上海雷卯:<span style='color:red'>MOSFET</span>,让机器人关节“活”起来的隐形冠军
  每一次机器人手臂的精准抓取,每一处灵巧关节的流畅转动,背后都有一群“隐形冠军”在高效协同。在关节驱动板微小的空间内,MOSFET正以每秒数万次的高速开关,将控制指令转化为精确的扭矩与速度。  作为三相逆变电路中的核心功率开关器件,MOSFET不仅是能量转换的“咽喉”,更是决定机器人关节效率、响应速度与长期可靠性的关键元件。它的选型,是一场融合电气性能、热力学、电磁兼容性(EMC)与机械布局的系统工程。  一.关节驱动的核心挑战:为何MOSFET是关键?  现代机器人关节普遍采用无刷直流电机(BLDC)或磁场定向控制(FOC)电机,其驱动架构为三相全桥逆变电路,由六个MOSFET组成上下桥臂,将直流母线电压转化为三相交流电驱动电机旋转。  在此拓扑中,MOSFET承担着高频功率开关的角色,直接影响三大核心指标:  MOSFET不仅是“开关”,更是系统性能的瓶颈所在。  二.选型实战:科学决策,避免  “纸上达标”  1.选型四步法  上海雷卯EMC小哥总结MOSFET选型应遵循以下步骤:  特别提醒:数据手册首页参数不足以判断实际表现,务必查阅特性曲线图如Vds(on)@IdVds(on),Rds(on)(T)进行综合评估。  2.雷卯电子 N+P 合封 MOSFET 解决方案  雷卯电子推出N+P合封MOSFET,专为机器人关节驱动优化,在集成度、一致性与可靠性方面具备显著优势,列出部分型号。  LM3D40NP02,LM4606,LMAK68NP04等等。  另也可用单颗NMOS +单颗PMOS 组成上下桥臂。  三.超越数据手册:系统级设计才是  决胜关键  优秀的器件只是起点,真正的性能来自系统级工程实践。雷卯EMC小哥整理如下:  1.热管理:生命线级别的设计  利用 PCB 铜层、导热过孔(via)、导热界面材料(TIM)将热量传导至外壳。  必须进行热仿真,基于RθJC  (结到壳热阻)和实际散热条件计算结温。  关键部位建议集成温度传感器,实现过温降额保护。  2.驱动与布局优化  3.保护电路不可或缺  过流保护(OCP):硬件比较器实现微秒级关断  欠压锁定(UVLO):防止低电压异常启动  温度监控(TMP):实时监测结温,预防热击穿  TVS防护:栅极配置瞬态电压抑制器,抵御ESD与耦合干扰  “没有保护的MOSFET就像没有保险的安全带。”——堵转、急停等极端工况必须被充分考虑。  四.未来展望:向更高密度、更智能迈进  随着仿生人形机器人迈向 31自由度以上 的复杂结构 ,对MOSFET提出更高要求:  1、更高功率密度→ 需采用 DFN、PowerFLAT 等先进封装。  2、更高开关频率(>100kHz)→ 推动低Qg低Crss 器件应用。  3、更强智能化→ 集成驱动+保护功能的 智能半桥模块 成趋势。  宽禁带半导体(SiC/GaN)已在高端场景试点,未来有望打破硅基极限。  雷卯电子将持续深耕功率半导体领域,从硅基优化走向新材料探索,助力机器人实现“更强、更灵、更稳”的运动生命力。  五.总结:专业选型建议清单(工程师版)  MOSFET虽小,却是机器人运动之魂。一次成功的选型,不只是参数的堆砌,而是对系统边界、工况演化与可靠性极限的深刻理解。  雷卯电子愿以高性能器件与深度技术支持,成为每一位机器人工程师背后的坚实伙伴,共同赋予机械以生命的律动。
关键词:
发布时间:2026-01-29 14:50 阅读量:100 继续阅读>>
 ARK方舟微丨DMZ(X)0622E:70V耗尽型<span style='color:red'>MOSFET</span>,一颗替代“三极管+齐纳+电阻”,高压辅助电源优选
