Exploring new materials for future electronics

发布时间:2023-07-17 15:10
作者:AMEYA360
来源:网络
阅读量:2149

  Imagine a world where our electronic devices are smarter and faster, lighter, more flexible, and capable of pushing the boundaries of what we thought was possible.

Exploring new materials for future electronics

  Examining the research underway in electronics materials provides a keyhole view into what may be possible in future electronics design. Although some of this research will not end up in commercial products, it does provide an indication of the kinds of problems that are being addressed, how they are being approached, and where the research dollars are being spent.

  Designers and manufacturers from many industries are facing new challenges as they develop next-generation products while working to fulfill evolving consumer needs. With a broad portfolio of electronics materials and global technical expertise, we are ready to deliver on today’s needs and collaborate with you on tomorrow’s challenges. Together we can help you achieve faster processing, higher purity, higher conductivity and more sustainable solutions across the entire electronics value chain.

  · Semiconductor, novel display and printed circuit board applications: Providing high purity, low metal, consistent quality solvents, amines, chelants, and surfactants for photo resist, color resist, etchant, stripper and thinner applications

  · Silicone solutions for display applications: Offering optically clear silicone resins (OCRs), including UV cure and other cure systems for displays, silicone thermal conductives for heat management in displays, as well as materials for assembly and protection

  · Electronic and advanced modules/systems applications: Delivering solutions for electronic modules, sensors and components used across segments in the electronics industry – including silicone and polyurethane sealants, adhesives, thermal and electrical conductives, electromagnetic interference (EMI) conductives, conformal coatings, gels and encapsulants that protect against heat, moisture, contamination and vibration

  · Energy applications: Delivering heat transfer and cooling fluids to protect a wide variety of electronics from damaging heat

  · Printed circuit board assemblies: Delivering an industry leading line of gels and pottants, thermally conductive materials, optically clear materials, conformal coatings and encapsulants to enable compact devices and help draw heat away from sensitive components

  · Battery and e-mobility applications: Providing cathode, anode, slurry, coatings, electrolyte, thermally conductive interface materials, foams, gels, and assembly materials like adhesives or sealants for battery, inverter, electric motor, on-board charger and other applications

  While the prospect of technological use is still far off, this new material opens up new avenues in the exploration of very high-speed electromagnetic signal manipulation. These results can also be used to develop new sensors. The next step for the research team will be to further observe how this material reacts to high electromagnetic frequencies to determine more precisely its potential applications.

