TAIYO YUDEN Commercializes LCQPB Series of Power Inductors for Automotive Application
  TAIYO YUDEN CO., LTD. has commercialized the new LCQPB series of wire-wound ferrite power inductors, which have AEC-Q200 qualification for automotive passive components.  The LCQPB series power inductors are designed for use as choke coils and noise filters in DC-DC converters in power circuits for automotive body and information systems.  TAIYO YUDEN previously released the LCEN series and LCCN series of metal power inductors made from metallic magnetic substances for automobile application and the LCXN series and LCXH series of ferrite power inductors. To these, we add the new LCQPB series to give our customers more choice by substance and structure and a high degree of freedom in design.  The LCQPB series inductors have been manufactured by our overseas subsidiary, TAIYO YUDEN (PHILIPPINES), (Lapulapu City, Cebu) since March 2025. Samples are available for 50 yen per unit.  Technology Background  The advancements that we have seen in recent years in electronic controls in vehicles, as typified by ADAS units, have led to a greater number of power supply circuits on vehicles, which in turn has led to growth in the demand for power inductors that are used in these circuits. In order to miniaturize power supply circuits, engineers demand inductors with specific properties that allow high-density mounting with a high degree of freedom in design and noise suppression by frequency.  Therefore, TAIYO YUDEN has newly commercialized the LCQPB series, which complies with AEC-Q200. The LCQPB series inductors have a frameless structure that results in a small footprint. The new LCQPB series, together with our other series of inductors designed for automotive application, give our customers more choice by substance and structure and a high degree of freedom in design.  TAIYO YUDEN focuses on the development of products that meet market needs, and will continue to expand its power inductor product lineup.  ■ Application  The LCQPB series power inductors are applicable as choke coils and noise filters in DC-DC converters in power circuits for automotive body and information systems.
Key word:
Release time:2025-04-10 13:18 reading:192 Continue reading>>
ROHM Develops Class-Leading* Low ON-Resistance, High-Power MOSFETs for High-Performance Enterprise and AI Servers
  ROHM has developed N-channel power MOSFETs featuring industry-leading* low ON-resistance and wide SOA capability. They are designed for power supplies inside high-performance enterprise and AI servers.  The advancement of high-level data processing technologies and the acceleration of digital transformation have increased the demand for data center servers. At the same time, the number of servers equipped with advanced computing capabilities for AI processing is on the rise and is expected to continue to grow. These servers operate 24 hours a day, 7 days a week – ensuring continuous operation. As a result, conduction losses caused by the ON-resistance of multiple MOSFETs in the power block have a significant impact on system performance and energy efficiency. This becomes particularly evident in AC-DC conversion circuits, where conduction losses make up a substantial portion of total power loss – driving the need for low ON-resistance MOSFETs.  Additionally, servers equipped with a standard hot-swap function, which allow for the replacement and maintenance of internal boards and storage devices while powered ON, experience a high inrush current during component exchanges. Therefore, to protect server components and MOSFETs from damage, a wide Safe Operating Area (SOA) tolerance is essential.  To address these challenges, ROHM has developed its new DFN5060-8S package that supports the packaging of a larger die compared to conventional designs, resulting in a lineup of power MOSFETs that achieve industry-leading* low ON-resistance along with wide SOA capability. These new products significantly contribute to improving efficiency and enhancing reliability in server power circuits.  The new lineup includes three products. The RS7E200BG (30V) is optimized for both secondary-side AC-DC conversion circuits and hot-swap controller (HSC) circuits in 12V power supplies used in high-performance enterprise servers. The RS7N200BH (80V) and RS7N160BH (80V) are ideal for secondary AC-DC conversion circuits in 48V AI server power supplies.  All three models feature the newly developed DFN5060-8S package (5.0mm × 6.0mm). The package increases the internal die size area by approximately 65% compared to the conventional HSOP8 package (5.0mm × 6.0mm). As a result, the RS7E200BG (30V) and RS7N200BH (80V) achieve ON-resistances of 0.53mΩ and 1.7mΩ (at VGS = 10V), respectively – both of which rank among the best in the industry in the 5.0mm × 6.0mm class, significantly contributing to higher efficiency in server power circuits.  Moreover, ROHM has optimized the internal clip design to enhance heat dissipation, further improving SOA tolerance, which contributes to ensuring application reliability. Notably, the RS7E200BG (30V) achieves an SOA tolerance of over 70A at a pulse width of 1ms and VDS = 12V, which is twice that of the conventional HSOP8 package MOSFETs under the same conditions, ensuring industry-leading SOA performance in a 5.0mm × 6.0mm footprint.  Going forward, ROHM plans to gradually begin mass production of power MOSFETs compatible with hot-swap controller circuits for AI servers in 2025, continuing to expand its lineup that contributes to greater efficiency and reliability across a wide range of applications.  