<span style='color:red'>安森美</span>和理想汽车续签战略协议,共同打造下一代800V智能电动车
  智能电源和智能感知技术的领先企业安森美(onsemi,美国纳斯达克股票代码:ON),宣布和豪华智能电动车品牌理想汽车(Li Auto)续签长期供货协议。理想汽车在其增程式电动车型(EREV)中采用安森美成熟的800万像素图像传感器。此协议签订后,理想汽车将在其下一代800V高压纯电车型中采用安森美高性能EliteSiC 1200V裸芯片,并继续在其未来车型中集成安森美800万像素高性能图像传感器。两家公司的合作将加快汽车电动化进程和提升行车安全性。  安森美EliteSiC 1200V产品赋能更高能效、更轻量的设计,有助于增加续航里程和加快充电,裸芯片便于客户根据特定应用需求进行差异化封装设计。800万像素图像传感器则提升系统智能感知能力,实现更安全的先进驾驶辅助系统(ADAS)和向L3/L4级别自动驾驶系统迈进。  理想汽车表示:“安森美以智能电源和智能感知技术赋能更可持续的未来,这是我们实现‘创造移动的家,创造幸福的家‘的愿景的关键要素。我们的目标是到2025年形成同时开发增程电动车和高压纯电车的产品布局,在向800V高压转换的进程中,稳定可靠的SiC供应链至关重要。安森美具备垂直整合的端到端SiC供应链和可扩展的产能,全面掌控SiC整个制造流程,可以为我们提供长期供货保证和最新技术,确保了产品的高品质和可靠性。我们双方在传感器方面的长期合作及在现有增程式电动车型(EREV)上成功的验证,使我们对安森美充满信心。我们将延续合作关系,在下一代车型中采用 EliteSiC产品和继续集成800万像素传感器。”安森美亚太区销售高级副总裁David Chow说:“我们将以高性能车规级产品、创新技术及可靠的应用支持,与理想汽车共同推动更智能的电动汽车的实现与落地。”
关键词:
发布时间:2024-01-09 11:28 阅读量:1661 继续阅读>>
<span style='color:red'>安森美</span>:决胜汽车图像传感器网络安全赛道,为驾驶体验保驾护航
  向自动驾驶过渡的趋势,加上公众对无人驾驶汽车安全性的担忧,使网络安全成为汽车原始设备制造商(OEM)的首要关注点。必须保障汽车系统的完整性和对车辆的控制,从而确保驾驶员、乘客和行人的安全。网络安全对于通过网络连接的汽车子系统等必不可少,对用于先进驾驶辅助系统 (ADAS)和驾驶员监控的图像传感器也同样至关重要。  图像传感器相当于汽车的眼睛,支持 ADAS 功能,例如车道偏离警告、行人检测和紧急制动。它们帮助汽车系统评估周围环境并监控驾驶员的行为。未来,它们还将协助识别和验证汽车用户的身份并监控他们的生命体征,以便在驾驶员丧失行为能力时通过车载计算机来控制汽车。因此,图像传感器必须保持正常使用,尤其是在汽车可能遇到的极端情况下。  网络安全威胁汽车图像传感器主要受到四种网络安全威胁的影响:伪造、篡改、绕过和窃听(特别是对于车内应用)。  由于汽车半导体行业当前的供应短缺问题,假冒产品呈上升趋势。虽然安装非正版部件可能并非出于恶意,但它会影响系统性能。由于非正版部件使用的是不同的启动过程、协议、固件和软件,最轻微的后果是 ADAS 系统根本无法运行。最糟糕的情况是,系统使用性能严重退化的不合格部件,导致系统的安全功能受到损害。  