雷卯:汽车12V和24V<span style='color:red'>电池</span>输入保护推荐
汽车电池电源线路在运行系统时容易出现瞬变。所需的典型保护包括过压、过载、反极性和跨接启动。在汽车 的生命周期中,交流发电机可能会被更换为非OEM 部件。售后市场上的交流发电机可能具有不同的负载突降(LOAD DUMP)保护或没有负载突降保护,这可能导致损坏电子控制单元 (ECU)。前装产品在设计初期要充分考虑测试需求,保证充分余量。保护需求雷卯本文主要讨论电源口的保护需求,一般包括了• 过压保护• 过载保护 • 瞬态抑制 • 反极性保护 •在未抑制负载突降脉冲期间实现A类运行, 符合 ISO 7637-2、ISO 16750-2 的要求。 一般来说电源口电磁兼容EMC遵循的标准如下:1、 ISO7637-2 包括很多波形2、 ISO1650-2 包括波形A 和波形B3、 LV124标准 包括众多汽车主机厂的自己标准,比如VW80000和宝马,奔驰,保时捷自己的体系标准4、 JASO A-1 日本体系的测试标准5、 SAEJ1113-11 美国汽车工业协会的测试标准。虽说各个标准数据各不一样,但是总体来说波形差不多,只是每家的电压,电阻,波形长度各有各自的说法。所以在前期设计时要明确测试标准非常重要。ISO 7637的标准名为“道路车辆-传导和耦合引起的电干扰”,第二部分特别是“仅沿供电线的电瞬态传导”。该标准定义了一个测试程序,包括测试脉冲的描述,以测试电气子系统对瞬态的敏感性,这可能对其操作造成潜在的损害。每个脉冲都被建模来模拟一个瞬态,理解为汽车发生的真实电压波动。本文设计主要用于反向极性保护和瞬态保护,主要放置在电池旁边。ISO 16750的标准名为“道路车辆——电气和电子设备的环境条件和测试”,第二部分特别是“电气负载”。考虑这个标准的一个简单方法是,它本质上定义了一系列的“供电电压质量”事件——电池供电电压在各种条件下的变化。在大多数情况下,这些条件对电气子系统无害,但会影响其运行状态。本标准中的测试旨在查看子系统在这些事件之前、期间和之后的行为。很多车厂要求测试需达到A级的状态,即测试过程中不发生任何异常数据。雷卯方案 此电路包含了三项保护 包括过压,过流,反电压的测试。以下是三颗器件的上海雷卯选型原则,根据客户测试指标各异您可以稍作调整。PTC 过流保护作用,需考虑工作电流和耐压值,还要考虑温度因素,雷卯推荐12V系统采用耐压24V的产品,24V系统需采用耐压值33V的PTC,如果测试抛负载数据严格,建议采用插件的PTC,比如HL60-300产品。防反接二极管设计位置也有不同意见,如果测试浪涌严格也建议放在TVS的后端,避免测试时冲击电流过大而损坏。一般此处电流小选择肖特基二极管,可以采用雷卯的超低压降系列肖特基。SS34LVFA 或SS56C等产品。防浪涌二极管TVS,主要用于防护各种过压波形和抛负载冲击,此处选择范围较大,一般推荐选用SM8S24CA或SM8S36CA。市面上有很多也叫此型号的产品,一定要保证能通过测试,上海雷卯的目前可以保证通过0.5欧的12V系统和3欧的24V系统。我们有电磁兼容实验室,也欢迎需要的工程师申请免费测试。值得注意的是TVS电压越低,箝位电压越低,越能保护后端的DC-DC芯片,所以后端电源芯片的选择也需提前规划,如果选用耐压60V的电源芯片,会容易通过测试。成品方案太多的工程师对电源这块的设计和测试头痛不已,上海雷卯也为大家提供简易方案,我们提供成品的电源模块,直接输入接电池,输出您后端需要的5V 8V或12V供电电压,满足所有的EMC测试,免去工程师的烦恼,可以咨询雷卯业务。
关键词:
发布时间:2023-09-22 11:53 阅读量:4780 继续阅读>>
常见的24V<span style='color:red'>电池</span>供电的应用有哪些
  从电动汽车、摩托艇到光伏装置和数据中心,电池供电系统正蓬勃发展。目前的趋势主要是增加系统的运行电压以缩减系统尺寸、重量或增加负载的可用功率。在宽输入功率器件的不断进步下,处在这股潮流最前线的是从 12V 转换到 24V 的应用。  所有电动汽车 (EV),包括纯电动汽车 (BEV),都使用传统的 12V 铅酸电池来作为无钥匙进入系统和警报系统的独立电源,因为在主牵引电池耗尽时这些系统仍要持续运作。除此之外,电池还为安全气囊系统、安全带张紧器和仪表板供电,因为若使用不同的电压还需要重新认证,不但费时也不经济。  在 ICE(内燃机)汽车中,铅酸电池也用来启动发动机。轻型摩托车和摩托车的电池为 6 伏,大多数汽车是 12 伏,重型卡车通常是 24 伏。可以发现这些是6V的倍数但这并非巧合。在电池的世界里有许多不同的化学类型(即铅酸、锂离子、磷酸铁锂等),而最基本的单元是单电池,可以具有 1-4V 范围内的浮动开路电压(标称)。因此,将许多电池组合在一起会产生更高的电压并称为电池组(尤其与保护电路组合时),但更常简称为电池。串联电池可以获得所需的输出电压,也可以并联来加大输出电流。  铅酸电池的电压为 2V,因此串联三个电池将提供 6V,六个电池提供 12V,十二个电池提供 24V。军用车辆和飞机上的铅酸电池使用 14 节电池来提供28V军用标准电源。锂离子电池的电压为 2.4至3V,因此六组锂离子电池可为便携式电钻和其他车间设备提供 18V 典型电池电压。  一般来说,重型应用(大电流)通常采用铅酸电池因为重量没有价格来得重要,而注重快速充电和轻量化的应用更倾向锂离子化学物质,但电池化学 (以及概括的储能)可能比这种过于简化的解释来得更加微妙且「多变」,因此建议参考更详细的信息,可从此 RECOM 博客[1] 开始。  虽然电池供电应用最常见的电压是 6、12 和 18V,但其他的领域越来越将总线电压向上推到 24 和 48V。下一节将详细介绍会在各种使用案例看到这种趋势的背后原因。  既然12V 电池更常见,为何不继续使用?  12V 的铅酸电池确实比 24V 或 48V普遍,因此也比电压更高的替代方案来得便宜也更容易取得。电机启动时重型电池可提供数百安培的电流,但由于线束的载流能力有限,最大持续电流被限制在 100A 左右,进而将最大可用功率限制在 1,200W 上下。  当瓦特定律与欧姆定律结合在一起时,电流对功耗的指数效应变得更加明显。在到达端负载之前,电线的电阻会导致功耗和电压降。  从中可以得出以下结论:  ● 功率不变的情况下,电压加倍能使电流减半。  ● 将电流减半意味着系统仅需一半的电流处理能力,因此减小导体尺寸也能维持相同的功率。  ● 将同一导体中的电流减半会使沿路的电压降减半,从而向端负载提供更高的电压(提高系统效率)。  ● 电流减半能让导体长度加倍并维持相同的电压降。  ● 将同一导体中的电流减半能让配电网功耗只有四分之一。  虽然世界正迅速转向电动汽车,但内燃机汽车至少在接下来的 20 年内持续投入生产,因此在 2050 年以后仍会在大马路上,而在这个期间创新会持续前进。随着电动调整、自适应悬挂等技术的发展,汽车将继续以技术为主以实现在所有道路条件下提供完美的驾驶体验。更复杂的空调控制、机械泵将被电动和涡轮增压器取代,以及即时怠速启停系统等,这些都非常耗电而且超出标准 12 V 电池的供电能力。  