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
AMEYA360:How to choose and buy electronic components
  Electronic components are the basic devices and parts used in electronic devices to achieve specific functions, such as resistors, capacitors, diodes, transistors, etc. Electronic components are the cornerstone of modern electronic technology, they play an important role in various electronic devices and circuits, and also greatly promote the development of science and technology and the progress of human society.  If you want to know more about the electronic components industry , and how to choose and purchase the right electronic components, this article will summarize the relevant knowledge for you to provide you with a comprehensive understanding and understanding.  The development trend of electronic components industry  With the continuous advancement of technology and the continuous change of demand, the electronic components industry is also constantly developing. The electronic components industry is an advanced manufacturing industry, which is not only an important part of the electronics industry, but also involves communications, medical, automobile, home appliances, military and other fields. The following are some of the current trends in the electronic components industry:  ● High-end: The electronic components industry is developing in the direction of high-end and refinement, and high-quality, high-stability, high-precision, high-reliability eelctronic components have become the most popular products in the market.  ● Independent and controllable: The electronic components industry is also developing in the direction of independent and controllable, reducing dependence on external supply, so as to better protect national security and interests.  ● Intelligence: With the continuous development of artificial intelligence, Internet of Things and other technologies, intelligence has become an important trend in the electronic components industry, and electronic components products will be more intelligent in the future and can better serve human life and industrial development.  ● Environmental protection: The electronic components industry is also developing in the direction of greening, environmental protection and sustainable development have become a global consensus, and the electronic components industry also needs to strengthen environmental protection in all aspects of product design, production and recycling to achieve sustainable development.  The steps of the electronic component procurement  ① Determine the demand: First of all, you need to clarify the model, types(resistors, capacitors, diodes or transistors), specification, quantity and other needs of the electronic components to be purchased, which can be determined according to your own application scenarios and design requirements.  ② Find suppliers: You can find suppliers through search engines, electronic components trading platforms, electronic components mall, etc., and you can choose suppliers with reliable quality and reasonable prices through the comparison of multiple suppliers.  If you need military electronic components, then you can browse through this article:Top 10 military electronics manufacturers.  ③ Inquiry and negotiation: You can initiate an inquiry to the supplier to understand the price, delivery time, quality and other information, and negotiate according to your own needs.  ④ Place an order: After determining the supplier, price, delivery time and other information, you can place an order to make a purchase.  ⑤ Payment and delivery: After payment, the electronic components supplier will ship the goods according to the agreed delivery period, and the goods need to be inspected and confirmed after receiving the goods.  The possible problems encountered when components procurement  ● Counterfeit products  There are a large number of counterfeit components on the market, which are often cheap but of poor quality and can cause circuit failure or danger.  ● Obsolete products  Some components may be obsolete and no longer manufactured by the manufacturer, but are still available on the market. If these components are purchased, they may lead to obsolescence of the design and affect the performance and reliability of the product.  ● Inconsistent rated parameters  The performance parameters of the components are usually listed in the data sheet, and if the parameters of the purchased components do not meet the design requirements, it may cause the circuit to be unstable or not working properly.  ● Bad batches  Due to variations in the manufacturing process, components of the same model may have different batches, and the performance of different batches may vary. If you purchase a bad batch of components, it may cause circuit instability or performance degradation.  ● No suitable spare parts  In circuit design, it is common to spare critical components in case they fail. Without the right spare parts, failure can lead to production stalls and increased costs.  The suggestions for purchasing components-Ensure that you buy genuine products and avoid counterfeit products;  -Pay attention to the production cycle of components and try to avoid buying outdated products;  -Confirm that the performance parameters of the components meet the design requirements;  -Understand the differences between different batches of components before purchasing;  -Suitable spare parts are available in case of component failure.  It should be noted that low price does not necessarily mean bad quality, but quality and reliability cannot be sacrificed in pursuit of low price. In order to avoid these pitfalls, it is recommended to choose a reliable supplier when purchasing components, ensure that the quality and performance of components meet specifications, try to avoid obsolete products, and stock suitable spare parts in case they are needed.If you need to purchase electronic components, please send email to amall@ameya360.com.
2023-12-01 14:42 阅读量:1881
What is a heat sink in the electronic components?