自动紧急制动 (AEB) 系统运行的前提是其图像传感器具有明确的特性(如高动态范围和低光性能)并按照这些规格(如曝光控制和每秒帧数)进行校准。假冒的传感器可能看起来与正品相同,但其性能和特性却大相径庭。例如,假冒伪劣的摄像头可能使用的是相同的传感器,但没有经过测试以保证最终的组件满足性能要求,这可能表现为会在高强度工作下出现故障。也就是说,它在正常条件下可以工作,但在其它条件(例如炎热、阳光充足的白天或寒冷的冬夜)下会出现性能降级或干脆失效。一些复杂的仿冒品可能会模仿真实的传感器支持初始化操作或简单的设备健康检查,但其在动态范围或帧速率方面的性能会大打折扣。由于 AEB 系统是使用正品部件进行的优化,因此假冒替代品的性能下降同样会影响系统的性能,可能还会带来灾难性的后果。比如,本来可以在车前较远的距离就检测到物体或行人,留下几秒钟的反应时间,现在可能只能在几米内检测到,没有足够的时间避免碰撞(图 1)。  篡改图像传感器配置也会损害其性能。汽车系统通过编程来配置图像传感器,以优化机器视觉算法的图像质量,这些算法已针对特定实现方案进行了认证和测试。但是,如果有人(或某程序)修改了配置,则性能可能会受到影响。可能无法再保证汽车系统能正确感知汽车面临的场景(图 2)。     图像传感器不正常工作会让汽车“失明”,无法检测到潜在威胁。图像传感器向图像处理器提供原始视频数据,这些数据可用于提取有关前方障碍物的关键信息,以便汽车能够做出适当的响应。例如,从传感器接收原始视频数据的系统可以发现正在靠近的车辆,并按照最安全的操作来选择是踩刹车还是驾驶汽车远离危险。如果图像传感器不正常工作,系统将不再接收到原始视频数据,并且可能根本无法检测到正在靠近的车辆(图 3)。  确保符合规范  2021 年,联合国欧洲经济委员会 (UNECE) 工作组发布了 UN-R155 网络安全法规,要求 OEM 建立网络安全管理系统 (CSMS)。该法规自 2022 年 7 月起生效,以应对上述日益增长的威胁。汽车供应商必须确保所有相关组件符合 ISO 21434 网络安全标准。虽然仅使用符合 ISO 21434 标准的部件还不足以满足 UNECE 的要求,但这是符合规范的关键要素。  安森美 (onsemi) 自 2018 年开始在部分 ADAS 图像传感器中部署网络安全功能,使其符合网络安全规范。这些传感器有望在 2024 年之前达到网络安全标准。身份验证功能使安森美的图像传感器能够向主机证明它是正品。这一过程通过使用证书链或预共享密钥来实现。为确保视频数据的完整性,必须使用消息身份验证码(或 MAC)来证明传感器和主机之间的视频数据流未被篡改。最后是保护传感器控制和配置数据,防止使用 MAC 篡改特定密钥寄存器。由于防篡改协议因系统而异,因此系统处理器在检测篡改情况时将拥有最终决定权。  总之,网络安全规范对于防止汽车图像传感器成为汽车复杂电子系统中的特洛伊木马至关重要。对 OEM 而言,要想符合规范,需要的不仅仅是图像传感器中的网络安全控制电路。而含网络安全的图像传感器是使 ADAS 和车内监控系统完全符合网络安全规范的基本要求。
关键词:
发布时间:2023-08-25 09:56 阅读量:2289 继续阅读>>
<span style='color:red'>安森美</span>已锁定共计19.5亿美元订单,为多家光伏逆变器制造商提供长期供货
