;这意味着,该系列并未包含适用于汽车应用的器件。汽车应用的设计人员可以继续使用现有的车规级CoolMOS™ 7器件。  CoolMOS™ 8的创新之处在于,该系列所有器件中都集成了快速体二极管,使得设计人员能将该系列产品用于目标应用中的所有主要拓扑。600 V CoolMOS™ 8产品系列具有完善的产品组合,英飞凌最先将供应直插封装、表面贴装和顶部冷却(TSC)器件。CoolMOS™ 8 MOSFET还比同类竞品具有更高的电流处理能力,且拥有最小的导通电阻(RDS(on))与面积乘积。  但这对设计人员和工程师意味着什么呢?CoolMOS™ 8在最终面向消费和工业市场推出后,将大大简化英飞凌客户的产品选型;因为相比已有的CoolMOS™ 7产品系列,它的产品数量减少了50%以上。在CoolMOS™ 7产品系列下,拥有快速体二极管的器件通过在产品名称中包含“FD”来进行区分。CoolMOS™ 8系列下的所有产品都拥有快速体二极管(无论导通电阻(RDS(on))值为何),这意味着它无需再遵循之前的命名规则。  当前供应的600 V CoolMOS™ 8产品组合(2024年)  CoolMOS™ 8 的关键特性  上面我们回顾了一些产品开发背景和原理,现在我们来看看CoolMOS™ 8的一些关键特性。这包括用于谐振拓扑的最佳快速体二极管性能,先进芯片焊接技术,以及创新的顶部冷却(TSC)封装技术。  相比CoolMOS™ 7系列同类器件,CoolMOS™ 8技术的关断损耗(Eoss)降低10%,输出电容(Coss)降低50%。CoolMOS™ 8器件相比CoolMOS™ 7还将热阻降低至少14%,大大改进了热性能。能够实现这一改进,是因为使用了英飞凌专有的互连技术(.XT),该技术提高了将硅芯片连接至引线框架时的热导率。这些性能优势使得CoolMOS™ 8比CoolMOS™ 7 具有更高效率。  (3.3 kW)LLC级与(2.5 kW)PFC级之间的相对效率比较  CoolMOS™ 8 MOSFET采用的创新ThinTOLL 8 × 8封装,相比ThinPAK 8 × 8封装具有更优的性能,有助于保持引脚兼容性。ThinTOLL 8 × 8封装占板面积小,有助于实现高功率密度;且充分利用了英飞凌先进的互连技术,提高了热性能。ThinTOLL封装尽管尺寸小巧,但在电路板温度循环试验中的故障率与采用TOLL封装的器件非常接近,且二者具有几乎相同的性能因数。  新ThinTOLL 8 × 8封装与ThinPAK 8 × 8封装的尺寸比较  封装的升级不仅有助于实现大批量组装和改进电路板设计,还通过帮助实现高引脚数器件的全自动处理,使得在成本高昂的组装工厂进行光学焊接检测更容易。凭借在最近七年里累计交付的超过67亿颗器件中,仅有过5次现场故障,CoolMOS™ 8无疑巩固了英飞凌在可靠性方面的卓越声誉。  对系统集成的益处  CoolMOS™ 8对系统集成的益处,可通过英飞凌利用该系列器件进行的参考设计来证明。例如,一台3.3 kW高频率和超紧凑整流器可达到97.5%的效率,以及95 W/in3的功率密度,尺寸为1U时也是如此。能达到如此高的工作效率和功率密度,是因为在设计中联合使用了CoolMOS™ 8、CoolSiC™及CoolGaN™ 技术;它采用了创新的集成式平面磁性结构,并对图腾柱功率因数校正(PFC)级和半桥GaN LLC DC/DC功率变换级进行完全数字化控制。  单独提供的2.7 kW配套评估板展示了利用无桥图腾柱PFC和LLC DC/DC功率变换级构建的高效率(>96%)电源装置(PSU)。