  In the world of electronic components, heat sinks play a vital role. As a device specifically designed to dissipate the heat generated by electronic components, the heat sink plays an irreplaceable role in maintaining the stability and reliability of electronic equipment. This article will introduce in detail the definition, classification, role and application of heat sinks in electronic components, and discuss their design principles and maintenance methods.  The definition and function of heat sinkA heat sink is a device used to absorb, conduct, and dissipate heat generated by electronic components. In electronic components, the main functions of the heat sink include:  Heat dissipation: Heat sinks absorb the heat generated by electronic components and dissipate it into the surrounding environment, thereby preventing electronic components from overheating.  Prevent component damage: Overheating is one of the main causes of damage to electronic components. By using a heat sink, we can effectively reduce the operating temperature of electronic components, thereby extending their service life.  Classification of heat sinksDepending on material, form and function, heat sinks can be divided into the following categories:  Classification according to material: heat sinks can be made of aluminum, copper, steel and other metal materials. Heat sinks made of different materials have different thermal conductivity properties and weight.  Classification according to form: heat sinks can be divided into flat type, fin type, water-cooled type, etc. Flat-plate heat sinks are suitable for low-power electronic components, fin-type heat sinks are suitable for medium to high-power electronic components, and water-cooled heat sinks are suitable for high-power electronic components.  According to functional classification: heat sinks can be divided into passive heat sinks and active heat sinks. Passive heat sinks usually use methods such as increasing surface area and heat transfer media to improve heat dissipation efficiency, while active heat sinks use active driving methods such as fans and heat pipes to improve heat dissipation efficiency.  Application of heat sinks in electronic componentsIn electronic components, heat sinks are widely used in various fields. Here are some specific application examples:  Integrated Circuits (ICs): In integrated circuits, a large amount of heat is generated due to the high level of integration and dense transistor layout. In order to ensure the normal operation and stability of the IC, a heat sink is usually required for heat dissipation.  Transistors: Transistors are key components in many electronic devices, and their performance is affected by temperature. By using a heat sink, the operating temperature of the transistor can be reduced, thereby improving its performance and reliability.  Sensors: Many sensors (such as temperature sensors, touch sensors, etc.) require accurate measurement of ambient temperature or pressure. Using a heat sink can help the sensor maintain stable performance, thereby improving measurement accuracy.  Design principles and maintenance methods  Design Principles: When designing and selecting a heat sink, the following factors need to be considered:  (1)- Structure: The appropriate heat sink structure should be selected according to the shape and size of the electronic components.  (2)- Materials: Appropriate materials should be selected according to the power of electronic components and the working environment. For example, aluminum and copper have better thermal conductivity, while steel has higher strength.  (3)- Process: Mature processes should be selected to ensure the quality and reliability of the heat sink.Maintenance methods: To ensure the normal operation of the heat sink and extend its service life, here are some suggestions:  (1)- Regular cleaning: Regularly remove dust and other impurities on the surface of the heat sink to improve its heat dissipation efficiency.  (2)- Check fasteners: Regularly check and tighten the fasteners between the heat sink and electronic components to ensure good heat conduction.  (3)- Replace thermal grease: When the thermal grease is found to be dry or hardened, new thermal grease should be replaced in time to ensure smooth heat conduction.  (4)- Avoid collisions and vibrations: Try to avoid collisions and vibrations to avoid damage to the heat sink and electronic components.ConclusionIn electronic components, heat sinks play a vital role. By absorbing, conducting and dissipating the heat generated by electronic components, heat sinks help maintain the stability and reliability of electronic equipment. This article details the classification, functions and applications of heat sinks, as well as design and maintenance methods. With the continuous development of science and technology, we can foresee that more new and efficient heat dissipation technologies will be used in the field of electronic components in the future.
2023-11-02 14:58 阅读量:2085
Application of different types of electronic components in circuit design
  Electronic components are the building blocks of any electronic circuit. They are the fundamental units that are used to create and manipulate electric signals, and they can be combined in various ways to create a wide range of circuits with different functions.In this article, AMEYA360 Chip purchasing network will provide an overview of the different types of electronic components and their applications in circuit design.  Topics covered:  Passive components (including resistors, capacitors, and inductors)  Active components (including transistors, diodes, and operational amplifiers)  Electromechanical components (including motors, switches, and relays)  There are three main categories of electronic components: passive components, active components, and electromechanical components.  Passive components are the simplest type of electronic component. They do not have the ability to amplify or generate an electric current, and they rely on the flow of current from an external source to perform their function. Examples of passive components include resistors, capacitors, and inductors.  Resistors are one of the most common passive components, and they are used to control the flow of electric current in a circuit. They are typically represented by a set of colored bands on their body, and the colors indicate the resistance value of the resistor. The resistance of a resistor is measured in ohms, and it determines how much the flow of current will be hindered by the resistor.  