MOSFET第四季度又涨又缺,这一年都经历了什么?

发布时间:2017-11-13 00:00
作者:
来源:国际电子商情
阅读量:1597

MOSFET在2017年经历了至少两波涨价,这个曾经不起眼、压价多的功率器件在今年变得奇货可居。原厂现在大概最怕见到的就是客户,因为交货难。今年MOSFET经历了什么,明年形势如何,国际电子商情采访业内人士,带您深入行业现状。

回顾涨价行情

2017年MOSFET厂商涨声四起,扛不起上游晶圆涨价以及需求暴增的影响,纷纷调价。下表列出了部分MOSFET厂商发出涨价通知,逐次涨幅均在10%以上。这也让终端客户感受到成本的压力。

硅晶圆难求 8寸趋紧

今年以来硅晶圆涨价形势迅猛,平均价格第4季已至80美元,明年第1季可能狂飙至100美元。根据SEMI最新分析,半导体硅晶圆价格从今年第1季起涨,呈现逐季攀升的态势,12寸晶圆价格涨幅高于8寸。不过有业者表示后续8寸硅晶圆价格涨幅将超越12寸产品。

全球前五大硅晶圆厂商皆不可能短时间内扩产。过去几年,硅晶圆厂一直处于供过于求的局面,市场低迷,今年则不然,供应紧张。晶圆大厂纷纷抢硅晶圆产能,以前的情况,签长约包价格包产能,今年只包产能,价格跟随市场。大型晶圆厂以此保障得到充足的晶圆片供应。

大多数MOSFET原厂受此影响巨大,并且影响在下半年较上半年更严峻。“现在的主要影响并非晶圆厂的产能满,而是硅晶圆的短缺,这个情况晶圆厂也无法把控。”深圳市芯电元科技有限公司总经理黄凤明告诉国际电子商情记者。他说,除了大的晶圆厂包产能之外,一般晶圆厂购买硅晶圆的数量在几百片每批次,大大低于此前的供应量。

国际电子商情从供应链了解到,此前台湾某晶圆厂水槽污染事件报废上万片晶圆,多晶硅厂爆炸事故等对供应造成了一定的影响,导致向原厂交货延迟,给原本缺货的市场雪上加霜。

后续若硅晶圆的供应情况得不到改善将直接影响晶圆产能,从而波及整个市场。

晶圆厂产能分配变化,原厂议价抢产能

目前,国内功率器件的晶圆代工厂主要有华虹宏力、重庆中航、华润上华、上海先进等。

从晶圆厂整体产能看,据华虹宏力2017年第三季度的财报,华虹宏力三座晶圆厂的月产能达到16.6万片,其中1厂6.3万片,2厂5.7万片,3厂4.6万片。1厂在今年有所增产,一季度月产能为5.6万片,三季度较一季度扩产7000片。3厂也同比扩产4000片。2017年第三季度分立器件销售收入占比达27.6%,较第一季度的26.4%上升1.2%。

重庆中航微电子月产能4万片,主要以功率半导体器件、功率/模拟集成电路为产业基础,面向工业电子、消费电子、汽车电子和航空电子芯片市场。

华润上华拥有2条六英寸生产线和1条是八英寸生产线。以产能计为目前国内最大的六英寸代工企业,月产能21万片。八英寸生产线目前月产能已达6.5万片。

上海先进半导体有两座晶圆厂,一座制造5英寸和6英寸晶圆,另一座制造8英寸晶圆。2017年第3季度生产8英寸等值晶圆片的产能总体为15.7万片,其中5英寸晶圆产能为9000片,6英寸为7.1万片,8英寸为7.7万片。据了解,上海先进的功率器件月产能体量不大。

此外,杭州士兰微月产5英寸芯片10万片,6英寸芯片 5万片。公司8英寸芯片生产线8月份已生产6500片,今年底目标产能力争1.5万片/月,争取在明年底实现3-4万片的月产能。