这一高功率密度的设计联合使用了650 V CoolSiC™和600 V CoolMOS™ 8开关技术。该PSU可利用XMC1404控制器(控制PFC级)和XMC4200控制器(控制LLC级)进行数字化控制,使得可以控制和调整PFC开关频率,以进一步减小电感器尺寸,和/或降低功耗。试验表明,该PSU在高负载条件下的效率提高了0.1%,使其相比利用CoolMOS™ 7 MOSFET构建的类似设计,拥有更低功耗和更好的散热性能。  当前供应的评估板(2.7-kW PSU和3.3-kW HD/HF SMPS)  主要应用  CoolMOS™ 8器件是工业和消费市场中不同SMPS应用的理想选择。但它们仍然尤其适用于数据中心和可再生能源等重要终端市场。在数据中心应用领域,CoolMOS™ 8通过实现利用硅器件可能达到的、尽可能最高的系统级功率密度,来帮助设计人员达成能源效率和总拥有成本目标。在可再生能源应用领域,采用顶部冷却(TSC)封装的CoolMOS™ 8器件,可帮助减小系统尺寸和降低解决方案成本。  面向目标应用的DDPAK和QDPAK封装产品  由于600 V CoolMOS™ 8还拥有极低的导通电阻(RDS(on))值(7 mΩ),因此在日益壮大的固态继电器应用(S4)市场,它适合作为替代CoolSiC™ 的、更具性价比的技术。相比机械继电器,固态继电器拥有更快开关速度,不产生触点拱起或弹跳,因而能够延长系统寿命。它们还具有良好的抗冲击、抗振动能力,以及低噪声。  另外,通过将CoolMOS™ 8与CoolSiC™ 器件结合使用,设计人员还可优化系统级性价比。对于2型壁挂式充电盒、轻型电动交通工具、无线充电器、电动叉车、电动自行车和专业工具充电,CoolMOS™ 8还可帮助实现更具成本竞争力的设计。在更宽泛的消费类应用领域,CoolMOS™ 8可让终端产品更容易满足静电放电要求,并助力实现更灵活的系统设计。与此同时,顶部冷却(TSC)封装还有助于进一步降低组装成本,并提高功率密度。  与先进MOSFET设计有关的  下一步计划  我们不久就会推出用于驱动CoolMOS™ 8 MOSFET的新一代栅极驱动器,使其能够在开关应用中实现最优的RDS(on)性能。这些EiceDRIVER™栅极驱动器将具有单极驱动能力,以及封装共模瞬变抗扰度(@600 V),能够帮助简化系统认证与合规。由于厚度减小,CoolMOS™ 8器件非常适合使用QDPAK TSC封装,甚至可被置于散热片的下面。英飞凌还计划在未来几年内推出采用多种不同封装的CoolMOS™ 8 MOSFET。  600 V CoolMOS™ 8新一代硅基MOSFET技术的推出,推动电力电子领域取得了一次重大进展。集成快速体二极管、先进芯片焊接技术以及创新封装技术等重要配置,凸显出英飞凌致力于提供先进解决方案以满足设计人员和工程师的更高需求的坚定决心。通过极低的现场故障率可以证明,这项技术还具有良好的热性能及可靠性。  随着CoolMOS™ 8器件逐渐出现在不同的SMPS应用中,尤其是数据中心和可再生能源等应用领域,它们将帮助实现更节能、更紧凑和更具性价比的设计。未来,通过充分发挥CoolMOS™ 8 MOSFET与即将推出的新一代栅极驱动器之间的协同作用,英飞凌将采取一体化方法来推进MOSFET的设计和应用。这一旅程将帮助巩固英飞凌的半导体技术领先地位,并为未来的发展奠定坚实基础。
关键词:
发布时间:2024-08-08 09:16 阅读量:452 继续阅读>>
