茂睿芯全系列车规<span style='color:red'>CAN</span>收发器概览
  茂睿芯全系列车规CAN收发器产品目前均已实现量产出货,包括:MCAN1042-Q1、MCAN1044-Q1、MCAN1043-Q1、MCAN1145-Q1,新款集成信号改善技术的CAN FD SIC收发器MCAN1462-Q1、MCAN1463-Q1、MCAN1465-Q1。  一、全系列车规 CAN 收发器选型表  二、CAN产品规划路线图  三、产品特征  ● 标配信号改善能力  (振铃抑制/SIC-Signal Improvement Capability)  ● 增强总线传输性能  ● 提高总线通信速率  ● 优化总线共模输入能力  ● 强化总线系统级ESD能力  ● IO口兼容5V和3.3V应用(部分型号可以兼容1.8V应用)  ● 支持与不同厂家收发器的组网兼容性通信  ● 唤醒模式涵盖本地唤醒、任意帧唤醒、局部联网功能,适配客户不同的应用场景  ● 向下兼容,无需任何软硬件改动,即可完成收发器的版本升级  四、全系列 CAN 收发器引脚封装总览  茂睿芯推出的最新款CAN FD SIC收发器(MCAN1462-Q1、MCAN1463-Q1、MCAN1465-Q1等)适配不同的总线拓扑,涵盖了线性拓扑,多分枝拓扑(含单星型、多星型拓扑),在8节点、16节点网络拓扑下,支持2Mbps、5Mbps甚至更高的通信速率。  五、C&S兼容性报告  茂睿芯推出的CAN收发器能提供德国C&S实验室提供的兼容性报告,可直接和其他通过C&S认证的CAN收发器稳定可靠的通信,能保证汽车电子各控制单元(ECU)之间互联互通,提高整车的性能和可靠性。
关键词:
发布时间:2024-12-10 10:33 阅读量:182 继续阅读>>
茂睿芯车规<span style='color:red'>CAN</span> SIC收发器M<span style='color:red'>CAN</span>1463-Q1正式发布!
  茂睿芯推出第三代支持信号改善功能、具有睡眠模式的CAN SIC(Signal Improvement Capability)收发器MCAN1463-Q1。MCAN1463-Q1符合ISO 11898-2:2024高速CAN规范物理层要求,并率先通过德国C&S机构提供的符合ISO 11898-2和CiA 601-4标准的组网测试认证。该测试意味着MCAN1463-Q1可以在各种复杂组网条件下与其他符合国际标准的产品稳定通信。目前MCAN1463-Q1通过了国内多家车厂和Tier1项目测试并拿到定点项目,现已稳定量产出货。  MCAN1463-Q1具有更严格的位时间对称性和环路延时特性,可以轻松实现8 Mbps的组网应用;支持1.8V/3V/5V的IO交互电平,可以灵活适配客户应用场景;BAT支持5V电源条件下的稳定工作;成熟的CAN SIC信号改善技术可以满足客户布线需求,优化复杂网络的信号质量,广泛应用在汽车域控、ADAS等领域。  一、MCAN1463-Q1系列产品特性  ● 符合ISO 11898-2:2024协议标准  ● 支持信号改善功能,满足CiA 601-4协议标准  ● 无需共模电感  ● 支持CAN FD,8Mbps通信速率  ● BAT支持4.5V~58V  ● IO交互电平支持1.7V~5.5V  ● 共模工作电压:±30V  ● 总线故障保护电压:±58V  ● 支持本地和远程唤醒  ● 睡眠模式INH输出控制电源关闭  ● 总线电压自动偏置功能  ● 工作模式:  —Normal mode  —Listen mode  —Standby mode  —Sleep mode  ● 故障诊断功能  ● 封装:SOP14、DFN14  ● 提供第三方机构出具的兼容性报告,EMC和ESD报告  二、MCAN1463-Q1系列封装及引脚功能  1、引脚封装图  2、引脚功能定义  二、MCAN1463-Q1应用框图  1、典型系统应用框图  2、3.3V MCU应用框图  四、MCAN1463-Q1产品亮点  1、C&S认证报告  2、 出色的电磁兼容特性  汽车领域集成了众多电子设备,如车载娱乐系统、车身电子稳定系统和安全气囊系统等,零部件的电磁兼容能力有着极为重要的必要性。正常工作的电子零部件会以空间辐射和传导的形式影响车内其他电子设备,严重时会导致系统接收到错误的指令和发生严重的误响应。在如此恶劣的电磁环境中,也需要保证CAN收发器的正常工作的能力。基于车厂和Tier1客户的测试需求,MCAN1463-Q1已经在权威的第三方认证机构通过了如下全部EMC测试,可以提供充分且完整的测试报告。  3、优秀的EMI能力  在工况复杂的汽车应用中,系统内部的电磁干扰会以辐射和传导的方式对外进行干扰,从而会影响到系统其他器件的正常工作。茂睿芯MCAN1463-Q1基于创新的自主设计驱动架构,依照IEC 62228-3标准进行测试,表现如下(以500kbps举例说明):  传导发射-500kbps with Common Choke  传导发射-500kbps without Common Choke  辐射发射-500kbps without Common Choke(4个方向)  4、突出的系统级静电放电抗扰度  根据IEC 61000-4-2标准,搭配MCAN1463-Q1的系统级ESD可以通过±30kV的接触放电和空气放电。基于国内车厂和Tier1降本增效的行业基调下,茂睿芯推出的MCAN1463-Q1在省去外部共模电感的条件下,可以轻松通过客户±8kV的接触放电和±15kV的空气放电的测试要求,节约客户BOM成本,且能提供相应的第三方测试报告。  5、可靠的脉冲抗扰度  在车辆实际运行环境中,存在着各种各样可能产生脉冲干扰的情况,比如车辆启动、停止时电源系统的电压波动,电气设备的开启与关闭动作等。通过对电子零部件进行脉冲抗扰度测试,能够确保这些设备在面临此类脉冲干扰后仍能正常运行,根据ISO 7637-2标准,茂睿芯推出的MCAN1463-Q1严格地进行并通过了12V和24V车载系统的零部件实验:  五、典型应用场景
