二极管为什么不适合串联和并联

Release time:2022-07-06
author:Ameya360
source:网络
reading:3163

    大家都知道,电阻可以用来串联,也可以用来并联。

    那么,二极管适合串联和并联吗?

    二极管为什么不适合串联和并联

    二极管串联时,需要注意静态截止电压和动态截止电压的对称分布。

    在静态时,由于串联各元件的截止漏电流具有不同的制造偏差,导致具有最小漏电流的元件承受了最大的电压,甚至达到擎住状态。但只要元件具有足够的擎住稳定性,则无必要在线路中采用均压电阻。只有当截止电压大于1200V的元件串联时,一般来说才有必要外加一个并联电阻。

    假设截止漏电流不随电压变化,同时忽略电阻的误差,则对于n个具有给定截止电压VR的二极管的串联电路,我们可以得到一个简化的计算电阻的公式:

二极管为什么不适合串联和并联

    式(1.15)中,Vm是串联电路中电压的最大值,△Ir是二极管漏电流的最大偏差,条件是运行温度为最大值。

    我们可以做一个安全的假设:

二极管为什么不适合串联和并联

    式(1.16)中,Irm是由制造商所给定的。

    利用以上估计,电阻中的电流大约是二极管漏电流的六倍。

    经验表明,当流经电阻的电流约为最大截止电压下二极管漏电流的三倍时,该电阻值便是足够的。但即使在此条件下,电阻中仍会出现可观的损耗。

    原则上,动态的电压分布不同于静态的电压分布。如果一个二极管pn结的载流子小时得比另外一个要快,那么它也就更早地承受电压。

    如果忽略电容的偏差,那么在n个给定截止电压值Vr的二极管相串联时,我们可以采用一个简化的计算并联电容的方法:

二极管为什么不适合串联和并联

    式(1.17)中,△QRR是二极管存储电量的最大偏差。

    我们可以做一个充分安全的假设:

二极管为什么不适合串联和并联

    条件是所有的二极管均出自同一个制造批号。△QRR由半导体制造商所给出。除了续流二极管关断时出现的存储电量之外,在电容中存储的电量也同样需要由正在开通的IGBT来接替。根据上述设计公式,我们发现总的存储电量值可能会达到单个二极管的存储电量的两倍。

    一般来说,续流二极管的串联电流并不多见,原因是存在下列附件的损耗源:

    pn结的n重扩散电压;

    并联电阻中的损耗;

    需要由IGBT接替的附加存储电量;

    由RC电路而导致的元件的增加。

    所以在高截止电压的二极管可以被采用时,一般不采用串联方案。

    唯一的例外是,当应用电路要求很短的开关时间和很低的存储电量时,这两点正好是低耐压二极管所具备的。当然此时系统的通态损耗也会大大增加。

    二极管并联

    二极管并联,并不需要附加的RC缓冲电路。重要的是在并联时通态电压的偏差应尽可能小。

    判断一个二极管是否适合并联的重要参数是其通态电压对温度的依赖性。如果通态电压随温度的增加而下降,则它具有负的温度系数。对于损耗来说,这是一个优点。

    如果通态电压随温度的增加而增加,则温度系数为正。

二极管为什么不适合串联和并联

    在典型的并联应用中,这是一个优点,其原因在于,较热的二极管将承受较低电流,从而导致系统的稳定。因为二极管总是存在一定的制造偏差,所以在二极管并联时,一个较大的负温度系数(>2mV/K)则有可能产生温升失衡的危险。

    并联的二极管会产生热耦合:

    在多个芯片并联的模块中通过基片;

    在多个模块并联于一块散热片时通过散热器。

    一般对于较弱的负温度系数来说,这类热偶合足以避免具有最低通态电压的二极管走向温度失衡。但对于负温度系数值>2mM/K的二极管,则建议降额使用,即总的额定电流应当小于各二极管额定电流的总和。

("Note: The information presented in this article is gathered from the internet and is provided as a reference for educational purposes. It does not signify the endorsement or standpoint of our website. If you find any content that violates copyright or intellectual property rights, please inform us for prompt removal.")