利用<span style='color:red'>硅</span>半导体技术同时实现了小型化和高性能的ROHM首款<span style='color:red'>硅</span>电容器
  市场发展趋势和开发历程  近年来,随着智能手机等设备的功能增加和性能提升,对小型、薄型且支持高密度安装的电容器的需求日益增加。特别是采用薄膜半导体技术的硅电容器,因其与多层陶瓷电容器(MLCC)相比具有厚度更薄、电容量更大,温度特性更优异、即使在高温环境下也不容易发生电容量变化等优点,因此预计未来需求仍将保持强劲态势。在这种背景下,ROHM利用多年来积累的硅半导体加工技术优势,开发出小型高性能硅电容器“BTD1RVFL”(图1)  图1. 硅电容器“BTD1RVFL”的产品照片  (与0.5mm自动铅笔芯比较)  白皮书内为工程师介绍硅电容器的市场趋势以及ROHM首款硅电容器的特点,助力您快速了解产品信息。另外,您还可前往官网查看产品新闻。  ROHM首款硅电容器“BTD1RVFL”的特点  此次介绍的ROHM新产品“BTD1RVFL”,作为表面贴装型量产产品,实现了0402(0.4mm×0.2mm)业界超小尺寸※1。与0603尺寸(0.6mm×0.3mm)的普通产品相比,安装面积可减少约55%(图2)。  图2. 封装尺寸和安装强度比较  在外观制作上,采用了ROHM自有的微细化技术“RASMID™”,该技术可实现1μm级的加工。通过消除封装外围的毛刺和缺口,将尺寸公差改善至±10μm以内,比标准产品小50%,尺寸精度更高。通过抑制产品尺寸波动,在电路板上安装时可以缩小器件之间的间距。  通过提高封装的尺寸精度,还成功地将背面电极的边缘(即与电路板的接触面)设计得更靠近器件的外周部位。这样,背面电极的总面积达到约0.032mm²,约占器件底面积的40%,安装强度比0603尺寸的普通产品高约8%,达到约2.6N。  不仅如此,本系列产品还内置TVS二极管,具有优异的ESD耐受能力。不仅有助于减少浪涌对策等电路设计工时,而且还无需外置TVS二极管。  更小的器件体积和更高的尺寸精度可实现高密度安装,加上内置TVS二极管,本系列产品将有助于节省通信电路等电路板的安装面积(图3)。  图3. 通信电路中的安装面积比较(示意图)  本系列产品中电容量1,000pF的“BTD1RVFL102”和电容量470pF的“BTD1RVFL471”已于2023年8月开始以月产50万个的规模投入量产。未来,ROHM计划再开发出电容量不同的五种新型号产品,将产品阵容扩大为七种型号。  关于未来的开发前景  本系列产品采用的是小而薄的封装,因此适合在智能手机和可穿戴设备等要求外壳和内部所用的器件更小更薄的应用中使用。另外,还可以用作小型物联网设备和光模块等的去耦电容器,有助于应用产品的小型化。  此外,预计随着未来通信标准对性能和功能要求的提高,智能手机和可穿戴设备等高频应用对小型薄型产品的需求将会日益增加,因此ROHM正在开发支持高频应用的型号,预计2024年9月出售样品。目标规格是也要能够支持在智能卡和RFID标签等超薄设备以及光纤收发器等超高速、大容量传输设备中的应用,希望新开发的产品应用范围更大,能从去耦电容器扩展到支持在高频电路中的使用等更多应用中。  另外,在汽车电动化、无线通信的覆盖范围向海上和空中扩展、数据中心数量增加等市场发展趋势下,车载设备和工业设备用的产品需求与日俱增。  在这种背景下,ROHM正在计划开发发挥硅电容器可靠性高这一特点的产品。