在现有条件下,晶圆厂产能满载,据悉有国际大厂提价30%抢产能,对于中小原厂来说议价能力弱,若要获得充足供应有一定难度。

由于功率器件与电源IC、MCU、指纹芯片等同为8寸产线,晶圆厂出于工艺、利润以及市场需求等考虑更青睐于MCU等产品,相应的MOSFET交货量无法得到完全满足。国际电子商情了解到,有MOSFET原厂的订单相比顶峰时缩减一半。

与此同时,晶圆厂的订单大量积压,据悉由于产能太满,国内某晶圆厂仅6月份就有几十万订单无法入系统。

另外,国际IDM厂产能移转至汽车电子中高压MOSFET市场,或是超级结和IGBT,所以中低压MOSFET严重缺货。

黄凤明表示,现在与晶圆厂谈供货更多的是拼人品。当然,与其说拼人品,事实上也在于此前建立的良好合作。“每个月初我们的应收款应该有90%都到账了,客户对我们不拖账,我们也不对供应商拖账,彼此形成了信任和默契。有了这样的合作,在困难时期更能够相互理解、配合。在这个晶圆紧缺的时期,芯电元的供货才相对稳定得多。”

需求增加两三倍

整体来看,个人计算机及绘图卡等新平台推出后,单一系统MOSFET搭载量将较上代平台增加超过1倍,加上Type-C或USB 3.1等高速传输接口也需搭载更多MOSFET。下半年消费性电子传统旺季,各大ODM/OEM厂扩大采购MOSFET。

终端市场确有增长,MOSFET厂商有着直观感受。据黄凤明介绍,一家做iPhone周边快充产品的客户,去年7-8kk的月需求量今年猛增到20kk,两三倍的增长。消费类电子更新换代快,如很多人的手机一年一换的频繁,也加速了MOSFET的消费。快速充电、无线充电、充电桩等都对MOSFET存在巨大的需求。以快充为例,对MOSFET体积要求更大,相应的占用晶圆面积也大,这无疑加剧了晶圆的消耗。

MOSFET缺货涨价,对行业的影响

MOSFET今年走俏,终端客户遇到需求不足,原厂一般会建议及时寻找替代品。黄凤明谈及,推荐客户进行产品替代的同时,甚至将高价值的产品让利给客户进行替用。“我们带ESD静电保护功能的MOSFET价格较普通MOSFET高,如若部分普通MOSFET缺货,我们也用价格高的产品进行替代,但不会对客户加价。”经过今年的涨价行情,客户也逐渐接受了MOSFET并非只跌不涨的现实。

面对缺货涨价,各个环节的配合与包容非常重要,原厂、代理商、电子制造企业通过各自的调整帮助下游消化一部分成本压力。黄凤明表示,汇率上涨、晶圆涨价等影响芯电元都在承担这样的成本压力,大多数时候内部消化,目的是让利给下游客户。他们的代理商也同样给出利润点,令下游客户更缓和的承受涨价。电子制造商也应当在成本核算时腾出一部分的涨价预期,以抵御这样突如其来的涨价潮。

由于此前MOSFET一直处于议价能力弱的地位,黄凤明认为现在的涨价可以看成压迫性反弹。经过这波涨价,终端客户也面临洗牌。仅以低端产品打价格战的终端客户恐因承担不起涨价压力而面临困难,真正产品品质高的终端厂商更能抵抗风暴。

现阶段,硅晶圆的缺口仍然存在,晶圆厂若扩产也将受限于此,因此MOSFET缺货将持续到明年,但预计MOSFET价格将趋于稳定,若涨也只是小幅上涨。

(备注:文章来源于网络,信息仅供参考,不代表本网站观点,如有侵权请联系删除!)