关键词:
发布时间:2024-11-21 10:57 阅读量:365 继续阅读>>
纳芯微<span style='color:red'>CAN</span>收发器NCA1044-Q1全面通过IBEE/FTZ-Zwickau EMC认证
  近日,纳芯微宣布其新推出的汽车级CAN收发器芯片NCA1044-Q1获得欧洲权威测试机构IBEE/FTZ-Zwickau出具的EMC认证测试报告。  NCA1044-Q1成功通过所有测试项,成为国内首颗全面通过IBEE/FTZ-Zwickau EMC测试的CAN收发器芯片。纳芯微现可提供相关测试报告,支持汽车制造商简化系统认证流程,加速产品上市。  CAN收发器芯片常用于汽车中的CAN总线网络,通常用于控制,诊断等关键功能,如三电、制动、转向、安全气囊等。这种环境中存在多种电磁干扰源,如电动车三电系统、发动机、变频器、无线通信设备等。这些干扰会对数据传输产生不良影响,从而导致信号传输错误或系统故障,甚至有可能影响整个系统的安全性。  此外,由于汽车系统中CAN总线布线长,CAN收发器的噪声容易以CAN总线作为天线对外产生辐射,从而导致模块或整机对外辐射发射(Radiated Emission)和传导发射(Conducted Emission)性能超出整车要求,因此,具备良好EMC(Electromagnetic Compatibility,电磁兼容性)性能的CAN收发器芯片是实现系统可靠性的重要保障。  全面通过IBEE/FTZ-Zwickau认证  鉴于CAN收发器芯片的EMC性能对汽车行驶安全的关键作用,各地区制定了严格的汽车电子电磁兼容性标准和认证流程,并要求汽车制造商遵循。例如,美国汽车工程师协会(SAE)的J2962标准和欧洲的IBEE/FTZ-Zwickau认证都对汽车电子的EMC性能提出了明确要求。  其中,IBEE/FTZ-Zwickau认证根据IEC62228-3标准进行,IEC62228-3相较于SAE J2962标准,排除了系统外围电路的影响,更聚焦CAN收发器本身的EMC特性,且要求等级更高,在除欧洲以外的车企中也得到了广泛参考应用。  IBEE/FTZ-Zwickau认证包括:发射射频干扰(Emission RF Disturbances), 抗射频干扰(Immunity RF Disturbances),瞬变免疫力(Immunity Transients)和抗静电(Immunity ESD)共四项测试,纳芯微NCA1044-Q1全部通过。  业界领先的抗干扰特性  NCA1044-Q1通过巧妙的电路设计,解决了其输出电路受到异常高压干扰,导致输出信号出现误码的问题,从而提高了EMC性能,可帮助客户显著降低EMC设计难度,简化外围器件并降低成本。  此外,NCA1044-Q1还具备行业领先的抗干扰特性。根据IEC62228-3标准,当外部不同频段的射频噪声耦合到CAN总线时,可通过的功率越高,说明CAN收发器的抗干扰能力越强,在系统中出现误码的风险也就越低。  纳芯微NCA1044-Q1即使在总线不需要共模电感滤波的情况下,仍可以通过标准要求的最高功率(如图-1和表-2,应用层面一般不做要求,但纳芯微NCA1044-Q1依旧通过该项测试),可帮助用户减少系统外围电路,降低成本,提升系统鲁棒性。  封装和选型  NCA1044-Q1现已量产,提供SOP8和DFN8两种封装。NCA1044-Q1满足AEC-Q100,Grade 1要求,支持-40°C~125°C的宽工作温度范围,提供过温保护;NCA1044-Q1支持TXD显性超时保护,待机模式下支持远程唤醒。
关键词:
发布时间:2024-11-20 11:18 阅读量:274 继续阅读>>
芯力特发布带振铃抑制功能的<span style='color:red'>CAN</span>收发器——SIT1462Q
  芯力特推出全新一代CAN FD收发器SIT1462Q,是一款带振铃抑制功能(SIC,Signal Improvement Capability)的CAN FD收发器,它满足CiA 601-4中定义的CAN SIC规范要求,兼容原有CAN FD网络且进一步提升信号质量,在复杂的总线拓扑可支持更高的通信速率和更可靠的数据传输。  SIT1462Q的信号改善功能大大抑制了网络上的信号振铃,可满足最新车载网络升级对更高通信速率的需求,广泛应用于汽车通信领域,如车身控制系统、汽车网关、高级辅助驾驶系统(ADAS)、信息和娱乐系统、BMS等,也可用于工业控制领域,如无人机、机器人、储能等。  01SIT1462Q核心亮点  满足ISO 11898-2:2024高速CAN规范的物理层要求和CiA 601-4:2019 SIC规范要求。  支持高达8Mbps的数据速率。  更稳定的位时序,比特对称性增强,降低拓扑、布线要求。  支持1.8V SOC以及3.3V、5V的MCU。  02SIT1462Q 的引脚定义  SOP 8  DFN 3*3-8  03SIT1462Q主要特点符合ISO 11898-2:2024,SAE J2284-1至SAE J2284-5和SAE J1939-14标准  实现CiA601-4定义的CAN信号质量提升功能,可大幅降低网络中的信号振铃效应  拥有低功耗待机模式  拥有远程唤醒和本地唤醒  总线端口±42V耐压  VIO输入允许直接连接到1.8V、3.3V、5V微控制器  驱动器(TXD)显性超时功能  高达8Mbit/s的CAN FD通信  -40℃至150℃结温范围,且内置过温保护  高抗电磁干扰(EMI)  未上电节点不干扰总线  提供SOP 8封装和无引脚DFN 3×3-8封装
关键词:
发布时间:2024-11-04 13:13 阅读量:274 继续阅读>>
纳芯微电子:<span style='color:red'>CAN</span> SIC知多少——新一代车载网络协议你用了没?