车载和工业设备用的产品不仅要求具备高可靠性,而且对其耐压、电容量乃至尺寸和结构等的要求均与消费电子设备的要求有着明显不同,因此ROHM将不断壮大相关产品阵容,以满足这些市场需求(图4)。  图4. 未来的产品开发路线图  结语  要想在创造可持续发展的社会的同时不断丰富人们的生活,就需要在通信技术日新月异的大背景下,不断提高现有设备的性能,并推出前所未有的新服务和应用。硅电容器具有体积小、厚度薄、电容量大、温度特性优异等特点,因而有望成为未来发展中不可或缺的高性能器件之一。ROHM不仅通过开发高性能元器件来促进应用产品的进步,还将继续努力开发能够促进硅电容器市场发展的新产品。
关键词:
发布时间:2024-07-31 09:20 阅读量:474 继续阅读>>
罗姆半导体:碳化<span style='color:red'>硅</span>器件在新能源汽车上的设计与应用
  根据日本本土的市场数据,在碳化硅半导体市场,罗姆日本市场占有率第一,全球第五。同时在碳化硅晶圆制造技术方面也处于世界领先地位。2024年,罗姆在宫崎县国富町建立全新的碳化硅工厂,在碳化硅领域的战略目标也逐渐清晰。  罗姆从出光兴业的子公司手里,收购了其国富工厂,投资3000亿日元展开了150mm-200mm碳化硅晶圆的生产制造。而罗姆为了实现碳化硅半导体的增产计划,从2021年到2027年的7年间,将会投资5100亿日元。  预计截至2025年,仅在碳化硅半导体的企业销售额,计划增长18%,达到年销售额1300亿日元,剑指世界市场占有率30%。到2027年销售额更计划达到2700亿日元。  罗姆的底气,来自自身的产品力信心,也来自于日益增长的汽车应用市场及积极拓展该市场带来的订单。  近年来,新能源汽车持续快速增长,我国2023年产销量分别是958.7万辆和949.5万辆,同比分别增长35.8%和37.9%,已连续九年位居世界第一;新能源市场占有率达到了31.6%,同比增加5.9pct。据预测,中国新能源汽车预计今年有望达到1100万辆,全球在未来5年继续保持15%~30%的增速。  在全球汽车电动化的浪潮下,行业最关心的课题是续航里程。影响续航里程的因素有很多,包括电池容量、车身重量、电力系统的电能转化效率等。功率半导体是电能转换的核心,SiC作为第三代半导体的代表,其禁带宽度约为Si基材料的3倍,可在200℃以上的温度条件下工作;临界击穿场强约为Si基材料的10倍,耐高压能力强,可在高达3000V电压下工作;热导率约是Si基材料的3倍,散热效果更佳,可简化冷却系统;电子饱和漂移速率约是Si基材料的3倍,工作频率高,驱动功率小,损耗低。  在新能源汽车中,功率模块已从Si基IGBT为主的时代,开始逐步进入以SiC 功率器件为核心的发展阶段。SiC功率器件主要应用在电机驱动逆变器、电源转换系统(车载DC/DC)、车载充电系统 (OBC)、车载空调系统 (PTC加热器和空压缩机)等方面。  罗姆(ROHM)自2000年开始一直在推动SiC元器件的基础研究并不断完善工艺,其IDM(垂直统合型生产体系)和品质保证体系,从晶圆到芯片、封装、模组,可满足半导体厂商、模块厂商以及OEM厂商的各种各样的需求。  罗姆2010年全球量产SiC SBD和MOSFET;2021年发布了第4代的沟槽SiC MOSFET,备有不同RDS(on)的750V和1200V器件。2023年量产8英寸碳化硅衬底,2024年推出全SiC牵引功率模块产品。  罗姆第4代的SiC MOSFET技术优势:  1.