在线留言询价

相关阅读
上海雷卯:MOSFET器件参数:TJ、TA、TC到底讲啥?
  作为上海雷卯电子的一名资深工程师,我经常被问及MOSFET器件的参数计算问题。在本文中,我将分享关于MOSFET中几个关键温度参数的计算方法:TJ(结温)、TA(环境温度)和TC(外壳温度)。  1. MOSFET温度参数的重要性  在电力电子应用中,温度是影响MOSFET性能和寿命的关键因素。过高的温度会导致器件性能下降,甚至损坏。因此,了解和计算这些温度参数对于确保MOSFET器件的稳定运行至关重要。  2. 温度参数定义TJ、TA、TC  l TJ(结温)(Junction Temperature):是指 MOSFET 芯片内部 PN 结的温度。它是 MOSFET 工作时所能承受的最高温度限制,超过这个温度可能会导致器件性能下降、损坏甚至失效。  l TA(环境温度)(Ambient Temperature)”,指 MOSFET 所处的周围环境的温度。  TC(外壳温度)Case Temperature):MOSFET外壳表面的温度。 计算结温需要用到热阻参数,下面介绍热阻参数。  3. 热阻定义及计算  热阻(Rθ)是衡量热量传递难易程度的参数。  l 结到壳的热阻(RθJC):表示从 MOSFET 的结(Junction)到壳(Case)的热阻。  l 壳到环境的热阻(RθCA):表示从 MOSFET 的壳到周围环境的热阻。  l 结到环境的热阻(RθJA):RθJA = RθJC + RθCA。  MOSFET 通常会给出结到壳(RθJC)、结到环境(RθJA)等热阻参数。热阻可以通过数据手册获取。  4. TJ、TA、TC 三个温度参数关系  TJ(结温)= TC(壳温)+ 功率损耗×(结到壳的热阻 RθJC); 公式1  TC(壳温)= TA(环境温度)+ 功率损耗×(壳到环境的热阻 RθCA);公式2  代入公式1,综合可得:  TJ(结温)= TA(环境温度)+ 功率损耗×(结到壳的热阻 RθJC + 壳到环境的热阻 RθCA)  其中功率损耗(Pd)主要由导通损耗和开关损耗组成。  导通损耗 = I² × Rds(on) (其中 I 是导通电流,Rds(on) 是导通电阻)  开关损耗的计算较为复杂,通常需要考虑开关频率、驱动电压等因素,并且可能需要参考 MOSFET 的数据手册提供的公式或曲线。  5.温度计算实例  以下为您提供几个 MOSFET 温度参数计算的实际案例:  例一:  一个 MOSFET 的导通电阻 RDS(on) 为 0.1Ω,导通电流 Id 为 10A,结到环境的热阻 RθJA 为 50°C/W,环境温度 TA 为 25°C。首先计算功率损耗:P = Id²×RDS(on) = 10²×0.1 = 10W  然后计算结温:TJ = TA + P×RθJA = 25 + 10×50 = 525°C  例二:  另一个 MOSFET 的导通电阻 RDS(on) 为 0.05Ω,导通电流 Id 为 5A,结到壳的热阻 RθJC 为 2°C/W,壳到环境的热阻 RθCA 为 30°C/W,环境温度 TA 为 20°C。  先计算导通损耗:P = Id²×RDS(on) = 5²×0.05 = 1.25W  由于热阻是串联的,总热阻 RθJA = RθJC + RθCA = 2 + 30 = 32°C/W结温 TJ = TA + P×RθJA = 20 + 1.25×32 = 60°C  例三:  某 MOSFET 在高频开关应用中,开关损耗为 5W,导通损耗为 3W,结到环境热阻 RθJA 为 60°C/W,环境温度 TA 为 30°C。  总功率损耗 P = 5 + 3 = 8W  结温 TJ = TA + P×RθJA = 30 + 8×60 = 510°C  6.