  日前,纳芯微宣布推出基于其自研创新型振铃抑制专利的车规级CAN SIC(信号改善功能,Signal Improvement Capability)NCA1462-Q1。  NCA1462-Q1在满足ISO 11898-2:2016标准的前提下,进一步兼容CiA 601-4标准,可实现8Mbps的传输速率,比当前主流的CAN FD车载通信方案有着显著优势。  此次,趁纳芯微新品发布之际,我们邀请到了纳芯微技术市场经理陈章杰,围绕CAN SIC的相关话题进行了探讨。  为什么要开发CAN SIC?  随着自动驾驶和区域控制概念的兴起,ECU彼此间进行了大量的整合与集成,这意味着更高的集成度,更多的节点数,更复杂的星型拓扑,以及更高的传输速率。  这给CAN FD总线带来了巨大挑战——即在更复杂的星型拓扑网络中,由于高传输率及复杂的拓扑的转变下,会出现严重的振铃,从而带来误码率的提高,影响信号传输。  目前CAN FD标准号称定义到5Mbps,但在实际应用中很难达到2Mbps以上。尽管客户希望提速,但是为了信号完整性,往往要牺牲速率,缩小节点规模,以减少振铃带来的影响。  CAN SIC则可轻松解决这一矛盾。  CAN SIC如何降低振铃?  要看CAN SIC的原理,首先要看振铃的形成原因。  振铃是指在CAN总线的通信过程中,由于阻抗不匹配导致的信号反射等原因,使得信号在传输线上多次反射,进而产生的一种振荡现象。更高的通讯速率意味着更窄的位宽时间,当前CAN FD的2Mbps相比以前HS CAN的500kbps位宽时间由2000ns缩短为500ns。同样强度的振铃干扰,在更高的通讯速率下,由于位宽时间过短不足以使其衰减到隐性差分电压的判定阈值以下,从而更容易导致通讯错误。  为了解决这一问题,2019年,CAN FD SIC (Signal Improvement Capability)信号增强版标准CiA (CAN in Automation) 601-4发布,通过抑制振铃,从而匹配现代域控和高速通信系统的要求。  与CAN FD相比,CAN SIC的优化主要体现在驱动电路上,其增加了一个强驱电路。如上所述振铃往往发生在从显性到隐形状态,因此,可以在该转换过程中增加一个额外的强驱电路,以控制总线电平的切换斜率,从而确保数据不出错。  CAN SIC或将成为主流标准之一  “无论哪项标准的制定,都是为了符合当时的需求,每一代都有自己的使命,也都会在演进过程中不断完善。”陈章杰说道。  CAN总线经历了多个标准。最早由德国博世于1980年代发明,第一个使用CAN总线通讯协议的量产车型是1991年的奔驰S级轿车,至今CAN总线依旧是车内主要的通讯总线。随着汽车电子智能化加速,CAN总线也进一步升级,2003年CAN总线升级为HS CAN,但还是基于第一代技术。2011年第二代CAN总线CAN FD开始研发,2015年CAN FD标准即ISO11898发布,2019年,CAN FD SIC (Signal Improvement Capability)信号增强版标准CiA (CAN in Automation)601-4发布,2021年CAN FD的轻量级版本CAN FD Light 标准CiA 604-1发布。2021年12月,第三代CAN总线即CAN XL标准CiA 610-1发布,但还未完全落地。  陈章杰表示:“在当年情况下,对于CAN总线的需求是提速,并没有太多的复杂拓扑需求,因此并不存在振铃问题。而随着复杂拓扑与高速率的需求增长,CAN FD无法满足,因此CiA 601-4孕育而生。”  另外,对于下一代CAN XL而言,依然需要解决振铃问题,CAN SIC也可以为提速和多节点复杂通信做好提前铺垫。  CAN SIC除了要解决CAN FD目前的问题之外,还有一大使命,就是要应对以太网的竞争。如今车载骨干网络已经以太网化,但是控制端目前还没有落地,考虑到其成本和厂商在软件或其他方面的适配,CAN依然是未来的主导之一。  陈章杰强调,CAN SIC的演变比预想的还要快,“随着域控和区域架构概念的普及,CAN SIC的认可度不断提升,越来越多的主机厂开始逐渐接纳这一技术。相信在未来,CAN SIC将大有可为。”  纳芯微如何开发的CAN SIC  纳芯微的CAN SIC实测传输速率可达10Mbps,已经完全满足CiA 8Mbps的规范要求。  陈章杰表示,CAN SIC开发最大的挑战其实是驱动架构和EMI架构的兼容,单纯做好驱动电路并不难,但是会牺牲其他方面的性能,尤其是EMI这种非线性关系的处理。  “芯片设计本身就是一个权衡取舍的问题。”陈章杰补充道,除了要关注EMI之外,成本也是一大考量。纳芯微的产品性能不输于国外厂商,同时还要更有性价比,因此还需要在设计上不断优化,从而用更小的面积(更低的成本)实现更高的性能。“另外,产品本身是一方面,更重要的是应该从系统角度出发开发产品。”包括EMI、ESD等约束,以及成本的优化等等方方面面。  陈章杰还强调,纳芯微一直以来深耕IP的开发,在CAN SIC开发过程中诞生了诸多发明专利,并将其IP化,与其他产品组合共享,打通了底层研发的平台。“对于芯片而言,核心竞争力之一就是IP,纳芯微也正围绕这些核心IP进行持续开发与优化打磨,形成一套完整的路线图。”陈章杰补充道。  详解纳芯微的CAN SIC新品  纳芯微NCA1462-Q1基于创新的专利架构对EMI进行了优化设计,依照IEC62228-3标准进行测试,完全符合要求。  NCA1462-Q1通过优化电路结构及版图面积实现了超±8kV ESD性能,既能从容应对在汽车行驶过程中突发的静电放电威胁,提供更可靠的电路保护,又能实现器件成本的优化。