Product Lineup  EcoMOS™ Brand  EcoMOS™ is ROHM's brand of silicon power MOSFETs designed for energy-efficient applications in the power device sector.  Widely utilized in applications such as home appliances, industrial equipment, and automotive systems, EcoMOS™ provides a diverse lineup that enables product selection based on key parameters such as noise performance and switching characteristics to meet specific requirements.  EcoMOS™ is a trademark or registered trademark of ROHM Co., Ltd.  Application Examples  ・AC-DC conversion and HSC circuits for 12V high-performance enterprise server power supplies  ・AC-DC conversion circuits for 48V AI server power supplies  ・48V industrial equipment power supplies (i.e. fan motors)  Terminology  Low ON-Resistance (RDS(on))  The resistance value between the Drain and Source of a MOSFET during operation. A smaller RDS(on) results in lower power loss during operation.  SOA (Safe Operating Area) Tolerance  The range of voltage and current within which a device can operate safely without damage. Exceeding this range can lead to thermal runaway or device failure, making SOA tolerance a critical factor, especially in applications prone to inrush current or overcurrent.  Power MOSFET  A type of MOSFET used for power conversion and switching applications. N-channel MOSFETs are the mainstream choice, as they become conductive when a positive voltage is applied to the gate relative to the source, offering lower ON-resistance and higher efficiency than P-channel variants. Due to their low loss and high-speed switching capabilities, power MOSFETs are widely used in power circuits, motor drive circuits, and inverters.  Hot-Swap Controller (HSC)  A specialized integrated circuit (IC) that enables hot-swap functionality, allowing components to be inserted or removed while the power supply system remains active. It plays a crucial role in managing inrush current that occurs during component insertion, protecting both the system and connected components from damage.  Inrush Current  A sudden surge of current that momentarily exceeds the rated value when an electronic device is powered ON. Proper control of this current reduces stress on power circuit components, helping to prevent device failure and stabilize the system.
Key word:
Release time:2025-04-10 13:10 reading:195 Continue reading>>
Murata Commercializes Broadband-Compatible 1210 inch size, in-vehicle PoC Inductors, Reducing Component Size and Weight
Key word:
Release time:2025-04-08 14:17 reading:219 Continue reading>>
Renesas Introduces Low-Power Bluetooth Low Energy SoC for Automotive Applications
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, today introduced a new industry-leading Bluetooth chip that combines a radio transceiver, an Arm® M0+ microcontroller, memory, peripherals and security features in a compact SoC design. The DA14533, the first automotive-qualified device in the company’s Bluetooth® Low Energy system-on-chip (SoC) family, includes advanced power management features to simplify system integration and reduce power consumption. With its software stack qualified against Bluetooth Core 5.3 and support for extended temperatures, developers can jump-start projects in applications from tire pressure monitoring and keyless entry to wireless sensors and battery management systems.  Optimized Design to Deliver Unparalleled Power Efficiency  Building on Renesas’ leadership in Bluetooth LE SoCs (SmartBond Tiny Family) with industry-leading low power consumption, the new DA14533 includes some of the most advanced power management features in the industry. The device includes an integrated DC-DC buck converter, which accurately adjusts the output voltage according to system requirements. Active system power consumption is lower than comparable devices in the market, requiring only 3.1mA during transmission and 2.5mA during reception. In hibernation mode, the current drops to 500nA. These power management and power-saving features help extend the operational life of small-capacity battery-powered systems and meet the stringent power requirements of tire pressure monitoring systems’ mission profile.  Auto-Grade AEC-Q100 Qualified and Up-to-Date Security Features  The DA14533 is an AEC-Q100 Grade 2 qualified device, which means the device has passed strict testing to sustain quality and reliability in harsh automotive environments. Moreover, the device’s extended temperature range (-40 to +105°C) ensures reliable performance in demanding conditions, making it ideal for automotive and industrial systems where stability and durability are essential. Qualified against Bluetooth Core 5.3 specifications, the device contains the latest security features to safeguard connected devices from various threats.  “Our SmartBond Tiny SoC family has seen remarkable success in the industrial market, with over 100 million units shipped to date,” said Chandana Pairla, VP of Connectivity Solutions Division at Renesas. “This new automotive-grade device will enable a new class of Bluetooth LE applications that demand high power efficiency, a small footprint and broader temperature tolerance for next-generation battery-powered automotive and industrial systems.”  Lower Bill-of-Materials Reduces Costs and Simplifies Development  Similar to other Bluetooth LE SoC devices in the SmartBond Tiny family, the DA14533 only requires 6 external components, offering a best-in-class engineering bill of materials (eBOM).  