  产品简介  DMZ(X)0622E是ARK(方舟微)推出的70V N沟道耗尽型MOSFET,在0615基础上将阈值电压再提升一档:VGS(OFF) 典型–22V(–25V~–19V),可以钳位18V~23V输出,完全覆盖QC4.0/Type-C PD3.1快充、工业24V总线、伺服驱动等高压辅助电源需求。SOT-23与SOT-89两种封装,一颗器件替代“三极管+齐纳+电阻”三元组。  产品特性  · 产品类型:N沟道耗尽型MOSFET。  · 超高阈值电压:-25V≤VGS(OFF)@ID=8μA≤-19V。  · 输入耐压: BVDSX≥70V。  · 导通电阻:RDS(on)(MAX)≤15Ω。  · 饱和电流:IDSS≥120mA  QC4.0/Type-C快充 PWM IC 供电  Ø采用三极管+齐纳二极管+电阻的传统供电电路  图2为Type-C PD充电器的示意图。其中采用三极管、电阻、齐纳二极管等组成电压调节器,给PWM IC的VCC供电。由于充电器的输出电压较宽,可达3.3-20V,因此偏置绕组的输出电压变化范围也较大。在充电器输出较高电压时,齐纳二极管击穿,将电压钳位,给VCC提供稳定的电压。此方案采用较多元件,增加BOM成本和PCB面积,占用较多的宝贵空间,同时耗能较多,降低能效。  Ø采用DMZ(X)0622E的新型供电电路  成都方舟微电子有限公司利用其专有技术开发的具有超高阈值电压(超高关断电压)的耗尽型MOSFET DMZ(X)0622E,仅用此一个器件就实现了宽电压输入电压调节器的功能。对追求极致最小尺寸的充电器或适配器的设计工程师,是一个理想的选择。此方案不仅节约空间及面积,而且更加节能。图3是DMZ(X)0622E在Type-C PD充电器的典型应用电路。  图3中的双极型晶体管、齐纳二极管及限流电阻网络可被单颗耗尽型MOSFET DMZ(X)0622E直接取代,从而在减少元器件数量的同时显著压缩PCB占用面积,并降低整体BOM成本。  启动阶段由耗尽型MOSFET DMZ6005E负责:当充电器接入市电并开始工作后,辅助绕组随即建立电压并向PWM IC供电;此时DMZ6005E自动关断,将通路电流降至漏电流级别,使系统待机功耗大幅降低。DMZ6005E的详细技术资料可在ARK(方舟微)官网获取。  电流/电压源  Ø 电流/电压源  DMZ(X)0622E可用作电流或电压源,为负载提供电力,如图4所示。  输出电压Vout由负载RL、电流ID以及VGS(关断状态)决定:  ID=IDSS*(1+ID*RL/VGS(OFF))2  其中:ID*RL=-VGS=Vout  由上述关系可见,耗尽型MOSFET工作于亚阈值区(弱反型区),其输出电压Vout始终被限制在略低于或接近于栅-源截止电压VGS(OFF) 的电位,且与输入电压Vout的变化无关。因此,器件除为后级IC提供工作电源外,还利用VGS(OFF)实现主动钳位,有效抑制输入瞬态或负载突变引起的电压、电流波动,对IC起到次级保护作用。DMZ(X)0622E最高可承受70V输入,Vin与Vout的关系满足以下公式:  If Vin<∣VGS(OFF)∣, then Vout≈Vin  If Vin≥∣VGS(OFF)∣, then Vout≤VGS(OFF)  DMZ(X)0622E是ARK(方舟微)基于其专利工艺开发的超高阈值耗尽型功率MOSFET。器件关断电压VGS(OFF)分布在−19V至−25V之间,可为反激变换器中的PWM IC等负载提供足够的栅-源驱动电压。  由于VGS(OFF)呈工艺正态分布,不同批次器件的钳位电压存在差异。图6给出了VGS(OFF)最高(−19V)与最低(−25V)两颗样品的输出电压Vout随结温Tj变化的曲线,表明 Vout的钳位值会随温度及VGS(OFF)漂移而相应变化。  图7和图8分别展示了DMZ(X)0622E的输出电压Vout与负载电流IRL以及结温TJ的关系特性,这两款MOSFET的VGS(OFF)分别为,最高-19V,最低-25V。