凭借超高的EMC/ESD性能,NCA1462-Q1还可在部分设计中帮助工程师省去外围电路中的共模电感或TVS管。此外,更加灵活、低至1.8V的VIO设计可进一步节省系统中LDO或者电平转换的使用,帮助工程师降低整体成本。  NCA1462-Q1的总线故障保护电压在CAN Low和CAN High中都可以达到±58V,真正做到了高耐压,从而帮助客户降低击穿风险。  另外,值得一提的是,在CAN SIC中,EMI可以细分为显性EMI和隐性EMI,比如某些产品显性EMI做得好,某些产品的隐性EMI好,纳芯微则是通过取长补短的手段,实现了显性和隐性EMI的全面优化。  提前布局,做市场的引领者  CAN SIC市场前景相对明朗,但截止目前,无论是国际还是国内厂商,能够提供CAN SIC芯片的供应商都不多。  “就目前时间点而言,虽然CAN SIC的需求比较明确,但产品也不可能突然遍地开花,需要一个循序渐进的过程。”陈章杰说道。  陈章杰同时表示,无论是CAN收发器还是CAN SIC,纳芯微一直都是根据市场需求与预判进行提前布局,定义完整的产品及路线图。也正因此,纳芯微成为了最早一批量产CAN SIC的厂商。  另一方面,尽管CAN SIC还处于“蓝海”市场,但是前一代CAN收发器的市场竞争已经相当激烈,纳芯微为何还要杀入这一市场呢?陈章杰表示,作为汽车主要的总线技术,其市场容量非常之大,每辆车上就需要数十颗之多,市场始终处于高需求状态。而且,陈章杰说道:“CAN接口貌似简单,但是要做好确实有一定的门槛,作为通用物料而言,最能考验公司的能力,这其中会包括成本控制,市场覆盖,研发实力,供应链等等。”  也正因此,CAN接口是非常适合切入汽车市场的产品之一。“所以我们看到越来越多的友商进入这一市场,但是说实话如果要做到各方面性能指标都高标准,还是有一定门槛的。”陈章杰表示。  陈章杰表示,纳芯微既立足本土,同时也是面向全球的芯片供应商,随着国产芯片实力的加强,很多海外客户也在看中国的供应商,纳芯微的产品无论在性能、性价比、技术支持等方面都已经获得了全球主要客户的认可和采用。“我们既然面向全球市场,就必须要以更高的标准定义产品。”  面对激烈的市场竞争,“短期而言,价格决定一切,而从长远来看,客户更在乎的是合作伙伴持续降本,以及持续优化运营的能力,并不能单纯靠价格战取胜。”陈章杰强调道。  面向未来的CAN XL  作为CAN CiA的成员之一,纳芯微也在积极评估CAN XL的发展。但陈章杰也坦言,CAN XL还在规划中,尚无明确的时间节点,并且也依赖于目前CAN SIC的市场普及和认可度。  “一旦客户和市场完全认可CAN SIC的价值,并逐步应用于复杂星型拓扑与高速率场景中,一定会打消客户升级换代的顾虑。”陈章杰乐观地表示。
关键词:
发布时间:2024-09-19 09:24 阅读量:755 继续阅读>>
芯力特发布带振铃抑制功能的<span style='color:red'>CAN</span>收发器——SIT1463Q
  在汽车复杂通信环境中,数据通信的稳定性和可靠性直接关系到整个系统的性能和安全。特别是在高速、多节点、长距离传输的CAN(Controller Area Network)网络中,振铃现象成为影响通信质量的一大难题。为了解决这一挑战,芯力特推出了一款创新的带振铃抑制功能的CAN SIC(CAN Signal Improvement Capability)产品SIT1463Q,它不仅继承了CAN总线的高效与灵活,更在通信稳定性上实现了重大提升。CAN SIC技术通过在CAN收发器中加入特定的功能模块,当CAN总线上出现从显性电平到隐性电平的转换时,具有SIC功能的CAN收发器会激活振铃抑制电路,强力驱动总线至隐性电平,并在此过程中保持较低的输出阻抗,以此有效吸收反射信号,减弱或消除振铃,从而主动改善信号质量。  SIT1463Q核心亮点  满足ISO11898-2:2016高速CAN规范的物理层要求和CiA601-4:2019 SIC规范要求。  支持高达8Mbps的数据速率。  更稳定的位时序,比特对称性增强,降低拓扑、布线要求。  Pin to pin兼容SIT1043Q,具备低功耗休眠及待机模式。  SIT1463Q的信号改善功能大大抑制了网络上的信号振铃,可满足最新车载网络升级对更高通信速率的需求,广泛应用于汽车通信领域,如车身控制系统、汽车网关、高级辅助驾驶系统(ADAS)、信息和娱乐系统、BMS等,也可用于工业控制领域,如无人机、机器人、储能等。  SIT1463Q 典型外形  SIT1463Q引脚定义  SIT1463Q主要特点符合ISO11898-2:2016、SAEJ2284-1至SAEJ2284-5标准实现CiA601-4定义的CAN信号质量提升功能,可大幅降低网络中的信号振铃效应拥有低功耗睡眠模式以及待机模式拥有远程唤醒和本地唤醒总线端口±58V耐压±30V接收器共模输入电压VIO输入允许直接连接到1.8V、3.3V、5V微控制器驱动器(TXD)显性超时功能VBAT、VCC和VIO电源引脚上具有欠压保护高达8Mbit/s的CAN FD通信睡眠模式INH输出引脚具有电源禁用功能-40℃至150℃结温范围,且内置过温保护低电磁辐射(EME)和高抗电磁干扰(EMI)未上电节点不干扰总线提供SO14封装和无引脚DFN4.5X3-14封装
关键词:
发布时间:2024-08-26 13:47 阅读量:522 继续阅读>>