ICE 和混合动力电动汽车的 48V 电池系统能提供 5kW 功率,但仍被归类为安全特低电压 (SELV),意思是传统的布线绝缘和技师的安全培训足以降低触电风险(在大多数使用情况下,所有低于 60V 的直流电压都可被视为「安全的」)。大型车辆和其他形式的电池供电交通工具也可能有非常大量的电线而导致总重量增加,但应该注意的是电线重量对燃油车和电动汽车来说一样重要。有时候使用高电压的理由是能减少铜用量。将这些重量和成本上的节省,以及使用更高电压电池组实现的节省加在一起,可以在持久度方面发生显着的变化(无论是指燃料还是电池寿命)。  这些因素都显现在本文列出实际应用中的价值主张。无论是增加功率处理、缩减系统尺寸、提高能效、缩小电线尺寸、支持更长走线,或是可靠性等因素,更高的总线电压都具有相当大的优势。  那么24V 或 48V 电池通常会应用在哪些地方呢?不同类型的电动机都是很好的选择。小型电机,例如手动工具、渔船、高尔夫球车、轮椅或踏板车,往往着重在整个系统的尺寸和重量,由于大多是非连接的因此支撑电池和相关功率器件或电源线的重量就会消耗大量的电池电量。在另一端,工业电机和电机驱动系统往往是任何行业总能源足迹的最大消费者[2],因此要强调的是在这个领域还有很多改善空间和提高能源效率的机会。  除了电机之外还有多种电气系统受益于高电压电池。光伏 (PV) 就是一个很好的例子,因为太阳能电池阵列可以模块化,像电池一样可以为阵列和应用提供大小合适的能量存储。24 或 48V 离网方案可以提供足够的峰值功率来为山间小屋、偏远的气象站或手机基站供电,同时有足够的电池容量在阴天时为关键系统供电数天。  将上述几种应用融合起来的现象已越来越普遍。更大的船只不仅受益于更高的电池电压,采用 PV 也会带来更多的好处。同样的概念也适用于休闲车 (RV),由于 COVID-19 疫情,休闲车的销量出现了惊人的大幅增长。使用大量冗余和电池电源的军事和高可靠性应用从12V 系统转换成 24 或 48V 系统的情况会越来越普遍。RECOM 也提供适合船舶应用的 48V 电池供电交流逆变器,可产生三相 115VAC,输出功率为 1,200VA。  当电池要为敏感的电子设备或无线电发射器供电时,是否能够提供稳定的稳压电源就变得十分重要。电压调节器必须高效以最大限度地利用存储能量,也要具有较宽的输入电压范围以应对充满电的电池和完全放电的电池的差异,并且在许多情况下,需要具有电流隔离的输出以避免接地环路干扰,或保护设备免受负载突降电压浪涌以及雷击或外部电磁场引起的感应电压瞬变的影响。一般来说,在环境中暴露越多,所需的隔离等级就要越高。  更宽的输入电压范围 = 更宽的应用范围  RECOM 为板级电源提供多种低成本、超小型的非隔离稳压器如 RPM 和 RPX 系列,特别适合具有宽输入电压范围、极高效率和超低待机功耗的电池供电设备。RECOM 也提供具有 4:1 输入电压范围的隔离 DC/DC 转换器,适用于 12 / 24V 系统(9 – 36V)或 24 / 48V 系统(18 – 75V)。如果需要通用解决方案,RPA150E 系列采用八分之一砖封装,在 9-60VDC 的输入电压范围提供 150W 稳压隔离输出,涵盖 12 / 18 / 24 和 48V 电池组电压。它是隔离DC/DC转换器并带有内部平面变压器,所以还能当作 24V或48V总线稳压器,无论输入电压比输出更高、更低或者一样,都能提供恒压和防短路输出。  更高的总线电压和功能丰富的功率器件结合起来可以进一步让更多不同种类的应用受益。计算应用也可以享有上述好处(连接和非连接皆是,即数据中心和笔记本电脑)。