结论  通过上述计算,我们可以看到,MOSFET的结温可能达到非常高的水平。一般来说,MOSFET 所能承受的最高结温是有限制的,在设计和使用时,需要确保结温不超过这个极限值,因此,设计合适的散热方案和监控温度是至关重要的。作为上海雷卯电子的工程师,我们始终致力于提供高性能的MOSFET器件,并为客户提供准确的参数计算指导,以确保器件的长期稳定运行。  请注意,本文中的计算仅为示例,实际应用中应根据具体的器件参数和工作条件进行计算。上海雷卯电子提供的器件数据手册和技术支持将帮助您更准确地进行温度参数的计算和评估。  雷卯电子专业为客户提供电磁兼容EMC的设计服务,提供实验室做摸底免费测试,为客户高效,控本完成设计,能快速通过EMC的项目,提高产品可靠性尽力。
2024-08-23 11:15 阅读量:437
增强型和耗尽型MOSFET之间的区别是什么
  在现代电子领域中,MOSFET(金属氧化物半导体场效应晶体管)是一种关键的器件,被广泛用于数字集成电路、模拟电路和功率电路中。其中,增强型和耗尽型MOSFET是两种常见类型,它们在工作原理、特性以及应用方面存在着明显的区别。  1. 增强型MOSFET  增强型MOSFET是一种N沟道或P沟道MOSFET,在没有栅极电压的情况下,处于截止状态。当栅极电压施加到增强型MOSFET上时,会形成一个导电通道,使得器件能够导通电流。主要特点包括:  需要正向栅压:增强型MOSFET需要在栅极上施加正向电压,才能形成导电通道。  高输入阻抗:由于没有直接的电流流过栅极,增强型MOSFET具有较高的输入阻抗。  用途广泛:在数字集成电路和大多数应用中,增强型MOSFET是最常用的器件之一。  2. 耗尽型MOSFET  耗尽型MOSFET在没有栅极电压的情况下是导通的,而当施加负向栅极电压时,会在沟道中形成势垒,使其截止导通。耗尽型MOSFET的特点包括:  需要负向栅压:耗尽型MOSFET需要在栅极上施加负向电压,才能实现截止导通。  低输入阻抗:由于栅极上的电流会直接影响器件导通状态,耗尽型MOSFET通常具有较低的输入阻抗。  适用于某些特定应用:耗尽型MOSFET通常用于一些特殊场合,如功率放大器和特定模拟电路。  阅读更多行业资讯,可移步与非原创,AI产业链光模块企业分析之二——新易盛、产研:消费先行,车载可期,星闪的主战场?、MCU主要新品梳理 | 2024年上半年 等产业分析报告、原创文章可查阅。  3.区别总结  1. 工作状态不同:  增强型MOSFET:需正向栅压激活。  耗尽型MOSFET:无需栅极电压即可导通,需要负向栅压来截止导通。  2. 输入阻抗不同:  增强型MOSFET:具有高输入阻抗。  耗尽型MOSFET:具有低输入阻抗。  3. 应用范围不同:  增强型MOSFET:在数字集成电路和大多数应用中普遍使用。  耗尽型MOSFET:通常用于功率放大器等特殊应用。  无论是在数字电路设计还是在模拟电路方面,深入了解它们的特性可以帮助工程师更好地优化系统性能,并确保所选器件符合特定应用的要求。
2024-07-04 10:17 阅读量:450
MOSFET器件选型考虑哪些因素?4大法则搞定MOSFET器件选型
  俗话说“人无远虑必有近忧”,对于电子设计工程师,在项目开始之前,器件选型之初,就要做好充分考虑,选择最适合自己需要的器件,才能保证项目的成功。  功率MOSFET恐怕是工程师们最常用的器件之一了,但你知道吗?关于MOSFET的器件选型要考虑方方面面的因素,小到选N型还是P型、封装类型,大到MOSFET的耐压、导通电阻等,不同的应用需求千变万化,下面这篇文章总结了MOSFET器件相关选型法则,相信看完你会大有收获。  第一步:选用N沟道还是P沟道  为设计选择正确器件的第一步是决定采用N沟道还是P沟道MOSFET。