在改善短路耐受时间的前提下实现业内超低导通电阻  通过进一步改进自有的双沟槽结构,成功地在改善短路耐受时间的前提下,使导通电阻比第3代产品降低约40%。作为SiC MOSFET,实现了业界超低的导通电阻。  2.通过大幅降低寄生电容,实现更低开关损耗  通过大幅降低栅漏电容(Cgd),成功地使开关损耗比第3代产品降低约50%。  3.支持15V栅源驱动电压,应用产品设计更容易  在MOSFET中,需要在器件ON时向晶体管的栅极施加一定量的电压。除了到第3代SiC MOSFET为止所支持的18V栅源驱动电压(Vgs)外,第4代SiC MOSFET还支持处理的15V栅源驱动电压,更容易可与IGBT一起用来设计驱动电路(栅极驱动电路)。
关键词:
发布时间:2024-07-26 10:14 阅读量:406 继续阅读>>
安森美加速碳化<span style='color:red'>硅</span>创新,助力推进电气化转型
  最新一代 EliteSiC M3e MOSFET 能将电气化应用的关断损耗降低多达 50%。  该平台采用经过实际验证的平面架构,以独特方式降低了导通损耗和开关损耗。  与安森美 (onsemi) 智能电源产品组合搭配使用时,EliteSiC M3e 可以提供更优化的系统方案并缩短产品上市时间。  安森美宣布计划在 2030 年前加速推出多款新一代碳化硅产品。  面对不断升级的气候危机和急剧增长的全球能源需求,世界各地的政府和企业都在为宏大的气候目标而携手努力,致力于减轻环境影响,实现可持续未来。其中的关键在于推进电气化转型以减少碳排放,并积极利用可再生能源。为加速达成这个全球转型目标,安森美推出了最新一代碳化硅技术平台EliteSiC M3e MOSFET,并计划将在2030年前推出多代新产品。  安森美电源方案事业群总裁Simon Keeton表示:“电气化的未来依赖于先进的功率半导体,而电源创新对于实现全球电气化和阻止气候变化至关重要。如果电源技术没有重大创新,现有的基础设施将无法满足全球日益增长的智能化和电气化出行需求。我们正在积极推动技术创新,计划到2030年大幅提升碳化硅技术的功率密度,以满足日益增长的能源需求,并助力全球电气化转型。”  在这一过程中,EliteSiC M3e MOSFET将发挥关键作用,以更低的千瓦成本实现下一代电气系统的性能和可靠性,从而加速普及电气化并强化实施效果。由于能够在更高的开关频率和电压下运行,该平台可有效降低电源转换损耗,这对于电动汽车动力系统、直流快速充电桩、太阳能逆变器和储能方案等广泛的汽车和工业应用至关重要。此外,EliteSiC M3e MOSFET 将促进数据中心向更高效、更高功率转变,以满足可持续人工智能引擎指数级增长的能源需求。  可信赖平台实现效率代际飞跃  凭借安森美独特的设计和制造能力,EliteSiC M3e MOSFET 在可靠且经过实际验证的平面架构上显著降低了导通损耗和开关损耗。与前几代产品相比,该平台能够将导通损耗降低30%,并将关断损耗降低多达50%1。通过延长SiC平面MOSFET的寿命并利用EliteSiC M3e 技术实现出色的性能,安森美可以确保该平台的坚固性和稳定性,使其成为关键电气化应用的首选技术。  EliteSiC M3e MOSFET 还提供超低导通电阻(RSP)和抗短路能力,这对于占据SiC市场主导地位的主驱逆变器应用来说至关重要。采用安森美先进的分立和功率模块封装,1200V M3e 裸片与之前的EliteSiC技术相比,能够提供更大的相电流,使同等尺寸主驱逆变器的输出功率提升约20%。