  智能电源和智能感知技术的领先企业安森美(onsemi,美国纳斯达克上市代号:ON),宣布已锁定共计19.5亿美元的长期供货协议(Long-term Supply Agreement, LTSA),为多家领先的光伏逆变器制造商提供智能电源技术,进一步巩固了安森美在这一快速增长领域的头部功率半导体供应商地位。  安森美提供卓越的裸片技术、优化和定制的模块设计及封装,助力光伏逆变器供应商能够在产品上市时间、产品开发、供应弹性和稳健的质量保证方面具备竞争优势。凭借这些优势,安森美与前10大光伏逆变器供应商中的8家签订了 LTSA,充分印证了众多客户对安森美作为值得信赖的行业合作伙伴的认可。  安森美电源方案事业群先进方案部高级副总裁兼总经理Asif Jakwani说:“太阳能发电已成为增长最快的市场版块之一,并为大规模可再生能源机组安装提供了最具成本竞争力的来源。客户采用安森美的智能电源技术,可以实现更高的能效和功率密度,尽可能多地从太阳光中获取和节约能源,从而推进我们迈向更可持续未来的共同愿景。””光伏逆变器将太阳能电池板产生的直流电(DC)转换为与电网兼容的交流电(AC)。在转换过程中,部分能量会以热量的形式损耗。安森美的技术使光伏逆变器(从公用事业到住宅应用)尺寸更小、重量更轻、更高效,从而最大限度地减少能量损耗,降低整个系统的成本。
关键词:
发布时间:2023-07-27 13:17 阅读量:2816 继续阅读>>
<span style='color:red'>安森美</span>与博格华纳签署超10亿美元SiC合作协议
  智能电源和智能感知技术公司安森美(onsemi)与创新且可持续的移动出行解决方案供应商博格华纳(BorgWarner)扩大碳化硅(SiC)方面的战略合作,协议总价值超10亿美元。  博格华纳计划将安森美的EliteSiC 1200 V和750 V功率器件集成到其VIPER功率模块中。长期以来,双方已在广泛的产品领域开展战略合作,其中即包括EliteSiC器件。  安森美表示,公司提供高性能的EliteSiC 技术,同时保持电动汽车主驱市场所需的高标准品质、高可靠性及供应稳定性。博格华纳在其解决方案中采用EliteSiC技术,将得益于更高的功率密度和能效,从而增加电动汽车的续航里程并提高整体性能。  博格华纳公司副总裁,动力驱动系统总裁兼总经理Stefan Demmerle表示:“首先,安森美会不断进行战略投资,在其整个端到端供应链中加速提升SiC产能,因此我们有信心能满足现在和未来市场对我们解决方案不断增长的需求。”  博格华纳的碳化硅主驱逆变器与其它同类方案相比,具有更高的能效、更好的冷却性能、更快的充电速度和更紧凑小巧的封装。博格华纳在其解决方案中采用EliteSiC技术,将得益于更高的功率密度和能效,从而增加电动汽车的续航里程并提高整体性能。  安森美电源方案事业群执行副总裁兼总经理Simon Keeton表示:“在主驱逆变器中集成EliteSiC技术,可以提高每加仑汽油的等效里程数(MPGe),这有助于缓解续航里程焦虑,而这也是电动汽车普及的主要障碍之一。凭借从芯片到系统级的支持,以及过往良好的执行记录,我们能够加快向博格华纳提供行业领先的基于SiC的解决方案,以满足其上市需求。”
关键词:
发布时间:2023-07-21 09:19 阅读量:1887 继续阅读>>
<span style='color:red'>安森美</span>:如何利用1200 V EliteSiC MOSFET 模块,打造充电更快的车载充电器?