在典型的功率应用中,当一个MOSFET接地,而负载连接到干线电压上时,该MOSFET就构成了低压侧开关。在低压侧开关中,应采用N沟道MOSFET,这是出于对关闭或导通器件所需电压的考虑。当MOSFET连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用P沟道MOSFET,这也是出于对电压驱动的考虑。  要选择适合应用的器件,必须确定驱动器件所需的电压,以及在设计中最简易执行的方法。下一步是确定所需的额定电压,或者器件所能承受的最大电压。额定电压越大,器件的成本就越高。根据实践经验,额定电压应当大于干线电压或总线电压。这样才能提供足够的保护,使MOSFET不会失效。就选择MOSFET而言,必须确定漏极至源极间可能承受的最大电压,即最大VDS。知道MOSFET能承受的最大电压会随温度而变化这点十分重要。设计人员必须在整个工作温度范围内测试电压的变化范围。额定电压必须有足够的余量覆盖这个变化范围,确保电路不会失效。设计工程师需要考虑的其他安全因素包括由开关电子设备(如电机或变压器)诱发的电压瞬变。  第二步:确定额定电流  第二步是选择MOSFET的额定电流。视电路结构而定,该额定电流应是负载在所有情况下能够承受的最大电流。与电压的情况相似,设计人员必须确保所选的MOSFET能承受这个额定电流,即使在系统产生尖峰电流时。两个考虑的电流情况是连续模式和脉冲尖峰。在连续导通模式下,MOSFET处于稳态,此时电流连续通过器件。脉冲尖峰是指有大量电涌(或尖峰电流)流过器件。一旦确定了这些条件下的最大电流,只需直接选择能承受这个最大电流的器件便可。  选好额定电流后,还必须计算导通损耗。在实际情况下,MOSFET并不是理想的器件,因为在导电过程中会有电能损耗,这称之为导通损耗。MOSFET在“导通”时就像一个可变电阻,由器件的RDS(ON)所确定,并随温度而显著变化。器件的功率耗损可由Iload2×RDS(ON)计算,由于导通电阻随温度变化,因此功率耗损也会随之按比例变化。对MOSFET施加的电压VGS越高,RDS(ON)就会越小;反之RDS(ON)就会越高。对系统设计人员来说,这就是取决于系统电压而需要折中权衡的地方。对便携式设计来说,采用较低的电压比较容易(较为普遍),而对于工业设计,可采用较高的电压。注意RDS(ON)电阻会随着电流轻微上升。  第三步:确定热要求  选择MOSFET的下一步是计算系统的散热要求。设计人员必须考虑两种不同的情况,即最坏情况和真实情况。建议采用针对最坏情况的计算结果,因为这个结果提供更大的安全余量,能确保系统不会失效。在MOSFET的资料表上还有一些需要注意的测量数据;比如封装器件的半导体结与环境之间的热阻,以及最大的结温。  器件的结温等于最大环境温度加上热阻与功率耗散的乘积(结温=最大环境温度+[热阻×功率耗散])。根据这个方程可解出系统的最大功率耗散,即按定义相等于I2×RDS(ON)。由于设计人员已确定将要通过器件的最大电流,因此可以计算出不同温度下的RDS(ON)。值得注意的是,在处理简单热模型时,设计人员还必须考虑半导体结/器件外壳及外壳/环境的热容量;即要求印刷电路板和封装不会立即升温。  第四步:决定开关性能  选择MOSFET的最后一步是决定MOSFET的开关性能。影响开关性能的参数有很多,但最重要的是栅极/漏极、栅极/ 源极及漏极/源极电容。这些电容会在器件中产生开关损耗,因为在每次开关时都要对它们充电。MOSFET的开关速度因此被降低,器件效率也下降。为计算开关过程中器件的总损耗,设计人员必须计算开通过程中的损耗(Eon)和关闭过程中的损耗(Eoff)。MOSFET开关的总功率可用如下方程表达:Psw=(Eon+Eoff)×开关频率。而栅极电荷(Qgd)对开关性能的影响最大。
2024-03-25 13:13 阅读量:1082