换句话说,在保持输出功率不变的情况下,新设计所需的SiC材料可以减少20%,成本更低,并且能够实现更小、更轻、更可靠的系统设计。  此外,安森美还提供更广泛的智能电源技术,包括栅极驱动器、DC-DC转换器、电子保险丝等,并均可与EliteSiC M3e平台配合使用。通过这些安森美优化和协同设计的功率开关、驱动器和控制器的端到端一体化技术组合,可实现多项先进特性集成,并降低整体系统成本。  加速未来电源技术发展  未来十年,全球能源需求预计会急剧增加,因此提高半导体的功率密度变得至关重要。安森美正积极遵循其碳化硅技术发展蓝图,从裸片架构到新型封装技术全面引领行业创新,以此持续满足行业对更高功率密度的需求。  每一代新的碳化硅技术都会优化单元结构,以在更小的面积上高效传输更大的电流,从而提高功率密度。结合公司自有的先进封装技术,安森美能最大化提升性能并减小封装尺寸。通过将摩尔定律引入碳化硅技术的开发,安森美可以并行研发多代产品,从而加速实现其发展路线图,以在2030年前加速推出多款EliteSiC新产品。  “凭借数十年来在功率半导体领域积累的深厚经验,我们不断突破工程和制造能力的边界,以满足全球日益增长的能源需求。“安森美电源方案事业群技术营销高级总监Mrinal Das表示,”碳化硅的材料、器件和封装技术之间存在很强的相互依赖性。对这些关键环节的完全掌控,使安森美能够更好地把握设计和制造过程,从而更快地推出新一代产品。”
关键词:
发布时间:2024-07-19 11:16 阅读量:526 继续阅读>>
佑风微电子:碳化<span style='color:red'>硅</span>肖特基二极管应用及产品选型
安森美选址捷克共和国打造端到端碳化<span style='color:red'>硅</span>生产,供应先进功率半导体
安森美 (onsemi)将实施高达 20 亿美元的多年投资计划,巩固其面向欧洲和全球客户的先进功率半导体供应链垂直整合的碳化硅工厂将为当地带来先进的封装能力,使安森美能够更好地满足市场对清洁、高能效半导体方案日益增长的需求安森美与捷克共和国政府合作制定激励方案,以支持投资计划落实该投资将成为捷克共和国历史上最大的私营企业投资项目之一,属于对中欧先进半导体制造领域开展的首批投资项目  电气化、可再生能源和人工智能是全球大势所趋,激发了市场对可优化能源转换和管理的先进功率半导体的空前需求。为满足这些需求,安森美采取了战略举措,宣布将在捷克共和国建造先进的垂直整合碳化硅 (SiC) 制造工厂。该工厂将生产智能电源半导体,有助于提高电动汽车、可再生能源和人工智能 (AI) 数据中心应用的能效。  安森美总裁兼首席执行官 Hassane El-Khoury 表示:“通过棕地投资,我们将打造一个中欧SiC供应链,更好地满足客户对创新技术快速增长的需求,从而帮助其提高应用的能效。通过与捷克政府密切合作,此次扩建还将提升我们的智能电源半导体产能,帮助欧盟实现大幅减少碳排放和环境影响的目标。”  安森美计划在几年内完成高达 20 亿美元(440 亿捷克克朗)的棕地投资,以扩大SiC产能,这是安森美先前披露的长期资本支出目标的一部分。这项投资基于安森美在当地的现有运营,包括硅晶体生长、硅和碳化硅晶圆制造(抛光和外延)以及硅晶片制造。如今,该工厂年产逾 300 万片晶圆,包括 10 亿多个功率器件。  一旦获得所有最终监管和激励措施批准1,这将成为捷克共和国历史上最大的私营企业投资项目之一。安森美是首批在中欧投资先进半导体制造业的公司之一。此次公告反映了安森美的发展战略,即增加市场份额,实现技术进步;以及面对不断增长的需求,增强其半导体供应链韧性的决心。  推动功率半导体创新  SiC是一种用于大功率、高温应用的关键材料,生产难度极大。安森美是全球屈指可数的能够制造从晶体生长到先进封装方案的碳化硅半导体公司之一。通过扩建在捷克的工厂,安森美将能够更快地为全球客户提供供应保障,并加强安森美在智能电源方案领域的领导地位。此次整合还将使安森美能够利用自身在研发方面的最新进展来尽可能提高制造和生产效率。