  早期的电动汽车 (EV) 由于难以存储足够的能量来驱动强大的主驱电机,行驶里程较为有限。为了延长行驶里程,电动汽车制造商增加了车辆电池的能量容量。然而,更大的电池意味着更长的充电时间。  要能快速高效地为电动车更大的电池充电,电动车才能在市场普及并发展。2021 年,市场上排名前 12 位的电动汽车的平均电池容量为 80 kW-hr。消费者主要在家中使用车辆的车载充电器(OBC) 进行充电。为确保合理的车辆充电时间,OEM 还将 OBC 的功率容量从 6.6 kW 提高到 11 kW,甚至高达 22 kW。使用 6.6 kW OBC 时,这些电动汽车需要 12.1 小时才能充满电。而将 OBC 功率增加到 11 kW 后,充电时间缩短至 7.3 小时,而使用 22 kW OBC 时,只需 3.6 小时即可充满电。  需要注意的是,直流快速充电桩可以提供大约 250 kW 的功率,只需 20 分钟即可为上述容量的电池充满电,而且这些充电桩不使用车辆的 OBC。然而,根据加州能源委员会的数据,购买和安装商用直流快速充电桩的平均成本超过 10 万美元 。在这个价位上,直流快速充电桩只有在工业和商业应用中才有意义,因为同一个充电桩可以被许多车辆使用。目前,消费者必须依靠 OBC 在家充电,而缩短充电时间是将 OBC 功率提高到 6.6 kW 以上的主要动因。  影响 OBC 设计的两个关键因素是电压和开关频率。  电池电压正从 400 V 增加到 800 V 甚至更高,更高的电池电压会增加电池的能量容量(能量容量 = 电压 x 安-时容量)。例如,将电压加倍会使电池容量(以千瓦时为单位)和车辆的行驶里程都加倍。在更高的电压下运行还可以减少整个车辆所需的电流,从而降低电源系统、电池和 OBC 之间的电缆成本。  开关频率决定了车辆所需磁性元件(如电感器)的尺寸和重量。通过提高开关频率,可以使用更小更轻的磁性元件,较小的元件比较大的元件便宜。由于更轻,它们减少了车载充电器的质量,使工程师能够在不改变整车重量的情况下,在电动汽车的其他地方增加重量。更紧凑的尺寸还意味着 OBC 系统的封装尺寸更小,有利于实现时尚的车辆设计。更小的封装还降低了 OBC 外壳在碰撞中成为危险抛射物的可能性,由此增加了安全性。简而言之,增加开关频率使设计人员能够在更小的物理尺寸内实现更高的功率密度。  总之,更高的电压和更高的开关频率可以显著提高 OBC 的容量。开发人员面临的挑战是,他们使用的组件必须能够承受更高的电压和更高的开关频率。请注意,即使是更低的电压设计(即 400 V),也仍然可以受益于更高的开关频率,以减小磁性元件的尺寸和重量。  碳化硅支持更高开关频率  当前几代 OBC 架构利用超结 MOSFET 和 IGBT 组件,然而,这些技术适合以较低开关频率运行的低压应用。具体而言,硅基超级结 MOSFET 的效率随着电压的升高而降低。虽然基于 IGBT 的器件可用于更高电压应用,但 IGBT 在更高频率下的表现不佳。  为了提供更快的充电速度,车载充电器需要一种专为更高电压和更高开关频率设计的新拓扑结构。此外,新拓扑结构需要在提供更高功率的同时,简化整体电源系统的设计。借助碳化硅 (SiC) 技术,此类新拓扑结构成为可能。  与传统超级结 MOSFET 和硅基 IGBT 相比,基于 SiC 的器件和模块具有多项优势。例如,通常情况下,随着功率的增加,系统的整体损耗也会增加,而基于 SiC 的 MOSFET 使 OEM 能够在 OBC 系统中创建更好的电源转换电路。结果是 OEM 可以提高“从发电到驱动”的整体效率,更重要的是,在更高的电压水平下保持这样的效率。  除了延长电动汽车的行驶里程外,使充电系统的效率最大化,与电动推进系统保持一致,还可以降低充电车辆的成本。因此,采用 SiC 技术提高 OBC 效率,不仅可以满足消费者的需求,应对竞争压力,降低电动汽车的运行成本,还可以提高电动汽车的整体可持续性。随着 11 kW 和 22 kW 电动汽车的面世,SiC 技术将继续助力提高效率和节省运行成本。  基于 SiC 的电源系统可以提高系统效率和功率密度,其中一部分原因是由于更小无源元件具有更低电阻,导通损耗更低。