思瑞浦:<span style='color:red'>CAN</span> SIC收发器助力复杂<span style='color:red'>CAN</span>网络高效可靠通信(2)
  SIC的作用机理  在CAN总线上,通过CAN_H和CAN_L两根线上的电位差来表示CAN信号。CAN总线上的电位差分为两种:显性电平(Dominant Voltage)和隐性电平(Recessive Voltage),其中显性电平为逻辑0,隐性电平为逻辑1,如下图所示。  CAN总线电压电平  当TXD输出逻辑0时,总线输出的差分电压VDIFF为显性状态,当TXD输出逻辑高电平时总线通过接收器内部的高阻值输入电阻器 (RIN)偏置为VCC/2,为隐性状态,在仲裁期间,显性状态会覆盖隐性状态。CAN收发器在显性阶段的差分发送器输出阻抗约为50Ω,与总线特征阻抗紧密匹配,通常不会引起信号反射。对于常规CAN FD收发器,当驱动器输出显性电平切换到隐性电平时,差分输出阻抗会由50Ω变为约60kΩ,此时,反射回来的信号遇到端口的阻抗不匹配,并且这些反复的反射叠加在输出端口,从而导致了信号振铃的产生。  CAN总线振铃波形  对于具有SIC功能的CAN芯片而言,当发送器检测到TXD上出现从显性到隐性的边沿时,内部驱动器会激活振铃抑制(SIC)电路。CAN驱动器继续强力驱动总线至隐形电平,直至tpass_rec_start,以便减少反射,确保采样点处的隐性位很干净。在这一主动隐性阶段,发送器输出阻抗较低(约为100Ω)。反射的信号没有遇到显著的阻抗不匹配,并且驱动电阻可有效吸收反射信号,因此振铃会大大减弱。在该阶段结束后驱动器进入被动隐性阶段,其输出阻抗上升至约60kΩ。  CAN SIC阻抗时序图  在SIC作用的主动隐性阶段,其持续时间最长可达530ns(tpass_rec_start,如上文所列)。由于CAN FD协议的数据阶段最低位宽为200ns(5Mbps),因此振铃抑制可在整个的隐性位持续时间内保持活动状态,从而保证CAN总线和RXD信号的翻转正常进行。  SIC芯片对于组网的优势  相比常规CAN芯片,CAN SIC可采用更为灵活的组网方式,如下图所示;常规CAN芯片由于信号振铃的限制,为了保证CAN FD的高速率要求,所有节点需采用手拉手的菊花链组网方式,且每个节点的分支线缆不超过0.3m,采用SIC芯片后可灵活调整组网方式和提高总线速率上限,可根据实际应用场景进行布线,有效节省组网线材成本和车身重量。  常规CAN组网方式  在常规组网环境中在若出现某一节点断开时,信号会因为断开节点后留下的分支线导致信号振铃,若是使用常规CAN芯片该振铃无法避免,易导致节点收到错误帧,如果其中一个终端异常断开的话,基本很难保证总线通信了,若是使用CAN SIC芯片可抑制信号振铃,可保证信号在异常场景下正常通信。  CAN SIC组网方式  CAN SIC收发器有更严格的位时间对称性,这使得CAN信号在恶劣的组网环境中能够提供更多裕量。收发器对上升沿和下降沿的斜率要求更快,可保证单bit的有效位宽,因此可以以8Mbps的速率可靠运行。与CAN FD收发器相比,其SIC的环路延时最大仅为190ns,远低于CAN FD收发器的255ns最大环路延时的要求,更有助于延长最大组网长度。  TPT1462  思瑞浦推出基于其自主创新设计振铃抑制电路专利的车规级CAN SIC(信号改善功能,Signal Improvement Capability)TPT1462Q芯片,相比当前主流的CAN FD车载通信方案,TPT1462Q满足最新的ISO 11898-2:2024标准(见下表),同时兼容CiA 601-4标准,可实现≥8Mbps的传输速率。可与常规CAN FD的CAN芯片(TPT1044/TPT1042)兼容和混合组网,还具有待机模式和远程唤醒功能,此外其优异的EMC表现,以及灵活的VIO供电选择(低至1.8V)可有效助力工程师简化系统设计、并打造更高质量的车载通信系统。  表1、TPT1462关于ISO 11898-2:2024标准测试数据  在工况复杂的汽车应用中,环境中恶劣的电磁干扰可通过电缆耦合到芯片的CAN总线,这可能导致CAN芯片传输异常,甚至导致芯片损伤。思瑞浦推出的CAN SIC芯片TPT1462Q具有国际领先的抗干扰能力,为汽车安全通讯奠定坚实的基础;此外TPT1462Q采用思瑞浦自主设计对称性调节模块专利技术,用于调节第一输出驱动级和第二输出驱动级的对称性;借助于该对称性调节模块,确保差分输出级的对称性,优化芯片的EMI性能,依照IEC 62228-3标准进行传导发射的EME测试,表现如下:  无共模电感时TPT1462Q的EME测试图  TPT1462实战效果  总线振铃一般是CAN总线的通信过程中,由于阻抗不匹配导致的信号反射等原因,使得信号在传输线上多次反射,进而产生的一种振荡现象。振铃现象可能会对CAN总线的通信质量产生负面影响,甚至有可能导致通信失败。TPT1462Q采用自研的振铃抑制专利,允许工程师在多节点、复杂拓扑情况下有效减少总线中的信号反射,降低振铃现象发生的概率(如下图)。  常规CAN-FD在星型网络多节点通信波形  CAN SIC芯片在星型网络多节点通信波形  同时由于架构的优化TPT1462Q可维持高达10Mbps的通信传输速率,并且可保证优质的总线对称性,大幅提升车载通信质量,为下一代CAN技术发展奠定基础。  在10Mbps通信速率下的波形  TPT1462产品系列提供带VIO(TPT1462VQ)与不带VIO(TPT1462Q)两个版本,可根据系统需求灵活选择简化系统设计,提供SOP8和DFN8两种封装,可Pin-to-Pin兼容市场主流经典CAN和CAN FD收发器。TPT1462Q已通过AEC-Q100车规认证要求,支持–40°C~125°C的宽工作温度范围,提供过温保护;同时,TPT1462Q还具备TXD显性超时保护,待机模式下支持远程唤醒。此外,该产品的VIO设计可低至1.8V,这一设计不仅提高了产品的灵活性,还可进一步减少系统中对LDO或电平转换器的需求,从而为工程师在成本控制方面提供有力支持。