关键词:
发布时间:2024-06-20 10:23 阅读量:571 继续阅读>>
氮化镓芯片和<span style='color:red'>硅</span>芯片有什么区别和优势
  随着半导体技术的不断发展,氮化镓芯片作为一种新兴材料在电子行业中逐渐崭露头角。相比传统的硅芯片,氮化镓芯片具有独特的特性和优势,逐渐受到广泛关注和应用。  1.硅芯片的特点  硅芯片是目前电子行业最常用的半导体材料之一,被广泛应用于集成电路、处理器、存储器等领域。  硅芯片的优点  成熟制造工艺:硅芯片的制造工艺相对成熟,生产规模大,成本低。  大规模生产:硅芯片产能巨大,适用于大规模集成电路生产。  相对便宜:由于成本较低,硅芯片成品价格也相对较低。  硅芯片的缺点  功耗高:硅芯片在高频率运行时会产生较高的功耗,影响能效。  限制性能提升:硅芯片存在物理上的极限,对性能提升有一定限制。  温度敏感:硅芯片在高温环境下易出现性能波动或故障。  2.氮化镓芯片的特点  氮化镓(GaN)材料是一种 III-V族化合物半导体,具有优异的电学性能和物理特性,使其成为新一代电子器件的理想材料之一。  氮化镓芯片的优点  高频高功率特性:氮化镓芯片具有更高的电子流速度和载流子迁移率,适合用于高频高功率应用。  低损耗:相比硅芯片,氮化镓芯片在高频率下有较低的导通和开关损耗。  宽带隙特性:氮化镓具有较大的带隙能隙,使其在高频、高温环境下工作更加稳定。  氮化镓芯片的缺点  制造工艺复杂:相比硅芯片,氮化镓芯片的制造工艺更为复杂,增加了生产成本。  成本较高:由于制造工艺、原材料成本等因素,氮化镓芯片的成本相对硅芯片较高。  小规模生产:目前氮化镓芯片产量较小,规模化生产还面临挑战。  3.氮化镓芯片与硅芯片的对比  氮化镓芯片和硅芯片各有其独特的特点,在不同领域和应用中有所倾向。  功耗和效率:对于需要高功率和高频率操作的应用,如雷达系统、无线通信等,氮化镓芯片的低损耗特性使其更为适合,而硅芯片则可能受到功耗限制。  温度稳定性:在高温环境下的应用,如汽车电子设备、航空航天等领域,氮化镓芯片的宽带隙特性使其在高温工作时保持稳定性能,相比之下硅芯片可能会受到温度影响而表现不佳。  性能提升空间:对于需要突破硅芯片性能极限的领域,如高速计算、光电子学等,氮化镓芯片具有更大的性能提升空间和潜力,能够满足更高要求的应用需求。  成本与生产规模:目前由于制造工艺和原材料成本等因素,氮化镓芯片的生产成本较硅芯片更高。虽然硅芯片具有成熟的大规模生产工艺,但随着氮化镓技术的进步和产业化发展,预计氮化镓芯片的成本会逐渐下降,产量也会随之增加。  氮化镓芯片和硅芯片各有自身的优势和局限性,在不同应用场景和需求下都能发挥重要作用。了解和比较氮化镓芯片与硅芯片的特点,可以更好地选择适合特定应用的半导体材料。
关键词:
发布时间:2024-03-13 11:19 阅读量:1110 继续阅读>>
安森美:主驱逆变器,为何要选择碳化<span style='color:red'>硅</span>?