A single external crystal oscillator (XTAL) is used for both active and sleep modes, eliminating the need for a separate oscillator for sleep mode. Its ultra-compact design – available in a WFFCQFN 22-pin 3.5 x 3.5 mm package – makes the device the smallest automotive Bluetooth LE SoC on the market. With its compact design and low eBOM, the device integrates seamlessly into space-constrained systems, reducing overall system costs and accelerating time-to-market for customers.  Key Features of the DA14533  Arm® Cortex®-M0+ microcontroller – Standalone application processor or data pump in hosted systems  64KB RAM and 12KB One-Time Programmable (OTP) memory  2.4 GHz radio transceiver  Integrated low IQ buck DC-DC converter  External SPI flash  Single XTAL operation (single crystal oscillator)  Software stack qualified against Bluetooth Core 5.3  AEC-Q100 Grade 2-qualified with wide operating temperature range support (-40 to +105°C)  WFFCQFN 22-pin 3.5 x 3.5 mm package
Key word:
Release time:2025-04-08 14:06 reading:233 Continue reading>>
Supporting up to 1500W motor drive, NSUC1602 from NOVOSENSE easily addresses high current challenges
  NOVOSENSE announced the launch of NSUC1602, a high-integration embedded motor control IC, following its introduction of NSUC1610, a small motor driver SoC for automotive applications in early 2023. Compared to the single-chip NSUC1610 that integrates LIN and MOS power stages, NSUC1602 as a SoC, supports an external independent power MOSFET design. This innovative approach enables it to effortlessly address applications requiring higher current.  In addition, NSUC1602 integrates three half-bridge pre-drivers, expanding the motor control power range to 20W-1,500W. This enhancement not only further optimizes the control performance of BLDC motors, but also better meets the requirements of applications with higher power output. In the realm of xEV, thermal management systems are particularly complex and crucial for ensuring overall vehicle performance. These systems are responsible for managing the temperatures of electric motors, power electronics, and battery, while ensuring optimal comfort for passengers in the cabin. An efficient thermal management system not only helps extend battery life, but also prevents the risks of thermal runaway caused by overheat, thereby safeguarding safe operation of xEVs.  In the realm of xEV, thermal management systems are particularly complex and crucial for ensuring overall vehicle performance. These systems are responsible for managing the temperatures of electric motors, power electronics, and battery, while ensuring optimal comfort for passengers in the cabin. An efficient thermal management system not only helps extend battery life, but also prevents the risks of thermal runaway caused by overheat, thereby safeguarding safe operation of xEVs.  To achieve these objectives, thermal management systems rely heavily on precise control of various actuators, such as electric compressor, electronic water pump, oil pump, fan motors, valves, and HVAC control modules. The motors driving these actuators typically need high power output to ensure stable and precise performance under a wide range of operating conditions, thereby meeting the strict requirements of efficient and accurate control for xEV thermal management systems.  NSUC1602, a highly integrated embedded motor control IC from NOVOSENSE, plays a pivotal role in managing key actuators in xEVs with its exceptional integration features and powerful motor control algorithms. This IC integrates an ARM® Cortex®-M3 core and efficient three-phase pre-driver circuits, and supports more advanced and complex motor control algorithms, such as FOC sensored or sensorless vector control. These advanced algorithms significantly enhance the precision and efficiency of temperature management for motors and electronic devices, providing robust technical support for intelligent three-phase brushless DC motor control applications, including automotive electronic cooling fans and electronic water pumps. Additionally, NSUC1602 incorporates a series of optimization designs to significantly improve overall system efficiency, ensuring stable performance under high-load operating conditions.  NSUC1602 meets the reliability requirements of AEC-Q100 Grade 0, and operates stably at extreme temperatures (up to 175°C wafer junction temperature). This SoC comes with further enhanced built-in diagnostics and protection functions that ensure high system reliability and comprehensive security protection for users.  While maintaining a highly integrated design, NSUC1602 also has an optimized power management solution. The LIN port supports ±40V reverse voltage protection, and the BVDD pin supports a withstand voltage range from -0.3V to 40V, allowing direct power supply from a 12V automotive battery. This helps simplify system design and notably reduce development costs.  NSUC1602 demonstrates extensive applicability for diverse applications. With superior motor control performance, NSUC1602 can play a crucial role in a wide range of BLDC and BDC applications requiring precise temperature control and efficient power transmission, such as automotive electronic water pumps, cooling fans, air conditioning blowers, seat adjustment, sunroof control, or tailgate control. Its optimized power management solution ensures that these devices achieve significant energy consumption reduction and substantial service life extension, while providing exceptional performance.