关键词:
发布时间:2024-08-09 09:08 阅读量:588 继续阅读>>
思瑞浦:<span style='color:red'>CAN</span> SIC收发器助力复杂<span style='color:red'>CAN</span>网络高效可靠通信(1)
  现在的汽车通过丰富多项功能来提升其安全性、性能和舒适性。从动力总成到高级驾驶辅助系统,从车身电子控制和照明到信息娱乐和安全,大量电子控制单元 (ECU) 被部署到车辆上用于丰富这些功能。  ECU通过车内网络总线交换控制和数据日志信息。在众多车载总线中,CAN总线因其易用性、良好的共模噪声抑制能力、基于优先级的消息传递机制、可处理总线仲裁以及错误检测和恢复等特性,一直备受追捧。  CAN总线在车载通信网络的应用优势  简单且低成本  ECU通过单个CAN系统进行通信,而不是直接的复杂模拟信号线通信,从而减少了错误、重量、接线和成本;  完全集中控制  CAN总线提供了“一个进入点”,可以与所有网络ECU进行通信——支持集中诊断、数据记录和配置;  高抗扰  CAN总线具有强大的抗电干扰和抗电磁干扰能力,非常适合对安全行能要求严格的应用场景;  实时高效  通过ID对CAN帧进行优先级排序,以便优先级最高的数据可以立即访问总线,而不会引起其他帧的中断。  通过向现有CAN总线添加节点,可以轻松地扩展车辆网络,这也是一个主要优势。随着附加功能被集成到这些应用中,对更复杂网络和更快速数据速率的需求日益正在增加。然而,当网络变得复杂时,如CAN节点采用星形拓扑连接时,这种优势就会减弱。这些网络中固有的未端接存根引起了反射,在速度较高时会导致发生信号通信故障。这两种需求都与总线上信号振铃的增加效应相冲突,这突出说明了CAN介质访问传统技术的能力有限。因此,尽管CAN灵活数据速率(FD)收发器额定值为5Mbps,但在实际车辆网络中必须以低于2Mbps的速率使用。CAN信号增强能力 (SIC)的引入可能改变这种状况,信号改善功能(SIC)使CAN-FD收发器能够以5Mbps及更高的速度用于复杂的星形网络,而无需进行大规模的重新设计。  经典CAN和CAN-FD的局限性  第一代CAN协议ISO 11898-2(又称经典 CAN)于1993年左右发布。该协议只允许进行8字节的有效载荷数据传输,最大指定数据速率为1Mbps。经典CAN网络性价比高、稳定可靠、具有可扩展和易于部署等优点,能够支持整车的复杂拓扑。但是,汽车的新功能不断增加,数据交换需求提高,CAN网络系统必须突破自身的限制。与经典CAN相比,CAN FD技术可提供更高的带宽,它将有效载荷长度增加到64字节,同时将数据阶段的传输速率从1Mbps提升至5Mbps。  虽然CAN FD网络具有诸多优点,但由于信号反射产生的“信号振铃”问题,使得信号完整性受限,在很多网络中只能达到2Mbps的传输速率,而且仅限于使用高度线性的拓扑。这意味着线束必须避免长线缆分支,从而使得汽车上的走线变得更加复杂,进而导致了汽车成本的上升和重量的增加。  当前汽车工业快速发展,面对汽车上急剧增加的节点数量,设计人员意识到CAN FD收发器无法满足当前多节点复杂组网的情况,因为复杂星形网络导致的总线振铃影响了正确的信号通信,图1是星形拓扑示例。  图1、在星形网络中连接的CAN节点  在具有多个节点的复杂星形拓扑中,CAN芯片总线信号在翻转时阻抗会发生显著变化,导致总线上传输的信号出现阻抗不匹配,进而引起信号反射。这些反射的信号叠加会导致CAN总线振荡,使得接收端出现误翻转,从而导致出现错误帧。尽管这些这种信号振铃的情况并不仅仅在CAN FD速率下存在,但是当以标准CAN低速率运行时,位持续时间长,采样点相对靠后,因此可以采到正确的位(如图2所示),从而可以正常通信。  图2、高速CAN速度下的CAN总线振铃和RXD干扰  对于5Mbps CAN FD 200ns的位持续时间过短,以致复杂星形拓扑中的振铃无法通过调整采样点去规避,从而没法保证可靠的数据通信。这就使系统设计人员无法在这种复杂组网条件下使用CAN FD进行通信,只能降速处理。随着现代车辆对更多的节点数据交换和更快的吞吐量需求,CAN SIC为下一代车载通信总线技术铺平了道路,该技术保证更快的通信速率并提供了更大的网络灵活性和可扩展性。  CAN FD SIC  在国际标准ISO11898-2:2024中的定义  信号改善是CAN FD收发器的基础上增加的一项额外功能,它通过最大限度地减少信号振铃来提高复杂星形拓扑中可实现的更大数据速率。CAN SIC收发器需要满足国际标准化组织 (ISO) 11898-2:2024高速CAN物理层标准和CAN-in-Automation (CiA) 601-4信号改善规格的要求。  下图是常规CAN FD收发器,在总线产生振铃时,其总线差模信号会反复在显性电平和隐性电平阈值之间振荡,导致RXD产生误翻转,从而使接收数据受到干扰。根据ISO 11898-2:2024规范要求,具有SIC功能的CAN收发器可有效抑制总线信号振铃,从而产生正确的RXD信号,如下图所示。  (左)无SIC功能的CAN总线和RXD波形  (右)有SIC功能的CAN总线和RXD波形  今年3月份ISO更新了最新的ISO 11898-2:2024标准,增加了对CAN SIC部分的参数要求,就电气参数而言,符合ISO 11898-2:2024的CAN SIC收发器与常规CAN FD收发器相比,前者具有更严格的位时间对称性和环路延时要求,如表1所示。发送和接收路径延时的分离可以帮助系统设计人员清楚地计算存在其他信号链组件时的网络传播延时。  表1、 ISO 11898-2:2016和ISO 11898-2:2024 SIC和时间参数定义对比  目前思瑞浦最新推出的TPT1462xQ已通过德国IHR实验室提供的符合ISO 11898-2:2024的CAN收发器一致性(IOPT)报告,成为国内首款支持并通过ISO 11898-2:2024认证的CAN SIC收发器。通过该测试意味着TPT1462xQ已经完全符合最新的国际标准ISO 11898-2:2024,并可以在复杂组网的各种条件下与其他符合国际标准并通过认证的产品稳定通信。
关键词:
发布时间:2024-08-08 09:03 阅读量:527 继续阅读>>
上海雷卯:<span style='color:red'>CAN</span> BUS芯片静电浪涌击穿整改方案
  Canbus芯片静电浪涌击穿整改方案  在现代电子系统中,CAN Bus(Controller Area Network Bus,控制器局域网络总线)作为一种常用的通信协议,标准CAN通常指的是CAN 2.0A和CAN 2.0B协议,其最大通讯速率为1Mbps。而高速CAN通常指的是CAN FD(CAN Flexible Data-rate)协议,大家都知道工作环境中可能面临静电放电(ESD EOS)的威胁,因此在CAN BUS电路中工程师们都放置ESD二极管以作静电浪涌防护用,但还会出现IC被静电浪涌打坏,造成不能正常工作,这是什么原因?  一.放置ESD二极管为什么后端还会损坏的原因  上海雷卯EMC小哥根据自己多年ESD 器件选型整改经验分析如下:  1.静电放电浪涌能量过大:如果遇到的静电放电能量超出了防静电二极管的承受能力,仍可能有部分能量传导到器件上,导致器件烧毁。所以各个ESD器件的抗浪涌能力不相同,尽可能复现浪涌水平,并评估选择合适器件。  2. 钳位电压VC 过高 ,超过了后端IC 的承受电压范围,因此导致损坏,这种情况非常普遍。  3. 布线或接地问题:CAN 总线的布线不合理,例如线路过长、走线过于靠近干扰源,或者接地不良,都可能导致静电无法及时有效地通过二极管泄放,从而对器件造成损害。  以上三种情况比较常见。因此,选择合适的静电保护器件至关重要,正确选择 CAN Bus 静电保护器件不仅能够保障系统的稳定运行,还能有效延长设备的使用寿命,降低维护成本。  二.如何选择更好的CAN BUS静电保护器件  第一、CAN Bus 工作的电气特性需深入了解。CAN Bus 通常在特定的电压范围内工作,比如常用的24V,因此所选的静电保护器件必须能够在这个电压范围内正常运行。这要求我们对 CAN Bus 标准的工作电压、信号幅度、传输速率等参数有清晰的认识。  第二、静电防护等级是选择静电保护器件的关键指标。确保所选器件能够提供足够高的静电放电(ESD)防护能力,以应对可能出现的静电冲击。常见的防护等级标准如 IEC 61000-4-2 等。一般来说,防护等级越高,器件对静电的抵御能力就越强。  第三、电容值也是一个不容忽视的因素。由于 CAN Bus 对信号完整性要求较高,静电保护器件的电容值如果过大,可能会导致信号失真、延迟增加等问题,从而影响通信质量。因此,应优先选择电容值较低的保护器件,以最大限度地减少对 CAN Bus 信号传输的影响。  第四、工作电压和钳位电压也是重要的考量参数。静电保护器件的工作电压应大于等于 CAN Bus 正常工作时的电压24V,以确保在正常工作条件下器件不会误触发。同时,钳位电压应足够低,以便在静电放电发生时能够迅速将过高的电压限制在安全范围内,从而保护后端的电路元件。  了解到上面这几个关键点后,在选择CAN BUS 防静电ESD二极管时我们就会做出正确的选择。  三.常见几种CAN BUS静电二极管参数比较  以下是CAN BUS 总线ESD保护电路及常见的知名品牌CAN BUS 静电二极管几种型号参数列表  我们对这个表来进行详细观察,发现有几点不同:IEC 61000-4-2防静电能力,功率,VB,VC IPP, Cj 。  在此特别把上海雷卯的三款低钳位电压(表中VC) CAN BUS 静电二极管放入表中做比较:SMC24XQ,SMC24LVQ,SMC24HQ。  ·根据前面分析我们知道 要选择静电高的比低的好,上海雷卯的三款SMC24系列都是30KV, 达到静电防护最高级。  ·防静电能力:上海雷卯的SMC24XQ,SMC24LVQ,SMC24HQ关键是低VC ,三款VC 都在32V-34V 之间,是这些列表里面最低的VC值,这是选择ESD二极管的最重要参数。  ·钳位电压VC: 上海雷卯SMC24低VC系列三款电流有5A , 10A,13A 可以根据实际电路情况选择,当然电流越大越好,另外推出低箝位电压,VC的产品。  ·结电容 Cj : 也是表里最低的,5PF,15PF ,不影响信号传输,完全可以保证信号完整性。  ·下面对其中一款SMC24LVQ测试图做展示。
关键词:
发布时间:2024-07-31 09:08 阅读量:523 继续阅读>>
思瑞浦发布支持振铃抑制功能的汽车级<span style='color:red'>CAN</span> SIC收发器TPT1462xQ