Capacitors are another type of passive component, and they are used to store electric charge in a circuit. They are commonly used to smooth out fluctuations in the flow of current, and they can also be used to filter out certain frequencies in a signal. Capacitors are typically made up of two metal plates separated by a dielectric material, and the capacitance of a capacitor is measured in farads.  Inductors are passive components that are used to store energy in a magnetic field. They are commonly used in circuits to filter out high-frequency signals, and they are also used in power supplies to filter out unwanted noise. Inductors are typically made up of a coil of wire, and the inductance of an inductor is measured in henries.  Active components, on the other hand, are electronic components that have the ability to amplify or generate an electric current. Examples of active components include transistors, diodes, and operational amplifiers.  Transistors are active components that are commonly used as switches or amplifiers in circuits. They consist of three layers of semiconductor material, and by applying a voltage to the appropriate layer, the transistor can be used to control the flow of current in a circuit. Transistors are available in a variety of types, including bipolar transistors and field-effect transistors, and they are commonly used in a wide range of applications, from amplifying a small signal to switching high-power loads.  Diodes are active components that only allow current to flow in one direction. They are commonly used in circuits to protect against voltage spikes, and they are also used in rectifiers to convert alternating current (AC) to direct current (DC). Diodes are available in a variety of types, including signal diodes, rectifier diodes, and zener diodes, and they are commonly used in a wide range of applications, from power supplies to signal processing.  Operational amplifiers (op-amps) are active electronic components that are commonly used as amplifiers in circuits. They are designed to amplify a small input signal to a larger output signal, and they are used in a wide range of applications, from audio amplifiers to instrumentation amplifiers.  Operational amplifiers consist of a number of transistors and other components that are arranged in a specific configuration to provide a high-gain amplifier with a high input impedance and a low output impedance. This configuration allows the operational amplifier to amplify small signals without loading the circuit, and it also provides excellent linearity and bandwidth.  Operational amplifiers are available in a variety of types, including single-ended and differential amplifiers, and they are commonly used in a wide range of applications, from amplifying small signals to driving high-power loads.  Single-ended operational amplifiers are the most common type of operational amplifier, and they are used to amplify a single input signal. They consist of a single input stage and a single output stage, and they are typically used in applications where the input signal is small and the output signal is not required to be very large.  Differential operational amplifiers are a type of operational amplifier that is used to amplify the difference between two input signals. They consist of two input stages and a single output stage, and they are typically used in applications where the input signals are large and the output signal is required to be very large.  Operational amplifiers are commonly used in a wide range of applications, from audio amplifiers to instrumentation amplifiers. In audio amplifiers, operational amplifiers are used to amplify small audio signals to levels that can be heard through a speaker, and in instrumentation amplifiers, operational amplifiers are used to amplify small signals from sensors or other sources to levels that can be measured by a microprocessor or other device.  Operational amplifiers are also commonly used in feedback circuits, where the output of the operational amplifier is fed back to the input to control the gain or other characteristics of the amplifier. This allows the operational amplifier to perform a wide range of functions, from simple amplifiers to complex filters and oscillators.  Overall, operational amplifiers are versatile and widely-used active electronic components that are essential for many different circuits and applications.  Electromechanical components are electronic components that have both electrical and mechanical components. They are used in a wide range of applications, from simple switches to complex motors, and they are an essential part of many different electronic systems.  Examples of electromechanical components include motors, switches, and relays.  Motors are electromechanical components that convert electrical energy into mechanical motion. They are commonly used in a variety of applications, from driving the blades of a fan to powering the wheels of a car. Motors are available in a variety of types, including DC motors, AC motors, and stepper motors, and they are commonly used in a wide range of applications, from small devices to large industrial machinery.  Switches are electromechanical components that are used to control the flow of current in a circuit. They can be operated manually or automatically, and they are used in a wide range of applications, from controlling the power to a light bulb to selecting the gears in a car. Switches are available in a variety of types, including push-button switches, toggle switches, and rotary switches, and they are commonly used in a wide range of applications, from simple circuits to complex systems.  Relays are electromechanical components that are used to control a circuit by using a small amount of current to operate a switch. They are commonly used in circuits to control high-power devices, such as motors or lights, and they are also used in computer systems to control the flow of data between different components. Relays are available in a variety of types, including electromagnetic relays and solid  We discussed the three main categories of electronic components: passive components, active components, and electromechanical components. Passive components, such as resistors, capacitors, and inductors, do not have the ability to amplify or generate an electric current, and they rely on the flow of current from an external source to perform their function. Active components, such as transistors, diodes, and operational amplifiers, have the ability to amplify or generate an electric current. Electromechanical components, such as motors, switches, and relays, have both electrical and mechanical components.  In conclusion, electronic components are the building blocks of electronic circuits, and they are essential for creating and manipulating electric signals. They are available in a wide range of types and sizes, and they can be combined in various ways to create circuits with different functions.  In addition to the electronic components discussed in this article, there are also integrated circuits, or ICs, which are circuits that are fabricated on a small piece of semiconductor material. ICs are commonly used in a wide range of applications, from microprocessors to memory chips, and they are an essential part of modern electronic systems.