关键词:
发布时间:2026-01-27 13:24 阅读量:298 继续阅读>>
以小搏大,以硅基成本享碳化硅性能:森国科微型化750V SiC <span style='color:red'>MOSFET</span>晶圆的破局之道
  在功率半导体领域,碳化硅(SiC)技术以其卓越的电气性能已成为不争的未来趋势。然而,市场普及始终面临一个核心挑战:如何在不牺牲性能的前提下,将成本降至可与成熟硅基产品正面竞争的水平?森国科最新推出的KWM2000065PM(750V/2Ω)与 KWM1000065PM(750V/1Ω)两款SiC MOSFET产品,以其革命性的微型化芯片设计,给出了一个强有力的答案——通过极致缩小的Die Size,实现系统级成本与性能的双重优势,直指高压平面MOSFET与SJ MOSFET的替代市场。  01技术深潜:微型化Die引发的性能与成本革命  这两颗晶圆最引人注目的特点,是其极其紧凑的尺寸。KWM2000065PM的芯片面积(不含划片道)仅为0.314 mm²(0.560 * 0.560mm),而KWM1000065PM也仅为0.372 mm²(0.560 * 0.665mm)。这一尺寸远小于同规格的硅基器件,奠定了其颠覆性优势的基础。  热性能的先天优势:更稳定,更高效  与传统硅基MOSFET相比,SiC材料本身拥有高出三倍的热导率。这意味着,在同等体积下,SiC芯片内部的热量能更快速地传导至外壳。结合森国科这两款产品的微型化设计,其热阻(RthJC)具备先天的稳定性优势。  --热阻稳定性:硅器件在高温下导通电阻(RDS(on))会急剧增大,而SiC的RDS(on)随温度变化率远低于硅。规格书显示,即使在175°C的高结温下,KWM1000065PM的导通电阻典型值仅从25°C时的1.0Ω升至1.6Ω,变化幅度远优于同级硅器件。这带来了更可预测的功耗和更稳定的高温运行表现。  --高效散热:小尺寸Die允许采用成本更低、体积更小的封装(如DFN5x6, TO-252等)。由于芯片热点与封装外壳的热路径极短,热量能更高效地散发,从而允许器件在更高的功率密度下运行,或减少散热系统的体积与成本。  电气性能的极致化:支持高频、高可靠性应用  高开关速度与低损耗:两款产品均具备极低的电容(Ciss/Coss/Crss),例如KWM2000065PM的Crss典型值低至1.0pF。这直接转化为更快的开关速度、更低的开关损耗(Eon/Eoff)和更小的栅极振荡,为高频开关电源提升效率、缩小无源元件体积奠定了基础。  --750V耐压的可靠性裕量:相较于传统的600V-650V硅基MOSFET,750V的额定电压提供了更强的抗电压冲击和浪涌能力,在PFC电路、反激式拓扑等应用中,系统可靠性得到显著提升。  --快速体二极管:内置的体二极管具有快速反向恢复特性(Qrr低),在桥式电路或硬开关条件下,能有效降低反向恢复损耗,提升整体效率。  成本结构的颠覆:从“芯片成本”到“系统成本”的胜利  这才是森国科此次产品的核心破局点。微型化Die的直接优势是:  单颗芯片成本大幅降低:在同等晶圆上,更小的尺寸意味着可切割的芯片数量呈指数级增长,直接摊薄了单片晶圆的制造成本。  --封装成本显著下降:小芯片可采用更小、更简单的封装,封装材料(塑封料、引线框)和工艺成本随之降低。  --系统级成本优化:由于SiC的高频、高效特性,电源系统中的散热器、磁性元件(电感、变压器)和滤波电容都可以做得更小、更轻,从而在整体系统层面实现显著的体积缩减和成本节约。  02应用蓝图:灵活封装策略覆盖广阔市场  森国科此次提供晶圆形态的产品,赋予了下游客户极大的设计灵活性,精准瞄准两大应用方向:  合封(Chip-in-Package):赋能超紧凑电源  对于追求极致功率密度的应用,如氮化镓快充充电器、服务器AC/DC电源模块、通信电源模块等,这两颗小尺寸Die可与控制器、驱动IC等合封在一个多芯片模块(MCPM)内。