因此,与超级结 MOSFET 和 IGBT 相比,SiC 提供了出色的热性能,最大程度地降低了功耗,并使系统需要相对较少的散热。  例如,假设有一个效率为 94% 的 3.6 kW IGBT 充电器,该充电器有 200 W 的损耗。然而,随着 OBC 额定功率增加到 11 kW,94% 的效率将转化为 660 W 的损耗。产生超过 3 倍的损耗会对散热系统设计产生负面影响,给电源带来更高的负载,进一步降低效率。  基于 SiC 的 OBC 可达到约 97% 的效率,具体取决于设计。对于一个 11 kW 的系统,这会造成大约 230 W 的损耗,相当于现有的 3.6 kW 系统所须应对的损耗。因此,用于3.6 kW  IGBT系统的现有散热系统一样可以支持基于 SiC 的 11 kW 系统。换个方式比较,基于 IGBT 的 11 kW 系统的散热装置将需要比基于 SiC 的 11 kW 系统更频繁地运行,消耗额外的功率,拉低整体效率,导致运行成本增加。  基于 SiC 的 OBC 设计  车载充电器的功能主要分为两个阶段。  第一个阶段是功率因数校正 (PFC),它是 AC/DC 转换器的初始阶段,它具有三个功能:将交流电转换为直流电,将输入电压提升至正确的直流电压,以及产生单位功率因数。其中,第三个功能的作用是确保电流和电压同相。没有有效单位功率因数的系统会对电网产生干扰。  第二个主要阶段是调节充电的 DC/DC 转换器。充电电压不是恒定的,而是根据特定的电池配置文件而变化。该配置文件使工程师能够在效率、充电时间和延长电池寿命方面实现尽可能好的充电体验。  传统上,3.6 kW 系统 PFC 级使用一个 4 二极管整流桥将交流电转换为直流电,然后是升压转换器的一个或多个相。通常,这需要每相一个 MOSFET 和整流器或两个 MOSFET。  要从 3.6 kW 提高到 11 kW,需要并联三个 3.6 kW 电路(见图 1)。要达到 22 kW,需要并联 6 个 3.6 kW 电路。使用 SiC 时,只需更少的功率器件就能达到 11 kW 或 22 kW,从而简化了整体设计并实现了更高的效率。  安森美 (onsemi) 提供 NVXK2KR80WDT、NVXK2TR80WDT 和 NVXK2TR40WXT 1200 V EliteSiC MOSFET 模块,可用于电动汽车的 OBC 应用中,以发挥 SiC 的优势。这些 EliteSiC 模块可以改进 OBC 设计。NVXK2KR80WDT 是一款 Vienna 整流器模块,集成了 1200 V 80 mΩ EliteSiC MOSFET,SiC 和 Si 二极管都贴装在 Al2O3 陶瓷基板上。NVXK2TR80WDT 是一款双半桥模块,搭载 1200 V 80 mΩ EliteSiC MOSFET,贴装在 Al2O3 陶瓷基板上。NVXK2TR40WXT 是一款双半桥模块,搭载 1200 V 40 mΩ EliteSiC MOSFET,贴装在 AlN 陶瓷基板上,用于提高电流处理能力。  而不需要三个并联的电路,或者可以使用三个 NVXK2KR80WDT 模块来实现三相 Vienna 整流器,每个模块处理一相。对于第二级,DC/DC 转换器(两个 NVXK2TR80WDT 模块或两个 NVXK2TR40WXT 模块)构成了 CLLC 谐振转换器的初级侧和次级侧桥。这种拓扑结构可以减少整体元器件数量并提高效率,元器件减少了大约 50%。22 kW 系统也可以应用这种拓扑结构。  工程师可以使用一系列模块而不是分立元件来简化设计,同时确保具有高功率密度的紧凑设计。模块对分立元件的设计进行了整合,降低复杂性,从而减少了 OBC 制造商的设计和装配工作,同时提供了更高的可靠性。  图片图片图片图片  图 2. 使用碳化硅模块,仅需一个电路即可支持 11 kW 系统的所有三相  安森美提供广泛的功率器件组合,可简化工程并提供不同的折衷方案,为工程师提供更大的灵活性。例如,相比于 NVXK2xx40WXT 的0.47°C/W 的 RqJC,NVXK2xx80WDT 有一个 1.84°C/W(每瓦温升)的 RqJC。