举例来说,计算机服务器可能会耗尽备用电池的电量,因此面对一个永远不会下降的高恒定负载,能量存储越靠近负载的位置(无论是物理还是电压水平)对设计优化和减轻能量 OPEX 就越有利,因为 OPEX 通常是影响数据中心总拥有成本 (TCO) 的原因。这可以透过系统前端的备用电池单元 (BBU) 实现,无须转换时间以储能的形式为负载供应重要的备用电源。  结论  正如 12V 电池提供了通往 24V 解决方案的途径一样,24V 电池也会为48V 开辟一条道路。一般来说,将电池整合到更高电压的电池组中应该会减少包装开销并只增加价值主张;而现在24V 电池正好处在 12V 和 48V 总线之间的最佳位置。  就如公用电网一样,几乎所有的大型系统都可以在不断被推得更高的配电电压中获得好处。
关键词:
发布时间:2023-05-18 11:43 阅读量:2141 继续阅读>>
新能源汽车<span style='color:red'>电池</span>DC-DC转换器模块解决方案
发布时间:2018-12-11 00:00 阅读量:1904 继续阅读>>
无人机数据总线和<span style='color:red'>电池</span>管理解决方案
1、前言无人驾驶飞机简称“无人机”(UAV)是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机,或者由车载计算机完全地或间歇地自主地操作。电池管理解决方案 (BMS)的子系统设计,适用于无人机、机器人或无线电控制 (RC) 的项目和设计。可快速将监测、保护、平衡和充电功能添加至适用于无人机、机器人或 RC 产品的任何新设计,或使用此板将高级功能添加至现有设计。此 TI 参考设计将让您快速且轻松地投入工作并测试高级电池管理功能。2、方案概述Ameya360 无人机视觉、高级传感与处理解决方案主要有陀螺仪(飞行姿态感知),加速计,地磁感应,气压传感器(悬停高度粗略控制),超声波传感器(低空高度精确控制或避障),光流传感器(悬停水平位置精确确定),GPS 模块(水平位置高度粗略定位),以及控制电路组成。主要的功能就是自动保持飞机的正常飞。特性:1、补偿放电终止电压 (CEDV) 电量监测计可精确测量锂离子电池和锂聚合物电池中的可用电量2、充电时具有集成型电池平衡3、适用于电压、电流、温度、充电超时、CHG/DSG FETS 和 AFE 的可编程保护功能4、适用于您的电池的诊断使用寿命数据监控器和黑盒记录器5、板载 3.3V/5V 500mA 稳压器,可运行外部控制器。ManufacturerModelDescriptionNXP MC33903电池系统NXP MC33FS650电池系统NXP MC33FS6510电池系统NXP MC33771电池控制器NXP MC33772电池控制器Freescale/NXP MC34671电池充电器Freescale/NXP MC34673电池充电器Freescale/NXP MC34674电池充电器NXP MWCT1012CFM无线充电系统NXP MWCT1111CLH无线充电系统NXP MC33664高速收发器NXP MC33771高速收发器NXP PCA9530显示控制NXP PCA9531显示控制NXP PCA9532显示控制NXP PCA9533显示控制NXP PCA9550显示控制NXP PCA9551显示控制NXP PCA9552显示控制NXP PCA9553显示控制NXP PCA9624显示控制
发布时间:2018-04-18 00:00 阅读量:1652 继续阅读>>
快充对<span style='color:red'>电池</span>影响大?