这种“All-in-One”的方案能最大限度地减少寄生参数,提升频率和效率,是实现拇指大小百瓦级快充的理想选择。  独立封装:替代传统硅基MOSFET  对于工业电源、光伏逆变器辅助电源、电机驱动、LED照明驱动等需要独立器件的应用,这两颗晶圆可被封装为成本极具竞争力的分立器件。其目标正是直接替代目前市场中广泛使用的750V-800V高压平面MOSFET和超结MOSFET(SJ-MOSFET),让终端产品在几乎不增加成本的情况下,轻松获得效率提升、体积缩小和可靠性增强的优势。  03市场展望:开启“硅基成本,碳化硅性能”的新纪元  森国科KWM2000065PM与KWM1000065PM的推出,具有深远的市场意义。它标志着SiC技术不再仅仅是高端应用的奢侈品,而是可以通过创新的设计与制造工艺,下沉到主流功率市场,成为替代硅基产品的“性价比之选”。  森国科的这两款微型化750V SiC MOSFET晶圆,是一次精妙的“四两拨千斤”。它们没有盲目追求极致的单一性能参数,而是通过芯片尺寸的微型化革命,巧妙地平衡了性能、可靠性与成本,精准击中了市场普及的痛点。这不仅是两款优秀的产品,更代表了一种清晰的市场战略:让碳化硅的强大性能,以客户乐于接受的成本,渗透到每一个可能的电力电子角落,加速全球电气化的高效与节能进程。对于所有寻求产品升级换代的电源工程师而言,这无疑是一个值得密切关注的技术风向标。
关键词:
发布时间:2026-01-26 17:43 阅读量:329 继续阅读>>
森国科发布创新TOLL+Cu-Clip封装SiC <span style='color:red'>MOSFET</span>,重新定义功率密度与散热新标准
  在追求更高效率、更高功率密度的电力电子领域,碳化硅(SiC)功率器件的性能优势已得到广泛认可。然而,传统的封装技术正成为限制其潜能全面释放的关键瓶颈。森国科(SGKS)近日创新性地推出KM025065K1(650V/25mΩ)与 KM040120K1(1200V/40mΩ)两款SiC MOSFET产品,率先将TOLL封装与铜夹片(Cu-Clip)技术深度融合,为下一代高性能电源方案树立了新标杆。  01 技术基石:为何选择TOLL封装?  TOLL(TO-Leaded,L-type)封装是一种专为大电流、高散热需求设计的表面贴装(SMD)封装。其外形与标准的TO-LL规范兼容,具备以下核心优势:  低外形与高功率密度:  TOLL封装的高度通常极低(如规格书中标注的典型值为2.30mm),非常适合在空间受限的应用中实现高功率密度布局。  出色的散热能力:  封装底部具有大面积的可焊接散热焊盘,为芯片到PCB(或散热器)提供了极低的热阻路径。规格书中KM025065K1的结壳热阻(RθJC)低至0.46°C/W,KM040120K1更是达到0.42°C/W,为高效散热奠定了基础。  低寄生电感:  多个开尔文源极引脚和功率引脚的优化布局,有助于减小开关回路中的寄生电感,这对于发挥SiC高频开关优势、抑制电压过冲和振铃至关重要。  02 性能跃迁:Cu-Clip技术如何赋能TOLL封装?  森国科的创新之处在于,在TOLL封装内部,用铜夹片(Cu-Clip) 替代了传统的铝键合线(Bonding Wires)。  彻底告别键合线瓶颈:  传统键合线存在寄生电感较大、载流能力有限、热机械可靠性等问题。Cu-Clip通过一块扁平的铜片直接连接芯片源极和引线框架,实现了面接触。  实现“三位一体”的性能提升:  超低导通电阻:  铜的导电性远优于铝,Clip结构提供了更广阔的电流通道,显著降低了封装内部的导通电阻。  极致散热性能:  铜片成为高效的导热桥梁,将芯片产生的热量快速、均匀地传导至整个引线框架和封装外壳,这正是实现超低RθJC的关键。  