虽然 xx80WDT 的发热量更高,但它比 xx40WXT 更小、更便宜,xx40WXT 的散热性能更好。这使开发人员能够选择合适的器件来匹配特定应用的额定功率,并在尺寸/成本和散热之间进行权衡。  请注意,将模块的 RqJC 与分立元件的 RqJC 进行比较并不是一对一的比较。该模块已经有一个嵌入式电绝缘层,必须将其添加到分立方案中。此外,分立封装中的可比元件具有外部和内部热接口,温升比单独的分立元件要高得多。  另一个要考虑的因素是剖面。由于可能的集成度,模块的间隙比分立式方案要好得多。例如,IEC-60664-1 要求封装至少有 5.0 mm 的间隙。选择模块可确保满足间隙要求,同时简化工程设计。  负载平衡  典型的充电场景是驾驶员下班回家后为电动汽车通宵充电,随着越来越多的电动汽车上路,电力公司面临的一个主要挑战将是负载平衡需求。目前,相关方正在进行研究以创建协调的智能电网,包括在全国层面和全球层面进行协调。例如,一种潜在的策略是电力公司在不同时间在不同地点使用电动汽车电池,以帮助保持电网稳定,从而满足高峰期的电动汽车充电需求。  这些新的基于 SiC 的拓扑结构的优点之一是它们是双向的,并且在引入时很可能能够支持各种协调的智能电网策略。鉴于不断发展的法规会提出现有 EV 架构难以胜任的新功能,这种能力有助于打造面向未来的设计。  双向 OBC 还使电动汽车能够充当家用应急发电机。例如,当下大雪造成停电后,拥有电动汽车的家庭可以使用电动汽车为加热器和照明灯等基本设备供电,供电量可达 60 千瓦时,具体取决于电池容量。随着技术的进步,电动汽车可以在多种职业场景充当发电机,比如在偏远的建筑工地提供电力。  安森美率先推出符合汽车标准的基于 SiC 的功率模块,适用于车载充电器应用。凭借 15 年的 SiC 模块量产经验,安森美在为客户提供价值和质量方面拥有良好的业绩记录和悠久历史。  安森美也是少数拥有全整合供应链的 SiC 制造商之一。从 SiC 晶锭生长到晶圆制造,再到模块和分立器件,安森美拥有自己的内部 SiC 制造和装配流程,以确保功率器件符合高品质标准。安森美不仅是端到端的 SiC 供应商,而且具备卓越运营能力和快速响应能力。  下一代车载充电器需要处理高压和不断增加的开关频率,以提供汽车制造商所需的效率和功率密度。碳化硅技术支持新的拓扑结构,使电源工程师能够满足这些新的要求,同时减小 OBC 的尺寸、重量、成本和复杂性。凭借全面的电源产品组合,安森美可帮助加速 OBC 设计,为开发人员提供应用灵活性,打造出面向未来的设计,以适应不断变化的法规并支持新的应用。
关键词:
发布时间:2023-05-23 10:56 阅读量:2671 继续阅读>>
<span style='color:red'>安森美</span>和极氪签署碳化硅功率器件长期供应协议
  领先品牌安森美(onsemi)和豪华智能纯电品牌极氪智能科技(ZEEKR)宣布双方签署长期供应协议(LTSA)。安森美将为极氪提供EliteSiC碳化硅(SiC)功率器件,以提高其智能电动汽车(EV)的能效,从而提升性能,加快充电速度,延长续航里程。  极氪将采用安森美的M3E 1200V  EliteSiC MOSFET,以配合其不断扩大的高性能纯电车型产品阵容,实现更强的电气和机械性能及可靠性。这些功率器件提供更高的功率和热能效,从而减小其电动汽车主驱逆变器的尺寸与重量,并提高续航里程。  安森美和极氪签署碳化硅功率器件长期供应协议  极氪智能科技CEO安聪慧说:  “采用前瞻的碳化硅SiC技术,极氪将提供性能更高、碳排放更低的电动汽车。作为长期致力于可持续发展的品牌,极氪将不断探索多种方式来加速新能源汽车的转型。”  新的长期供应协议将使两家公司建立更强大的供应链关系,以支持极氪在未来十年的长足发展。  安森美总裁兼CEO Hassane El-Khoury说:  “可靠的供应链对业务成败至关重要,安森美对SiC端到端供应链进行了大力投资,可以向客户提供这种战略价值。这协议将有助于我们SiC业务的持续增长,使我们能够提供领先行业的功率器件,帮助客户部署市场上更高能效和性能的电动汽车。”  极氪作为高端电动汽车品牌,应全球对高端电动汽车的需求而诞生。利用吉利先进的纯电浩瀚架构(SEA),极氪拥有自研三电技术体系。  关于极氪(zeekr)  极氪是一家以智能化、数字化、数据驱动的智能出行科技公司,秉承用户型企业理念,聚焦智能电动出行前瞻技术的研发,构建科技生态圈与用户生态圈,以“共创极致体验的出行生活”为使命,从产品创新、用户体验创新到商业模式创新,致力于为用户带来极致的出行体验。