2023-09-12 09:20 阅读量:2044
What are the procurement channels of electronic components
  Electronic components are the building blocks of modern technology. They power everything from smartphones and computers to cars and airplanes. However, finding the right electronic components can be a challenging and time-consuming task, even for seasoned veterans at electronics OEMs and EMSes. In this blog post, we will discuss the basics of how to find electronic components and provide some strategies for locating the parts you need.  One of the best ways to find electronic components is by using online search engines and marketplaces. These platforms can help you quickly locate parts from a variety of manufacturers and suppliers. We will discuss some of the most popular electronic component search engines and marketplaces, and provide tips for using them effectively.  In addition to online resources, there are other strategies you can use to find electronic components. These include understanding electronic component specifications, using cross-reference tools, and finding alternative or equivalent parts.  What are the procurement channels of electronic components  When it comes to finding electronic components, there are several broad options available.  The first and most popular method is to search online marketplaces and distributors. These platforms offer a wide selection of parts from various manufacturers and suppliers, making it easy to find the parts you need. Some of the most well-known online marketplaces and distributors include AMEYA360. Most electronic manufacturers choose one or two distributors and build trusted relationships with them, going back time and time again for supply.  Ameya Holding Limited was established in Hong Kong in 2007 and later in 2011, Shanghai Huanghua Information Technology Co., Ltd. was registered, marking the launch of our online platform, AMEYA360 (www.ameya360.com), providing a one-stop solution for electronic component procurement.  At present, Ameya Holding Limited has secured authorized agency agreements with over 80 renowned original manufacturers, including ROHM, Murata, Panasonic, Taiyo Yuden, Susumu, Rubycon, Renesas (IDH), NXP (IDH), 3Peak, GigaDevice, Novosense, Dioo, and others. They also distribute brands like TI, ADI, ST, Infineon, and Microchip. With a vast network of more than 3,500 high-quality suppliers, AMEYA360 Mall offers an impressive selection of over 8 million types of products available for ordering, with over 5 million components in stock.  Another option is to use electronic component search engines. These search engines allow you to enter the part number or specifications of the component you need and provide a list of results from multiple sources. Some of the most popular electronic component search engines include Octopart, Findchips, and TrustedParts.  Larger buyers will often have the option to purchase electronic components directly from manufacturers. This can be a more cost-effective and reliable option for buyers who require large quantities of components or need custom parts that are not readily available through other sources. To purchase components directly from manufacturers, buyers typically need to have a strong relationship with the manufacturer and meet certain minimum order requirements.  If you are having trouble finding a particular part or need help with procurement, you may want to consider using an electronic component broker. These brokers specialize in sourcing hard-to-find or obsolete parts and can often provide faster and more reliable access to these components than other sources. There’s a huge diversity of brokers in the secondary market, and they can be difficult to trust – but sometimes, they’re the only ones with inventory available.  The best electronic component search engines  When using electronic component search engines, it's important to compare results across multiple sources and verify the authenticity and quality of the components you are purchasing. They’re plugged into a much wider section of the market than the authorized distributors, but that sometimes comes at the cost of less accurate data. Top search engines include:  Octopart: Octopart is a popular electronic component search engine that provides real-time information on pricing, availability, and technical specifications from a variety of manufacturers and distributors. Octopart has a user-friendly interface and powerful search features that allow you to filter results by a range of criteria, including price, quantity, and lead time.  Findchips: Findchips is another top electronic component search engine that offers a comprehensive database of parts from a wide range of suppliers. It provides detailed information on pricing, availability, and technical specifications for each part, and allows you to compare prices and availability across multiple sources.  Trustedparts: On the other hand, Trustedparts focuses on hard-to-find and obsolete parts. It provides access to parts from a wide range of suppliers and allows you to search by part number, manufacturer, or keyword. The site also includes tools for cross-referencing and part substitution to help you find alternative components when needed.
2023-09-06 14:52 阅读量:2232
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
型号 品牌 抢购
ESR03EZPJ151 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
TPS63050YFFR Texas Instruments
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
BP3621 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。