Online messageinquiry

reading
齐纳二极管原理及使用方法介绍
  齐纳二极管(Zener Diode)是一种特殊的二极管,其工作原理主要基于反向击穿效应。当施加到齐纳二极管两端的反向电压超过其“齐纳击穿电压”(也称为反向阻挡电压),器件会开始导通,使得在器件两端形成一个稳定的电压。  1.齐纳二极管的工作原理  在正常工作条件下,齐纳二极管的结构与普通二极管相似。但区别在于齐纳电压(阻断电压)通常设定在比较低的电压水平。当外加反向电压超过额定齐纳电压时,由于击穿效应,齐纳二极管将开始导通,形成一个固定的电压跨接在两端。  2.齐纳二极管的特点  电压稳定性:齐纳二极管可以提供非常稳定的电压输出。  保护电路:常用于稳压和电压限制应用,以保护其他器件免受电压波动的影响。  温度依赖性:齐纳二极管的工作特性受温度影响较小,相对稳定。  反向电流大:齐纳二极管在击穿状态下的反向电流比普通二极管要大。  3.齐纳二极管的使用方法  选取合适的齐纳二极管:根据所需的电压稳定值和功率要求选择合适的齐纳二极管。  正确连接极性:确保正确连接齐纳二极管,通常将其放置在反向电压方向。  合理设计电路:在设计中考虑到齐纳二极管的特性,确保其在工作范围内稳定可靠。  注意散热:对高功率应用,需考虑齐纳二极管的散热,以确保器件工作在可靠的温度范围内。
2024-12-20 13:31 reading:173
锗二极管型号及参数 硅管和锗管有什么区别
  锗二极管是一种常用于电子电路中的半导体器件。在选择合适的锗二极管时,了解其型号和参数非常重要。此外,还需要清楚硅管和锗管之间的区别。  1.锗二极管型号及参数  锗二极管的型号通常由制造商根据该器件的特性指定。常见的锗二极管型号包括但不限于:1N34、1N60、OA81等。这些型号具有各自独特的电性能和应用场景。  在选择锗二极管时,关注以下参数至关重要:  最大反向电压(VRM):即锗二极管可承受的最大反向电压值。  最大正向电流(IFM):锗二极管可通过的最大正向电流。  正向压降(VF):锗二极管正向导通时的电压降。  尺寸:锗二极管的物理尺寸对于某些应用也是一个重要考量因素。  2.硅管和锗管的区别  尽管硅管和锗管都是半导体材料,但它们在一些方面存在显著区别:  材料特性:硅管比锗管更普遍,在许多应用中使用。硅管具有较低的功耗和较高的工作温度范围。  电学特性:锗管的导电性能优于硅管,因此在一些特定应用中,如高频应用,锗管可能更适合。  价格和稳定性:通常情况下,硅管比锗管便宜,且具有更好的稳定性和一致性。  反向饱和电压:锗管的反向饱和电压较硅管低,这在一些电路设计中具有优势。  锗二极管作为一种重要的半导体器件,其型号和参数决定了其在电路中的具体应用。在实际选型时需要结合具体需求进行选择。同时,与硅管相比,锗管在电学特性等方面有着明显的差异,合理选择器件能够有效提高电路性能和稳定性。
2024-11-21 11:53 reading:278
二极管的直流电阻和交流电阻的联系和区别
  二极管是一种常见的半导体器件,具有独特的电学性质。二极管的直流电阻和交流电阻是描述其在直流和交流电路中的特性的重要参数。本文将深入探讨二极管的直流电阻和交流电阻的联系和区别。  1.二极管的基本原理  二极管是由正负两种材料组成的半导体器件,具有正向导通和反向截止的特性。在正向偏置下,二极管会导通并具有很小的电阻;而在反向偏置下,二极管则处于高电阻状态。  直流电阻  二极管的直流电阻是指在稳定的直流工作条件下,通过二极管的电流与电压之比。直流电阻通常通过斜率差值法或微分法计算,在直流电路中对二极管的导通特性和功耗起着关键作用。  交流电阻  二极管的交流电阻是指在交流信号下,通过二极管的交流电流与电压之比。由于二极管的非线性特性,其交流电阻取决于交流信号的频率和幅值,对于高频应用尤为重要。  2.联系和区别  联系  共同点:二极管的直流电阻和交流电阻都反映了二极管在电路中的阻抗特性,对于电路设计和分析至关重要。  受温度影响:直流电阻和交流电阻都会受到温度变化的影响,二极管的电阻值随温度升高而减小。  