关键词:
发布时间:2023-04-26 10:15 阅读量:1910 继续阅读>>
<span style='color:red'>安森美</span>推出全新800万像CMOS素图像传感器AR0822
  近日,安森美(onsemi)宣布推出一款创新的图像传感器——AR0822。该器件的嵌入式高动态范围(eHDRTM)功能和优化的近红外(NIR)响应对于照明条件恶劣的应用至关重要,如安防监控、随身摄像机、门铃摄像头和机器人。该传感器的低功耗架构和运动唤醒功能旨在大幅降低系统功耗。  是800万像素(MP)的堆叠式1/1.8英寸(对角线8.81毫米)背照式(BSI)CMOS数字图像传感器,基于2.0 ?m像素。它具有3840(H)× 2160(V)的有效像素阵列,能够以60帧/秒(fps)拍摄4K视频,以线性或eHDRTM模式(120dB)捕获图像,采用卷帘快门读出。  安森美(onsemi)推出全新800万像CMOS素图像传感器  实现卓越的图像质量同时优化功耗  安森美高级副总裁兼智能感知部总经理Ross Jatou表示:“AR0822在低光照条件下实现领先业界的性能,同时使客户能够以更低的系统功耗和成本实现所需的120dB eHDRTM。这种组合给了我们的客户强有力的支持,去满足市场对更先进的成像与节能方案和更长的电池使用寿命的需求。”  当今图像传感器面临的一个主要挑战是需要在不受控的光线条件下工作。具体来说,就是具有高动态范围(HDR)的场景,即具有特别明亮和黑暗区域的图像。虽然许多HDR技术使用多重曝光输出,向图像信号处理器(ISP)发送多达三个不同曝光的图像进行组合,但这种方法需要多达3倍的系统带宽和更昂贵的元器件,特别是在更高的分辨率下。AR0822嵌入了HDR功能,减小了系统带宽和处理器功耗,同时还通过智能线性化与曝光组合,对运动和闪烁的光源进行补偿,从而实现卓越的图像质量。  针对物联网(IoT)应用,为了满足客户对低功耗运行和更长的电池使用寿命的期望,AR0822以运动唤醒等专用功能优化了系统功耗。大多数摄像机在待机时以较低的功耗模式运行,并在检测到运动时恢复正常运行,以节省电力。这些系统通常需要传感器和处理器同时工作来检测运动。而AR0822可以利用其运动唤醒功能智能地检测到场景的运动变化,这使得处理器进入低功耗待机模式,直到传感器检测到运动并触发处理器恢复工作模式。  还具备增强的近红外灵敏度,和像素合并(binning)/开窗输出(windowing)等精密的摄像功能。该器件针对恶劣环境而设计,工作温度范围-30 °C到85 °C(结温)。
发布时间:2023-03-17 10:49 阅读量:2495 继续阅读>>

跳转至

/ 1

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
BD71847AMWV-E2 ROHM Semiconductor
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
型号 品牌 抢购
ESR03EZPJ151 ROHM Semiconductor
TPS63050YFFR Texas Instruments
BP3621 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
STM32F429IGT6 STMicroelectronics
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。