Key word:
Release time:2025-04-07 13:29 reading:248 Continue reading>>
BIWIN Spec Industrial-Grade Wide-Temperature eMMC Wins the Industrial Core
  Recently, the results of the 23rd Chinese Automation & Digitalization "New Quality Award" selection, hosted by gongkong®, were officially announced. BIWIN Spec, the industrial and automotive-grade storage brand under BIWIN, clinched the Industrial Core "New Quality" Award for its innovatively developed Industrial-Grade Wide-Temperature eMMC storage solution.  Backed by BIWIN’s technological expertise and competitive advantages in embedded storage sector, the award-winning TGE208/TGE218 series industrial-grade eMMCs are featured with industrial-grade controllers and NAND Flash, along with proprietary firmware architectures and in-house advanced packaging/testing and manufacturing processes, delivering exceptional performance, ultimate stability, and industrial-grade reliability.  Furthermore, the products are certified with over 200 rigorous validation tests through BIWIN’s automatic testing system, and also passed the HTOL and ELFR tests under JEDEC standards. Designed for consistent and stable operation in extreme environments, the products are widely applicable across diverse industrial scenarios, including smart security surveillance, data communication, industrial automation, rail transportation, smart power systems, smart healthcare, and IoT terminals.  In terms of technical specifications, the products strictly follow the eMMC5.1 standards, support the HS400 high speed mode (with data transfer rates up to 400MB/s), and deliver outstanding performance under industrial wide-temperature conditions ranging from -40℃ to +85℃. In addition, the pSLC firmware technical support is also enabled to enhance the capability for data retention, so as to meet the high-frequency read/write needs in industrial scenarios.  With aims to satisfy the 24/7 uninterrupted operation requirements of industrial equipment, the BIWIN eMMCs are also specifically built with five intelligent management functionalities: the Field Firmware Upgrade (FFU) for remote maintenance, Boot Partition for secure system loading, Replay Protected Memory Block (RPMB) for enhanced data security, idle data acceleration for optimized storage efficiency, and a health monitoring system equipped. Customers can monitor the storage unit’s operational status in real time through a customized interface and dynamically optimize adjustments based on specific application scenarios.  BIWIN has established stable and close partnerships with supply chain collaborators, providing customers with reliable supply assurances and comprehensive after-sales support throughout the product lifecycle. With years of technical R&D accumulation and an intelligent production and testing system, combined with tiered BOM (Bill of Materials) control and manufacturing process management, the products achieve higher reliability and sustained operational stability.
Key word:
Release time:2025-04-07 13:20 reading:241 Continue reading>>
Commercialized high precision agricultural CO2 sensors with superior long-term stability
  Murata Manufacturing Co., Ltd. (hereinafter "Murata") has commercialized "IMG-CA0012-12" (hereinafter "this product"), a case and cable type CO2 sensor. This high precision product primarily connects to environment measurement equipment in agricultural greenhouses and stably measures CO2 concentration. Through linkage with photosynthesis accelerators, this product will contribute to improving crop quality and increasing yield. Additionally, it improves energy efficiency by injecting an optimal amount of CO2 at an optimal timing. Mass production and supply for this product has begun in Hakui Murata Manufacturing.  In the field of agriculture, increased yield and quality improvement per unit area are required since there is a reduction in yield and decline in quality due to global warming as well as a drop in agricultural worker population. Technology for accelerating crop photosynthesis using CO2 application is an effective means of addressing these challenges. Furthermore, due to the recent increase in energy costs, effective CO2 application based on environmental data measurements is crucial. As a result, high-precision CO2 sensors, which offer long-term stability, require no calibration, and are resistant to malfunction, play a crucial role in photosynthesis accelerator technology.  