  聚焦高性能模拟芯片和嵌入式处理器的半导体供应商思瑞浦3PEAK(股票代码:688536)推出支持振铃抑制功能、具有待机模式的CAN信号改善功能(CAN Signal Improvement Capability, CAN SIC)收发器TPT1462xQ。  TPT1462xQ符合ISO 11898-2:2024高速CAN规范物理层要求并实现了信号改善功能(CAN SIC)。  TPT1462xQ具有更严格的位时间对称性和环路延时要求,可实现高达8 Mbit/s的CAN FD通信,支持1.7V~5.5V的VIO接口电平,可无需外加额外电路直接支持1.8V SOC以及3.3V、5V的MCU通讯,且具有低功耗待机模式,可通过ISO 11898定义的唤醒模式 (WUP) 实现远程唤醒。  TPT1462xQ通过CAN SIC信号改善功能大大抑制了网络上的信号振铃,可满足最新车载网络升级对更高通信速率的需求,广泛应用于汽车域控、ADAS、座舱等领域 。  目前TPT1462xQ是国内首款采用全国产供应链量产且通过多家车厂和Tier1项目测试认证并拿到定点的CAN SIC收发器,已开始小批量产出货。  TPT1462xQ产品优势  CAN SIC信号改善功能  TPT1462xQ具有优异的CAN信号改善功能,可以提高通讯速率、大幅抑制网络中的信号振铃效应,减少通讯误码率,从而提高整车网络通信速率和组网方式的灵活性。如下图所示,传统的CAN FD只适用于简单的总线架构的组网方式,在复杂的星型架构上,总线波形振铃现象和通讯误码率会大幅增加。  图1-常规总线架构组网方式  图2-星型架构组网方式  下图为星型组网下,常规CAN-FD和TPT1462xQ的CAN SIC信号波形对比。可以看到TPT1462xQ在复杂星型组网环境下的通讯总线电平波形质量有了极大的提升。  下方图3-1和3-2为星型组网下测试波形对比  图3-1、常规CAN-FD在星型网络多节点通信波形  图3-2、TPT1462xQ芯片在星型网络多节点通信波形  VIO电平支持1.7V~5.5V工作范围  TPT1462xQ的VIO工作范围为1.7V~5.5V,可以更好的兼容更低的通讯接口电平。下图是面向1.8V通讯电平的方案对比,相较于市面上只支持5V和3.3V的传统CAN收发器,可以省掉外围的电平转换芯片和额外的LDO电源轨(见图4-1中红色部分),整体方案更加简洁并节省了系统成本,对于当前采用1.8V SOC系统的车载应用,这一优势提供了显著价值。  下方图4-1和图4-2为1.8V电平通讯方案对比  图4-1、传统CAN收发器和1.8V SOC 的通讯方案  图4-2、TPT1462VQ和1.8V SOC 的通讯方案  优异的电磁兼容特性  TPT1462xQ具有优异的电磁兼容特性,即使在极恶劣的电磁环境中,仍能维持CAN正常通信,为汽车安全通讯奠定了坚实的基础。同时基于汽车客户模块和整机的测试需求,TPT1462xQ已经在汽车零部件上通过了如下全部EMC测试,可以提供完整测试报告。  国内首款支持并通过  ISO11898-2:2024认证的  CAN SIC收发器TPT1462xQ  2024年3月更新的11898-2:2024,增加了对CAN SIC部分的参数要求,TPT1462xQ已经通过德国IHR实验室提供的符合ISO 11898-2:2024的物理层以及组网测试报告,成为国内首款支持并通过ISO 11898-2:2024认证的CAN SIC收发器。通过该测试意味着TPT1462xQ已经完全符合最新的国际标准ISO 11898-2:2024,并可以在复杂组网的各种条件下与其他符合国际标准并通过认证的产品稳定通信。  IHR是从事汽车总线测试的权威机构,是SAE、LIN联盟、PSI5联盟及国际主要整车厂指定的第三方CAN、LIN、GMLAN、J2602、PSI5、Cooling等总线一致性测试认证实验室,是ISO Work Group、AUTOSAR以及Open Alliance等组织的成员,也是全球汽车Ethernet、CAN、LIN、GMLAN、J2602总线开发、测试工具的主要供应商。  TPT1462xQ产品特性  ·具有CAN SIC信号改善功能(Signal Improvement Capability)  ·具有低功耗待机模式,支持唤醒模式(WUP)实现远程唤醒  ·支持高达8Mbps的CAN网络通信  ·VIO电平支持1.7V~5.5V  ·具有±42V以上的CAN BUS总线故障保护  ·具有±8kV的ESD防护能力(IEC 61000-4-2)  ·具有优异的电磁兼容特性(EMC)
关键词:
发布时间:2024-07-30 09:00 阅读量:459 继续阅读>>

跳转至

/ 5

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
TL431ACLPR Texas Instruments
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
型号 品牌 抢购
STM32F429IGT6 STMicroelectronics
BU33JA2MNVX-CTL ROHM Semiconductor
BP3621 ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
TPS63050YFFR Texas Instruments
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。