随着更新的集成电路(IC) 技术采用更小的几何尺寸和更低的工作电压,新一代便携式产品对静电放电 (ESD)电压的损坏越来越敏感。因此,手机、MP3播放器和数码相机等便携式产品的设计人员必须评估 ESD 保护选项,以确保他们选择的解决方案能够响应当今 IC 不断变化的需求。本文Ameya360电子元器件采购网将解释选择有效 ESD 保护所涉及的关键步骤。
ESD 波形
定义系统级典型 ESD 事件的最常用波形是 IEC61000-4-2 波形,其特点是亚纳秒级上升时间和高电流水平。该波形的规范列出了 4 个级别的 ESD 幅度。大多数设计人员都需要将他们的产品认证到最高级别,即 8kV 接触放电或 15kV 空气放电。在组件级别进行测试时,接触放电测试是最合适的测试,因为空气放电测试在如此小的组件上是不可重复的。
ESD考虑因素——最近的设计趋势
ESD 保护器件的目的是将数千伏的 ESD 输入降低到受保护 IC 的安全电压,并将电流从 IC 中分流出去。尽管所需 ESD 波形的输入电压和电流在过去几年中没有发生变化,但保护 IC 所需的安全电压水平已经降低。过去,IC 设计对 ESD 更稳健,可以处理更高的电压,因此选择任何保护二极管就足够了能够满足 IEC61000-4-2 4 级要求。对于更新、更敏感的 IC,当今的设计人员不仅必须确保保护器件能够满足 IEC61000-4-2 4 级标准,而且还要确保器件将 ESD 脉冲钳位在足够低的电压,以确保IC没有损坏。在为给定应用选择最佳保护器件时,设计人员必须考虑 ESD 保护器件将传入的 ESD 事件钳位到多低。
如何选择最有效的保护解决方案
保护二极管数据表中的关键直流规格是击穿电压、漏电流和电容。大多数数据表还将说明 IEC61000-4-2 的最大额定值,这表明二极管不会被指定水平的 ESD 脉冲损坏。大多数数据表的问题在于它们没有任何关于高频、高电流瞬态(如 ESD)的钳位电压的信息。与直流相比,在这些类型的瞬态事件中,保护二极管的钳位电压要高得多数据表上指定的电压。然而,很难为 IEC61000-4-2 规范指定钳位电压,因为它旨在成为系统级别的通过/失败规范,而且频率很高。要将这个规范应用于保护器件,不仅要检查保护二极管是通过还是失败,而且还要检查它对 ESD 电压的钳位有多低。
比较保护二极管钳位电压的最佳方法是在 ESD 事件期间对二极管两端的实际电压波形进行示波器截屏。这是使用测试设置完成的。
当查看暴露于 IEC61000-4-2 的 ESD 保护设备的电压波形时,通常会出现初始电压尖峰,然后是二次峰值,最终电压将趋于平稳。初始尖峰是由 IEC61000-4-2 波形的初始电流尖峰和测试结构中的电感导致的过冲共同引起的。然而,初始尖峰持续时间很短,这限制了传输到 IC 的能量。保护装置的钳位性能最好显示在初始超调之后的曲线中。次要峰值是主要问题,因为电压波形持续时间更长,从而增加了 IC 将暴露的总能量。在下面的研究中,钳位电压被定义为次级峰值的最大电压。
基准研究示例
为了进行公平比较,所选部件应具有相似的封装尺寸和数据表规格。为进行比较而选择的部件是三个 ESD 保护二极管,在比较数据表中的电气特性时,它们被认为可以直接替代。这些器件都是双向 ESD 保护二极管,具有相同的击穿电压 (6.8V)、电容 (15pf) 和封装外形 (1.0 mm x 0.6 mm x 0.4 mm)。本研究选择的产品是 Rohm 的 RSB6.8CS、KEC 的 PG05DBTFC 和 ON Semiconductor 的 ESD9B5.0ST5G。
在比较上述部件的直流性能时,它们看起来似乎相同。此外,它们都声称符合 IEC61000-4-2 4 级标准,这意味着它们都能承受高达 8 kV 接触的 ESD 冲击。ESD 保护器件确保保护敏感 IC 的关键性能特性不是直流性能,而是直流性能。然而,尽管设备符合 IEC61000-4-2 第 4 级标准很重要,但更重要的是受保护的 IC 能够存活。为确保 IC 在 ESD 事件中存活,保护二极管必须将 ESD 电压钳位到足够低的值,以免 IC 受损。
为了比较每个器件的钳位性能,我们将对 ESD 事件期间的电压波形进行示波器截图。我们将进行并排测试,保持所有测试条件相同。下面的显示了同一图表上每个二极管对正负 ESD 脉冲的响应。使用的输入脉冲是标准 IEC61000-4-2 4 级触点 (8 kV)。
当施加 ESD 的大电流条件时,三个保护二极管的性能存在明显差异。与 KEC 和 Rohm 部件(蓝色波形)相比,安森美半导体保护解决方案(黑色波形)为 ESD 脉冲提供了更低的钳位电压。对于正脉冲,ON Semiconductor 部件钳位在 14 V,而 KEC 为 18 V,Rohm 为 23 V。在施加负脉冲期间,三个器件之间的钳位电压差变得更加明显。
ON Semiconductor 部分的负脉冲钳位电压为 20 V,KEC 部分为 34 V,Rohm 部分为 42 V。在负 ESD 事件期间,这三个器件之间存在明显的区别,其中 KEC 部件的钳位电压比 ON Semiconductor 部件高 70%,而 Rohm 部件的钳位电压是 ON Semiconductor 部件的两倍以上。
KEC 和 Rohm 产品通过的负脉冲的总电压可能对更容易受到 ESD 损坏的新 IC 设计构成危险。然而,安森美半导体部件在两个方向上都保持低钳位电压,从而将正负 ESD 脉冲的风险降至最低。KEC 和 Rohm 产品通过的负脉冲的总电压可能对更容易受到 ESD 损坏的新 IC 设计构成危险。
然而,安森美半导体部件在两个方向上都保持低钳位电压,从而将正负 ESD 脉冲的风险降至最低。KEC 和 Rohm 产品通过的负脉冲的总电压可能对更容易受到 ESD 损坏的新 IC 设计构成危险。然而,安森美半导体部件在两个方向上都保持低钳位电压,从而将正负 ESD 脉冲的风险降至最低。
一个好的保护器件必须对正负 ESD 脉冲进行良好的钳位,以保证最终产品在实际条件下的最高可靠性。双向低钳位电压可确保器件保护最敏感的 IC,从而使设计人员能够利用最新的 IC 技术推动功能和速度的极限。鉴于钳位电压在选择 ESD 保护器件中的重要性日益增加,许多保护公司都在 ESD 保护器件的数据表中提供了 ESD 钳位屏幕截图。
在线留言询价
型号 | 品牌 | 询价 |
---|---|---|
MC33074DR2G | onsemi | |
TL431ACLPR | Texas Instruments | |
CDZVT2R20B | ROHM Semiconductor | |
BD71847AMWV-E2 | ROHM Semiconductor | |
RB751G-40T2R | ROHM Semiconductor |
型号 | 品牌 | 抢购 |
---|---|---|
STM32F429IGT6 | STMicroelectronics | |
TPS63050YFFR | Texas Instruments | |
IPZ40N04S5L4R8ATMA1 | Infineon Technologies | |
BU33JA2MNVX-CTL | ROHM Semiconductor | |
ESR03EZPJ151 | ROHM Semiconductor | |
BP3621 | ROHM Semiconductor |
AMEYA360公众号二维码
识别二维码,即可关注