MOSFET和IGBT有什么不同之处
  MOS晶体管是MOSFET,中文全称为金属氧化物半导体场效应晶体管,称为金氧半场效应晶体管是一种场效应晶体管可广泛用于模拟电路和数字电路。因为该FET的栅极由绝缘层隔离,所以也称为绝缘栅极FET。MOSFET可分为N沟道耗尽型和增强型;有四大类P沟耗尽型和增强型。接下来由Ameya360电子元器件采购网讲给大家进行介绍!  IGBT即绝缘栅双极晶体管,是一种由BJT(双极晶体管)和MOS(绝缘栅FET)组成的复合型全控电压驱动功率半导体器件,它结合了MOSFET的高输入阻抗和GTR的低导通压降的优点。GTR饱和电压降低,载流密度大,但驱动电流大;MOSFET驱动功率小,开关速度快,但传导压降大,载流密度小。IGBT结合了上述两种器件的优点,具有较小的驱动功率和降低的饱和电压。非常适用于直流电压600V及以上的变流器系统,如交流电机、变频器、开关电源、照明电路、牵引传动等领域。  MOSFET有多种类型,但与IGBT最可比的是功率MOSFET。它设计用于处理重要的功率级别。它们只在“开”或“关”状态下使用,这使它们成为使用最广泛的低压开关。与IGBT相比,功率MOSFET在低电压下工作时具有更快的换向速度和更高的效率。  更重要的是,它可以保持高阻断电压和高电流。这是因为大多数功率MOSFET结构是垂直的(不是平面的)。其额定电压是N外延层掺杂和厚度的直接函数,其额定电流与沟道宽度有关(沟道越宽,电流越高)。由于其效率,功率MOSFET被用于电源、DC/DC转换器和低压电机控制器。  MOSFET和IGBT绝缘栅双极大功率管和其他器件在源极和栅极之间具有绝缘硅结构,直流电流无法通过,因此低频行为驱动功率接近于零。然而,栅极电容器Cgs形成在栅极和源极之间,因此当高频交替接通和需要关断时,需要一定的动态驱动功率。  由于大的栅极电容Cgs,低功率MOSFET的Cgs通常在10-100pF之间,对于高功率绝缘栅极功率器件。通常在1-100nF之间,需要较大的动态驱动功率。此外,由于漏极到栅极的米勒电容Cdg,栅极驱动功率通常不可忽略。由于IGBT具有电流拖尾效应,因此在停机期间需要更好的抗扰性,并且需要负电压驱动。MOSFET比较快,可以在没有负电压的情况下关断,但当干扰严重时,负电压关断对提高可靠性非常有利。  MOSFET应用于开关电源、镇流器、高频感应加热、高频逆变焊机、通信电源等高频电源,IGBT专注于焊接、逆变器、逆变器、电镀电源、超级音频感应加热等领域。
2023-02-13 10:40 阅读量:1118
  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
型号 品牌 抢购
TPS63050YFFR Texas Instruments
IPZ40N04S5L4R8ATMA1 Infineon Technologies
STM32F429IGT6 STMicroelectronics
BU33JA2MNVX-CTL ROHM Semiconductor
BP3621 ROHM Semiconductor
ESR03EZPJ151 ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
相关百科
关于我们
AMEYA360微信服务号 AMEYA360微信服务号
AMEYA360商城(www.ameya360.com)上线于2011年,现 有超过3500家优质供应商,收录600万种产品型号数据,100 多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+ 连接器等多个领域,平台主营业务涵盖电子元器件现货销售、 BOM配单及提供产品配套资料等,为广大客户提供一站式购 销服务。