更高的可靠性与电流能力:  消除了键合线可能因热疲劳而脱落的风险,载流能力大幅提升,规格书中KM025065K1的连续漏极电流在Tc=25°C时高达91A。  03 强强联合:TOLL+Cu-Clip与SiC晶圆的完美协同  当优化的TOLL封装、先进的Cu-Clip互联技术与高性能SiC晶圆相结合,产生了“1+1+1>3”的协同效应:  充分发挥SiC高频特性:  低寄生电感的封装允许SiC芯片以更快的速度开关(如KM025065K1的上升时间tr=28ns),从而显著降低开关损耗,提升系统频率和效率。  最大化功率密度:  优异的散热能力使得器件能在更高结温(Tj=175°C)下持续输出大电流,允许使用更小的散热器,最终实现系统体积和重量的大幅缩减。  提升系统鲁棒性:  KM040120K1规格书中特别提到“带有单独驱动源引脚的优化封装”,这有助于进一步改善开关性能,减少栅极振荡,使系统运行更稳定可靠。  04 应用场景:为高效能源未来而生  这款创新封装的SiC MOSFET非常适合对效率、功率密度和可靠性有严苛要求的应用:  光伏/储能逆变器:  高开关频率可减小无源元件体积,高效率直接提升发电收益。  电动汽车车载电源(OBC/DCDC)与电机驱动:  高功率密度和卓越散热是满足紧凑空间和高温环境要求的关键。  服务器电源/通信电源:  助力打造效率超过80 Plus钛金标准的高密度电源模块。  工业电机驱动与不间断电源(UPS):  高可靠性和高频特性满足工业环境的严苛需求。  森国科KM025065K1与KM040120K1的推出,不仅是两款新产品的面世,更是一次针对功率封装瓶颈的精准突破。它证明了通过封装-互联-芯片的协同设计与创新,能够充分释放第三代半导体的巨大潜力。这为设计工程师在面对未来能源挑战时,提供了一把兼具高性能、高可靠性与高功率密度的利器,必将加速光伏、电动汽车、数据中心等关键领域的技术革新。
关键词:
发布时间:2026-01-26 17:39 阅读量:333 继续阅读>>
森国科SiC <span style='color:red'>MOSFET</span>产品矩阵再扩容:三款PDFN8 * 8 + Cu-Clip封装新品引领高功率密度革命
  在小体积、高功率密度、高效散热成为行业刚需的今天,  森国科通过创新的封装技术给出了自己的解决方案。  继成功推出PDFN8 * 8+Cu-Clip封装的SiC二极管后,森国科正式发布三款同封装类型的SiC MOSFET产品——KM025065P1、KM040120P1和KM065065P1,形成了完整的650V-1200V电压覆盖,为高功率密度应用提供了更为丰富的选择。  这一系列新品基于森国科自主研发的第三代平面栅SiC MOSFET芯片技术,通过创新的铜夹片封装技术和优化的内部结构设计,在保持高性能的同时显著提升了散热效率和功率密度。  PART01 三款新品核心参数解析:满足不同功率等级需求  KM025065P1:650V/25mΩ高电流型号  这款产品在25℃条件下连续漏极电流高达91A,脉冲电流能力达到261A,特别适合大电流应用场景。其低导通电阻(典型值25mΩ)确保在高电流下仍保持较低的导通损耗。  该器件结壳热阻低至0.49°C/W,配合Cu-Clip技术,能够将芯片产生的热量快速传导至PCB板,保证在高功率运行时的稳定性。  KM040120P1:1200V/40mΩ高压应用优选  针对光伏逆变器、工业电机驱动等高压应用,KM040120P1提供了1200V的耐压能力,同时在15V驱动电压下导通电阻典型值为40mΩ。该产品静态栅源电压为-5/+15V,适用于严苛的工业环境。  值得一提的是,这款产品特别优化了开关特性,在800V/33A测试条件下,开关能量表现优异(Eon典型值530μJ,Eoff典型值32.1μJ),有效降低系统开关损耗。  