半导体激光控制器由受控恒流源,温度监视及控制电路,主控制器及显示器构成。为了使激光器输出稳定的激光,对流过激光器的电流要求非常严格,供电电路必须是低噪声的稳定的恒流源。恒流源可以从0A~2. 5A 之间连续可调,以适应不同规格的半导体激光器。该恒流源是以大功率的MOS 管为核心,激光器作为负载与之串联,通过控制MOS 管的栅极,来实现对激光器电流的控制。但MOS 管是非线性器件,难以直接控制,因此必须将其转化为线性控制。
近年来,随着光电技术的迅猛发展,激光器已广泛应用于医疗、国防、测量等各个领域。而环境温度变化会直接影响激光器的波长。把关键元件(如高性能晶振、SAW 滤波器、光放大器、激光二极管) 的本机温度限制在窄范围内,可以提高电子系统的精度。一般需要将温度控制在0. 1 ℃内,激光器的工作精度才能很好地保持在0. 1nm 内 。
由于温度对激光的品质有很大影响,在电流恒定的情况下,温度每升高1 ℃,激光波长将增加大约0. 1nm ,而且温度过高将导致激光器老化甚至损坏。
并且激光器是一个电灵敏度高、成本昂贵的器件,因此控制器必须提供监控、限制和过载保护的能力 。
包括:自启动和过流保护、热电制冷器(thermoelectriccooler ,TEC) 电压、电流和温度的感测。异常工作电路停机以避免激光器元件损坏。值得注意的是:环境温度的变化对激光器的影响,要求控制器具备制冷和制热的能力。通常为使元件温度保持稳定是将把元件封闭在固定温度的恒温槽内。为了提供某种调整容限,其所选温度应高于所有条件下的环境温度。这种方法曾被广泛采用,特别是用在超稳时钟的设计中(如恒温槽控制的晶振) 。但高温应用此方法有如下缺点 : 性能(如噪声因数,速度和寿命)有所降低;环境温度处于中间范围时调整器消耗加热的功率,在环境温度处于低端时需要两倍大的功率;达到稳定温度所需的时间可能相当长。
温度探测电路部分与恒流源类似,采用NTC(负温度系数) 的热敏电阻作为温度探测器。其中用陶瓷粉工艺制作的NTC 元件对温度的微小变化有最大的电阻变化。特别是某些陶瓷NTC 在其寿命内(经适当老化) 具有0. 05 ℃稳定度。并且与其它温度传感相比,陶瓷NTC 的尺寸特别小。然后将热敏电阻串联入一恒流源,对热敏电阻两端电压采样,将温度变换为电信号。
在线留言询价
型号 | 品牌 | 询价 |
---|---|---|
TL431ACLPR | Texas Instruments | |
RB751G-40T2R | ROHM Semiconductor | |
MC33074DR2G | onsemi | |
BD71847AMWV-E2 | ROHM Semiconductor | |
CDZVT2R20B | ROHM Semiconductor |
型号 | 品牌 | 抢购 |
---|---|---|
TPS63050YFFR | Texas Instruments | |
BU33JA2MNVX-CTL | ROHM Semiconductor | |
ESR03EZPJ151 | ROHM Semiconductor | |
IPZ40N04S5L4R8ATMA1 | Infineon Technologies | |
STM32F429IGT6 | STMicroelectronics | |
BP3621 | ROHM Semiconductor |
AMEYA360公众号二维码
识别二维码,即可关注