充电桩其实就相当于加油站里的加油机。新能源汽车的普及推广,让充电桩逐渐进入到人们的生活中。根据人们的实际情况,新能源车主以快充、慢充和飞线为主要充电方式。首先飞线是极不提倡、最危险的充电方式,而慢充时间长,尤其是没有私人充电桩的车主,慢充方式的时间、精力和金钱的压力太大,而快充方式又有损害电池的传言,坊间一直流传要以快慢充相结合的方式进行充电。     随着电动汽车用户的不断积累,基础充电问题也逐渐暴露出来,充电设备和企业之间不互通、车主不仅要掌握充电桩的位置,还要了解充电桩的品牌和支付方式。   锂电池的工作原理 要讨论直流充电对电池的影响,首先要了解电动汽车电池。 目前市面上电动汽车大多数是锂离子电池,电池有两极:正极是锂化合物,负极为石墨。   在充电时,电池的正极上有锂离子(Li+)生成,生成的锂离子(Li+)经过电解液从正极运动到负极,而负极的石墨是有微孔的层状结构,到达负极的锂离子(Li+)嵌入到碳层的微孔中,嵌入的锂离子(Li+)越多,充电容量越高;在放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子(Li+)脱出,又运动回正极,回到正极的锂离子(Li+)越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。因此,理想状态下,锂电池的充放电过程中,实际是锂离子(Li+)从正极→ 负极→正极的运动状态,只要正负极材料的化学结构基本不发生变化,电池充放电的可逆性很好,锂离子(Li+)电池就能保证长时间循环。   快速充电主要是保证锂离子(Li+)快速地从正极嵌出并快速的嵌入负极,不能造成锂离子(Li+)的沉积。但是在电流增大时,电极负极(石墨)表面的一层半透膜(SEI膜)会有一定程度的破裂,使电极材料和电解液相互反应。另外温度升高会伴随着一些副反应,如电解液分解、电极上产生沉积物,导致可逆性降低,电池容量也就会慢慢的减少。 快充对电池的影响 电动汽车充电时,电动汽车上电池管理系统BMS会估测动力电池组的荷电状态 (State of Charge,即电池剩余电量),根据电池包的状况自动调节充电电流的大小,保证SOC维持在合理的范围内,防止由于过充电或过放电对电池的损伤,因此不需过度担心快充对电池的损伤。 其实,电池中锂离子就像正在摇摆的秋千,当不存在摩擦力、重力等外界因素,因为能量守恒,秋千将一直左右摇摆下去。但是只要有一个外界因素影响,也许锂离子这把秋千,不会摆的像之前那样高,这个因素一直存在,秋千也许某天会停下来。 因此,电动汽车的电池包是否会过充或过放,很大程度上取决于BMS系统的管理水平。所以无论是消费者还是车企追求高续航时,不只是增大电池容量,也要提高对电池管理系统BMS的管理和升级。 如何通过快慢充减少对电池的损害 如果对电池管理系统BMS没信心,而且有条件自建充电桩,那最好还是以交流慢充为主,直流快充补电为辅。因为交流慢充输入的是交流电,再由车载充电机转换成直流电给电池包充电,相对输入功率较小,过充的机会很小。 目前,在充电桩市场,有些直流充电桩自带有过充主动保护功能。它会主动地对电池包的充电状态进行侦测,并智能化地优化充电曲线。当充电桩侦测到电池包即将快要充满时,充电桩会自动降低输出电流,进入涓流慢充阶段;当充电桩侦测到电池包电量已达到一定值(如电池包电量达到97%时),且涓流充电超过一定时间(如10分钟)后,则充电桩会主动断开充电,以防电池包过充。如使用这种有防过充功能的充电桩时,则无需担心此问题。 虽然用户在使用充电桩充电时,充电方式和支付方式不同,但不同充电桩之间交替轮流充电,基本上是不会对电池产生不良影响的。如上所述,理论上不同充电桩对电动汽车充电效果基本上是一样的,其充电质量优劣由其自身的电池管理系统的管理水平来决定。  电动汽车的推广时间还短,无论是车辆的使用还是相应的充电设施都没有跟上发展需要。俗话说,要想富先修路,电动汽车要想得到发展,实现“中国制造2025”和“十三五”目标,充电桩的发展必须要走在前端。
关键词:
发布时间:2017-02-14 00:00 阅读量:5962 继续阅读>>

跳转至

/ 1

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
MC33074DR2G onsemi
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
型号 品牌 抢购
ESR03EZPJ151 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BP3621 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。