KM065065P1:650V/65mΩ性价比之选  对于成本敏感型应用,KM065065P1提供了平衡的性能与价格。其导通电阻典型值为65mΩ,连续漏极电流38A,适合中小功率场景。该产品输入电容仅为977pF,栅极总电荷41nC,便于驱动电路设计。  三款产品均支持-55℃至+175℃的工作结温范围,满足汽车电子、工业控制等严苛环境要求。  PART02 PDFN8 * 8+Cu-Clip封装技术深度解读  PDFN8 * 8+Cu-Clip封装是森国科为应对高功率密度挑战而推出的先进封装解决方案。与传统的引线键合技术不同,Cu-Clip(铜夹片)技术采用扁平铜桥连接芯片表面和外部引脚,有效降低封装电阻和热阻。  这种封装结构的优势显而易见:更低的寄生参数、更好的热性能以及更高的电流承载能力。实测数据显示,与传统封装相比,Cu-Clip技术能够降低约35%的封装电阻,同时提升约20%的电流能力。  热性能是功率器件的关键指标。PDFN8 * 8+Cu-Clip封装通过优化设计,实现了从芯片到PCB的高效热管理路径。三款新品的结壳热阻均在0.46-0.81°C/W范围内,大幅提升了整体散热能力。  封装尺寸方面,PDFN8 * 8保持了8mm×8mm的紧凑外形,引脚间距为2.0mm典型值,厚度控制在0.95mm典型值。这种紧凑设计使得器件在空间受限的应用中具有明显优势。  PART03 电气性能优势:低损耗与高可靠性兼备  开关损耗是影响功率转换效率的关键因素。三款新品在开关特性方面表现出色:  优化的开关速度:  由于减少了栅极回路的寄生电感,新品的开关速度得到显著提升。以KM025065P1为例,其开启延迟时间仅12ns,上升时间28ns,下降时间22ns,支持更高频率的运行。  低栅极电荷:  KM065065P1的栅极总电荷仅为41nC,KM040120P1为84nC,降低驱动电路的设计难度和功率需求。  优异的体二极管特性:  内置的快恢复体二极管具有低反向恢复电荷(Qrr),KM065065P1的Qrr典型值仅为67nC,减少反向恢复损耗。  可靠性方面,所有产品均通过严格的可靠性测试,包括高温反偏(HTRB)、高低温循环等测试,确保在恶劣环境下长期稳定运行。  PART04 应用场景全覆盖:从消费电子到工业驱动  新能源汽车领域  在车载充电机(OBC)和直流-直流转换器中,KM025065P1的高电流能力(91A连续电流)可直接替代多个并联的传统器件,简化系统设计。KM040120P1的1200V耐压适合800V电池系统应用。  可再生能源系统  光伏逆变器是SiC MOSFET的重要应用领域。KM040120P1的高耐压和低导通损耗可有效提升系统效率,配合其优异的开关特性,助力实现99%以上的转换效率。  工业电源与电机驱动  服务器电源、通信电源等场景中,KM065065P1的平衡性能和成本优势明显。其紧凑的封装尺寸有助于提升功率密度,满足现代数据中心对高密度电源的需求。  消费类电子  大功率快充电源适配器、便携式充电站等应用中,KM025065P1的高功率密度特性可在有限空间内实现更大的功率输出。  PART05 设计与应用支持:助力客户快速量产  针对不同的应用场景,森国科技术团队可提供定制化的解决方案,帮助客户优化系统性能,缩短产品上市时间。  在驱动设计方面,由于三款产品的阈值电压(VGS(th))在2.7-3.2V范围内,建议驱动电压在15-18V之间,以确保充分导通的同时避免过驱动。  散热设计建议  虽然Cu-Clip封装具有良好的散热性能,但在大功率应用中仍需注意PCB的热设计。建议使用2盎司及以上铜厚的PCB,并合理设计散热过孔和散热焊盘。  森国科此次推出的三款PDFN8 * 8+Cu-Clip封装SiC MOSFET产品,与先前发布的同封装SiC二极管共同构成了完整的功率半导体解决方案。这一产品组合体现了森国科在碳化硅技术领域的深厚积累和对市场需求的精准把握。  随着新能源、电动汽车等行业的快速发展,对功率器件的功率密度、效率、可靠性要求不断提高。森国科通过持续的技术创新和产品优化,为行业客户提供更具竞争力的解决方案。  未来,森国科将继续扩展Cu-Clip封装的碳化硅功率器件产品线,包括2200V及更高电压等级的器件,为全球绿色能源转型提供核心半导体支撑。  以下是三款产品的规格:
关键词:
发布时间:2026-01-23 11:02 阅读量:368 继续阅读>>
ARK方舟微丨60V耗尽型<span style='color:red'>MOSFET</span>新选择!:低压大电流场景的“效率+小型化”双解方案——DMZ0642
  1、选型推荐  耗尽型 MOSFET 的选型,关键看 “击穿电压(BVDSX)、导通电阻(RDS(on))、饱和电流(IDSS)、封装大小” 四大维度;ARK方舟微这两款产品针对不同低压场景做了精准差异化,先看核心参数对比:  2、产品介绍  产品外观  应用领域  · 固态继电器:DMZ0642 可作为固态继电器的核心开关元件,实现电路的无触点通断控制。相比传统机械继电器,它具有响应速度快、寿命长、抗干扰能力强等优点,广泛应用于工业自动化、智能家居等领域。  · 过压保护电路:耗尽型MOSFET典型的过压保护/稳压输出电路方案,通过选择合适的稳压二极管Vz,即可将高电压转换为稳定的低电压。  · 启动电路:在开关电源(SMPS)中作为启动元件,为IC提供初始工作电流,启动完成后自动退出电路,系统功耗极低。  · 电源转换器与线性稳压器:在DC-DC转换器、线性稳压器中作为功率调节元件,支持高效率电能转换。  · 电流调节器、有源负载:在电流调节和有源负载电路中,DMZ0642能够稳定地调节电流大小,为电路提供稳定的电流输出。其良好的线性度可使负载获得稳定的电流,避免因电流波动对负载造成影响。  · 点火模块与安全系统: 适用于汽车电子、安防设备中的高压点火、触发或保护电路。  3、应用方案  固态继电器(SSR)设计  使用光驱动器和耗尽型MOSFET可用于创建常闭固态继电器。图1显示了两个外部DMZ0642(Q1/Q2)耗尽型场效应管的典型连接,它们以背对背的方式排列,形成AC/DC开关。光驱动器具有内部关断电路,因此不需要外部泄放电阻。  过压保护电路应用方案  图2所示为耗尽型MOSFET典型的过压保护/稳压输出电路方案,通过选择合适的稳压二极管Vz,即可将高电压转换为稳定的低电压。输出电压最大值VOUT与稳压二极管的稳压值Vz和耗尽型MOSFET的阈值电压VGS(OFF)有关,可近似为VOUT(MAX.)≈Vz + |VGS(OFF)|,其中VGS(OFF)为耗尽型MOSFET在对应电流下的阈值电压。当输入电压低于稳压二极管的稳压值Vz时,MOSFET低阻直通,输入电压仅在耗尽型MOSFET的沟道电阻上有较小压降,当有过压信号输入时,MOSFET会将输出电压钳位至VOUT(MAX.),其余高电压被耗尽型MOSFET的D-S承担。该电路结构简单,能有效抑制瞬态浪涌,为负载电路提供过压保护。  4、典型参数及实测  典型参数特性  DMZ0642的转移特性曲线对于工程师设计电路具有重要参考价值。例如,从转移特性曲线中可以看出,在特定的栅源电压下,对应的漏源电流大小。这有助于工程师根据实际需求,精确选择合适的工作点,以实现电路的最佳性能。在电流调节器应用中,通过参考转移特性曲线,工程师可以确定在不同负载电流需求下,所需的栅源电压,从而准确调节 DMZ0642 的导通程度,实现稳定的电流调节。  产品参数实测  5、知识小茶馆  耗尽型 MOSFET 的“饱和电流”  核心定义:  饱和电流 (IDSS) 是耗尽型MOS管最重要的一个静态参数。它是指在栅源电压VGS = 0V的条件下,当漏源电压 VDS 增大到使管子进入饱和区时,所对应的漏极电流。  三个关键点:  1. 