区别  工作原理不同:直流电阻描述了二极管在直流电路中的电阻特性,主要考虑静态工作状态下的电阻值;而交流电阻则更多地考虑了动态工作状态下的电阻变化。  频率响应不同:交流电阻随着交流信号频率的变化而变化,呈现出非线性特性;而直流电阻相对稳定,不受频率影响。  应用环境:直流电阻通常用于静态电路分析和设计,交流电阻则更多地涉及到动态信号处理和高频电路设计。  3.应用举例  在整流电路中,直流二极管的低直流电阻能够有效地保证整流效果;  在调制解调器中,交流二极管的快速响应和低交流电阻有助于信号调制和解调。  二极管的直流电阻和交流电阻是描述其在直流和交流电路中特性的重要参数。通过深入理解二极管在不同工作条件下的电阻特性,可以更好地设计和优化电子电路,提高系统性能和稳定性。
2024-11-04 15:17 reading:397
LED发光二极管工作原理及检测方法
  LED(Light-Emitting Diode,发光二极管)是一种常见的半导体器件,被广泛用于指示灯、显示屏、照明和通信等领域。  1.LED的工作原理  LED是一种电子器件,其工作基于半导体材料在注入载流子时产生光电子效应。以下是LED的工作原理简要概述:  PN结:LED是由N型半导体和P型半导体构成的PN结构。当在PN结上加正向电压时,电子从N区向P区扩散,而空穴从P区向N区扩散。  载流子复合:当电子与空穴相遇时,它们发生复合并释放出能量,这些能量被转化为光子。这个过程称为辐射复合。  发光:光子在晶体中传播,并在PN结附近释放出可见光。根据半导体材料的不同,LED可以发出不同颜色的光。  选择材料:选择不同的半导体材料可以实现不同波长的发光,例如氮化镓(GaN)可实现蓝光LED。  2.LED的检测方法  LED的性能评估和质量控制需要准确且可靠的检测方法。以下是几种常见的LED检测方法:  1. 外观检测:是最简单和直观的LED检测方法。通过肉眼观察LED的表面是否平整、颜色是否均匀等来判断LED的品质。  2. 光电参数测试:使用光电参数测试仪器,例如光强计和色温计,来测量LED的亮度、色温、色坐标等参数,以确保LED的光学性能符合要求。  3. 电性能测试:使用万用表或特定的LED测试仪器,检测LED的电流、电压、功率等电性能参数,以确保LED在正常工作范围内。  4. 热耦合测试:LED的发光效率会受到温度的影响,因此进行热耦合测试,即在不同温度下测试LED的光电参数,有助于评估LED在不同环境下的性能稳定性。  5. 寿命测试:对LED进行寿命测试,模拟LED在长期使用中可能遇到的工作条件,以确定LED的使用寿命和稳定性。  6. 波长测试:使用光谱分析仪或波长测试仪器,测量LED发出的光的波长,以确保LED的色彩准确性和一致性。  LED作为一种高效、环保的照明和显示技术,在各种领域得到广泛应用。了解LED的工作原理和有效的检测方法,有助于确保LED产品的质量和性能,在工程设计和制造过程中发挥重要作用。
2024-07-04 10:03 reading:513
  • Week of hot material
  • Material in short supply seckilling
model brand Quote
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
MC33074DR2G onsemi
RB751G-40T2R ROHM Semiconductor
model brand To snap up
BP3621 ROHM Semiconductor
TPS63050YFFR Texas Instruments
IPZ40N04S5L4R8ATMA1 Infineon Technologies
ESR03EZPJ151 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 weixin Service Account AMEYA360 weixin Service Account
AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.