  在当今全球汽车工业驶向电动化的滚滚浪潮中,一项关键技术正以其颠覆性的性能改变着电动汽车整体市场竞争力的新格局,它便是基于碳化硅(SiC)材料打造的主驱逆变器。就像电子领域的“黑科技”催化剂,SiC正以其耐高压、高热导率及低损耗特性,重新定义新能源汽车的核心部件的工作效能极限,并以前所未有的方式推动整个行业朝着更长续航、更高能效的方向疾速前行。  大规模“上车”在即的碳化硅  犹如引擎之于燃油车,主驱逆变器是电动汽车动力系统的心脏,其性能优劣直接影响到车辆的整体表现。碳化硅的应用,就像给这个心脏注入了一剂强心针,各大车企纷纷导入使得碳化硅在主驱逆变器上的市场份额正以前所未有的速度扩张,预示着一场深度影响汽车产业链的技术革命已拉开帷幕。  据NE时代预测数据,未来5年,中国新能源乘用车市场不同类型功率器件的份额中,增长最快的将是800V高压SiC平台,其次是主要用于800V四驱车辆辅驱的800V IGBT和400V SiC的份额将先有所增长。在未来一段时间内,大部分车企的800V平台和400V平台仍将处于共存阶段,因为虽然大部分车企均有800V平台的相应规划,但不同企业对应用800V的平台策略有一定差别,最为积极的新势力头部车企将用800V平台迭代现有平台,其他OEM则相对较为稳健,会在部分高端车型上应用800V平台。  此外,尽管在在未来十年内,IGBT和SiC MOSFET会共同存在,但趋势是随着OEM更大胆地直接转向纯电动汽车,插电式混合动力汽车和混合电动汽车市场将继续萎缩,轿车和跨界纯电动汽车将继续增长并成为主要市场。到了2025年之后,“肌肉”电车,例如SUV、卡车和运动型车的需求将大幅增长,从而推动功率大于250千瓦的电力驱动装置的更多需求,加之800V高压平台系统的逐步推广,碳化硅大规模“上车”在即。  大功率+低损耗:难以拒绝的效率吸引力  汽车的动力更迭,从内燃机到电驱动,这当下汽车变革中最大的一个部分。传统燃油车的三大件包括油箱、轴承(包括总成、变速箱等)、内燃机,而动力电池就相当于电动汽车的“油箱”,电机是内燃机,逆变器便相当于变速箱,主要作用就是把电池中储存的能量形式转换成另一个可控的可让电机输出的能量形式。因此,对于主驱逆变器中的电力需求,主要体现在五个方面:  动力更强 - 更大的瞬间扭矩带来更多驾驶乐趣;  效率更高 - 航程更长,损耗更低;  电压更高 - 400V 电池是目前的主流,800V将是未来;  重量更轻 - 减轻车重,增加续航里程;  尺寸更小 - 可安装在前轴或后轴上,节省行李箱和后备箱空间。  与硅相比,碳化硅在材料特性方面具有多种优势,因而成为主驱逆变器设计的更优选择。  碳化硅的物理硬度达到了9.5莫氏硬度,而硅为6.5莫氏硬度,所以碳化硅更适合高压烧结并具有更高的机械完整性。  碳化硅的热导率 (4.9W/cm.K) 是硅 (1.15 W/cm.K) 的四倍多,这意味着它可以更有效地传递热量从而在更高温度下可靠运行。  碳化硅的击穿电压(2500kV/cm)是硅(300kV/cm)的 8 倍多,而且它具有宽带隙性质,能够更快地导通和关断,意味着它的损耗比硅更低。  针对主驱逆变、辅助电源、车载充电和直流快充等系统,安森美可以提供完整的智能电源方案,包括碳化硅、IGBT、MOSFET等产品阵容。其中,EliteSiC功率模块可以提供更优秀的性能、效率和功率密度,采用了最新的平面结构的EliteSiC MOSFET,实现了从电池的直流800V到后轴交流驱动的高效电源转换。  此外,安森美采用先进互连技术的压铸模封装进一步提高了SiC模块的高功率密度,并且具有低杂散电感,而且更高的开关频率有助于减小系统中一些无源组件的尺寸和重量。此外,这种封装类型具有多种工作温度选项,最高达 200°C,可降低OEM的散热要求,并有望采用更小的泵进行热管理。  值得一提的是,除了先进的智能电源方案在功率密度、效率和可靠性上表现出众,为电动汽车技术变革可靠的供电保证,安森美 ADAS 和自动化系统解决方案同样使现代车辆实现半自动化,例如先进的CMOS图像传感器可以应用于前视、侧视、后视、环视摄像头系统,使得汽车的安全等级进一提高,向着全自动驾驶的目标又进一步。
关键词:
发布时间:2024-03-13 09:21 阅读量:656 继续阅读>>

跳转至

/ 13

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
RB751G-40T2R ROHM Semiconductor
TL431ACLPR Texas Instruments
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
BD71847AMWV-E2 ROHM Semiconductor
型号 品牌 抢购
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BP3621 ROHM Semiconductor
TPS63050YFFR Texas Instruments
BU33JA2MNVX-CTL ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。