This product is equipped with an automatic calibration function that runs on our unique calibration curve algorithm and dual wavelength (for measurement and reference) NDIR*1. Therefore, atmospheric calibration is not required. This ensures high precision and long-term stability, making it maintenance-free. Furthermore, its case and cable type design enhances user handling and ease of installation.  *1NDIR: Non-Dispersive Infrared Absorption  Specifications  CO2 sensors were installed in greenhouses and were used for a year for tomato cultivation and 2 years for rose cultivation. After use, CO2 concentration characteristics and temperature characteristics were evaluated.  It was discovered that CO2 concentration differences were minimal even when they were used for a long period of time in actual fields.  CO2 concentration characteristics  Temperature characteristics
Key word:
Release time:2025-04-02 15:44 reading:249 Continue reading>>
ROHM and TSMC Launch Strategic Gallium Nitride Technology Collaboration for Automotive Industry
  ROHM Co., Ltd. (ROHM) announced today that ROHM and TSMC have entered a strategic partnership on development and volume production of gallium nitride (GaN) power devices for electric vehicle applications.  The partnership will integrate ROHM's device development technology with TSMC's industry-leading GaN-on-silicon process technology to meet the growing demand for superior high-voltage and high-frequency properties over silicon for power devices.  GaN power devices are currently used in consumer and industrial applications such as AC adapters and server power supplies. TSMC, a leader in sustainability and green manufacturing, supports GaN technology for its potential environmental benefits in automotive applications, such as on-board chargers and inverters for electric vehicles (EVs).  The partnership builds on ROHM and TSMC’s history of collaboration in GaN power devices. In 2023, ROHM adopted TSMC’s 650V GaN high-electron mobility transistors (HEMT), whose process is increasingly being used in consumer and industrial devices as part of ROHM's EcoGaN™ series, including the 45W AC adapter (fast charger) "C4 Duo" produced by Innergie, a brand of Delta Electronics, Inc.  "GaN devices, capable of high-frequency operation, are highly anticipated for their contribution to miniaturization and energy savings, which can help achieve a decarbonized society. Reliable partners are crucial for implementing these innovations in society, and we are pleased to collaborate with TSMC, which possesses world-leading advanced manufacturing technology" said Katsumi Azuma, Member of the Board and Senior Managing Executive Officer at ROHM. “In addition to this partnership, by providing user-friendly GaN solutions that include control ICs to maximize GaN performance, we aim to promote the adoption of GaN in the automotive industry."  “As we move forward with the next generations of our GaN process technology, TSMC and ROHM are extending our partnership to the development and production of GaN power devices for automotive applications,” said Chien-Hsin Lee, Senior Director of Specialty Technology Business Development at TSMC. “By combining TSMC's expertise in semiconductor manufacturing with ROHM's proficiency in power device design, we strive to push the boundaries of GaN technology and its implementation for EVs.”  About TSMC  TSMC pioneered the pure-play foundry business model when it was founded in 1987, and has been the world’s leading dedicated semiconductor foundry ever since. The Company supports a thriving ecosystem of global customers and partners with the industry’s leading process technologies and portfolio of design enablement solutions to unleash innovation for the global semiconductor industry. With global operations spanning Asia, Europe, and North America, TSMC serves as a committed corporate citizen around the world.          TSMC deployed 288 distinct process technologies, and manufactured 11,895 products for 528 customers in 2023 by providing broadest range of advanced, specialty and advanced packaging technology services. The Company is headquartered in Hsinchu, Taiwan.  EcoGaN™ is a trademark or registered trademark of ROHM Co., Ltd.
Key word:
Release time:2025-04-02 15:36 reading:280 Continue reading>>
TAIYO YUDEN Realizes a Metal Power Inductor as Thin as 0.33 mm
  TAIYO YUDEN CO., LTD. has begun mass production of a new metal power inductor MCOIL™ LSCN series of multilayer metal power inductors, the "LSCND1005CCTR47MH" (1.0 x 0.5 x 0.33 mm; maximum height shown).  This power inductor is for use as choke coils in the power supply circuits of wearable devices, such as smartphones, AR/VR glasses, TWS devices, and smart watches. The "LSCND1005CCTR47MH" is 40% lower in height than our previous product, the "LSCNB1005EETR47MB" (1.0 x 0.5 x 0.55 mm), and realizes a metal power inductor as thin as 0.33 mm. This will contribute to the miniaturization and thickness reduction of cutting-edge electronic devices.  Mass production of this products began at our subsidiary, WAKAYAMA TAIYO YUDEN CO., LTD. (Inami-cho, Hidaka-gun, Wakayama Prefecture), in December 2024. Samples are available for 50 yen per unit.  Technology Background  As smartphones, AR/VR glasses, and wearable devices are equipped with higher-performance processors, more sensors, multiple cameras, and higher-capacity batteries for sophistication, electronic components used in them need to be smaller and thinner.  In particular, smartphones are requiring thinner electronic components, due to the trend towards foldable devices that combine large screens and smaller sizes, as well as the adoption of multi-layered circuit boards. On the other hand, wearable devices, such as AR/VR glasses, TWS devices, and smart watches, require smaller, lighter, and thinner components to achieve a thin profile and comfortable fit.  To address these needs, TAIYO YUDEN has been expanding its lineup in the MCOIL™ LSCN series of multilayer metal power inductors which use metallic magnetic materials with high DC saturation characteristics, and provide superior characteristics for achieving miniaturization and thinness. With our latest upgrade, we have commercialized the "LSCND1005CCTR47MH," which achieves a thickness of 0.33 mm for a metal power inductor by utilizing the strengths of our multilayer process technology.  This product will be on display at CES 2025, which takes place from January 7, 2025 at the Las Vegas Convention Center in Las Vegas, Nevada, U.S.A.  In response to market needs, we will continue to expand and improve our product lineup with higher performance and reliability.  ■ Application  For use as choke coils for power supply circuits in wearable devices such as smartphones, AR/VR glasses, TWS devices, and smart watches.  * "MCOIL" is a registered trademark or a trademark of TAIYO YUDEN CO., LTD. in Japan and other countries.  * The names of series noted in the text are excerpted from part numbers that indicate the types and characteristics of the products, and therefore are neither product names nor trademarks.
Key word:
Release time:2025-04-01 14:41 reading:232 Continue reading>>
Renesas Introduces Highly Integrated LCD Video Processor that Enables Next-Generation ASIL B Automotive Display Systems
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, today introduced the RAA278830 Video Diagnostics Bridge IC, a highly integrated dual Low-Voltage Differential Signal (LVDS) LCD video processor. The new IC integrates many of the features necessary to design ISO 26262-compliant ASIL B automotive display systems such as heads-up-displays (HUD), digital instrument clusters, camera monitor systems (CMS), and electronic mirrors.  As automotive safety systems are increasingly dependent on display systems, it has become more critical that clear, uncorrupted images be presented to the driver. Missing frames, frozen images, and even incorrect warning icons can seriously compromise driver safety. The RAA278830 addresses these concerns with Functional Safety features built into the device specifically to avoid any corruption of images through monitoring of the signal integrity as well as the video content itself. The internal diagnostics and measurement engines can detect frozen video, incorrect colors, broken or corrupt video images, as well as flashing, flickering, and video images that could obstruct the driver’s view of the road (in the case of HUD systems).  Renesas’ Automotive Video Signal Processing Expertise  Renesas has a long and successful track record of providing video signal processing solutions for the automotive market. In addition to standard analog video decoders, Renesas offers the award-winning Automotive HD-Link (AHL) family of products that enables high-resolution images to be transported over low-cost cables and connectors. The RAA278830 adds to Renesas’ leading line of integrated LCD controllers that have been implemented worldwide.  Key Features of the RAA278830  Dual Open-LDI Input/Output  ISO 26262 Functional Safety ASIL B rating  CRCs, parity, BIST, and redundancy safety mechanisms implemented throughout the entire data path  Video Diagnostic Capabilities  Input/Output monitoring of video timing, signal integrity, and content  Flickering, flashing, occlusion, and glare detection  Spread Spectrum for lower system level EMI profile  Image enhancement engine for superior image quality  Dual host interface: I2C & SPI (configurable)  SPI-Flash based OSD as well as an embedded font based OSD  SPI boot capability (boot from SPI Flash, no MCU needed)  Supports multi-bank for fail-safe OTA updates  Space-efficient 72SCQFN, 10mm x 10mm  AEC-Q100 Grade 2 qualified  “Our automotive customers have consistently asked us to add functional safety features to our industry-leading video processing technology,” said Jason Kim, Vice President and General Manager of the Configurable Mixed-Signal Division at Renesas. “The RAA278830 delivers all of the features needed to create safe, easy-to-implement and economical LCD display for all types of passenger vehicles.”
Key word:
Release time:2025-04-01 14:36 reading:262 Continue reading>>

Turn to

/ 231

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
RB751G-40T2R ROHM Semiconductor
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
model brand To snap up
BP3621 ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
IPZ40N04S5L4R8ATMA1 Infineon Technologies
TPS63050YFFR Texas Instruments
ESR03EZPJ151 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code