测试条件 (VGS = 0V):这是定义 IDSS 的前提。耗尽型MOS管在零栅压时是导通的,IDSS衡量的就是它在这个“自然状态”下的最大电流能力。  2. 工作区域 (饱和区):必须确保MOS管工作在饱和区。当 VDS 增加到一定值(饱和电压)后,漏极电流ID 将不再随 VDS 增加而显著增加,而是趋于一个稳定值,这个值就是饱和电流。  3. 它是一个最大值:IDSS表示的是在零栅压条件下,该器件所能通过的最大电流极限。  它的物理意义是什么?  当 VDS 足够高时,MOS管沟道在漏极一端会出现“夹断”现象。此时,电流的大小不再由沟道的电阻决定,而是由沟道中载流子的迁移速率决定,这个速率达到了极限。因此,电流达到了“饱和”状态。对于耗尽型管,在VGS =0 时这个饱和电流的值就被定义为 IDSS。  如何理解数据手册?  在数据手册中,IDSS 通常会在以下条件下给出:  · VGS = 0V  · VDS = 一个特定的高电压(例如,对于60V的管子,这个电压可能会设为25V或其它值,以确保器件一定工作在饱和区)。  IDSS 与其他电流参数的区别:  · 与 Absolute Maximum Rating ID 的区别:绝对最大额定电流ID是指无论如何都不能超过的电流值,否则会永久损坏器件。IDSS 是器件的一个特性参数,它必须小于ID这个极限值。  核心应用:  IDSS 最主要的应用是构建简易的恒流源电路。只需将耗尽型MOS管的栅极和源极短接(强制 VGS =0V),它就会自动将其电流限制在IDSS值附近,从而为一个负载(如LED)提供恒定电流。  总结:  耗尽型MOS管的饱和电流 IDSS,就是在栅源短接(VGS =0V)且漏源电压足够大的情况下,器件所能提供的最大、稳定的电流值。它是表征器件本身在零栅压时电流输出能力的核心参数。
关键词:
发布时间:2026-01-21 14:00 阅读量:359 继续阅读>>
为智能健身注入高效动能|萨瑞微电子SR45C03PS <span style='color:red'>MOSFET</span> 助力电机驱动与电源管理
  在现代智能健身器材中,高效、静音、可靠的电机驱动与电源管理是关键体验所在。江西萨瑞微电子推出的 SR45C03PS N&P 沟道增强型MOSFET,凭借其低内阻、高散热、快速响应等特性,成为跑步机、动感单车、划船机、力量器械等设备中电机控制与电源系统的理想半导体解决方案。  一、产品核心特点  1、先进沟槽单元设计  采用高效Trench结构,实现低导通电阻与高开关速度的平衡。  2、低热阻设计  结到壳热阻(Rjc)仅为 1.3℃/W,散热性能优异,支持高功率持续输出。  3、低栅极电荷与快速开关  栅极电荷(Qg)低至 33.6nC(N沟道) 与 30nC(P沟道),配合 ns 级开关时间,提升系统响应效率。  4、全面可靠性保障  100% EAS(雪崩能量)测试、100% Rg(栅极电阻)测试,确保每颗器件都符合严苛标准。  5、环保工艺  符合无卤、无铅环保要求,适用于绿色电子产品设计。  二、关键性能参数  作为一款兼顾高电流承载与低损耗的 MOSFET,SR45C03PS 的关键参数堪称 “实力派”:  N沟道 MOSFET  VDSS:30V  RDS(on):6.5mΩ @ VGS=10V, ID=30A  连续漏极电流:82A @ TC=25℃  栅极阈值电压:1.0V ~ 2.5V  P沟道 MOSFET  VDSS:-30V  RDS(on):7.0mΩ @ VGS=-10V, ID=-30A  连续漏极电流:-75A @ TC=25℃  栅极阈值电压:-1.2V ~ -2.5V  三、在健身器材中的核心应用  跑步机  高连续电流与峰值电流能力,满足电机驱动的动力需求,应对启动瞬间的冲击电流;低导通损耗减少长时间运行的能耗,配合宽温范围适配不同使用环境;  筋膜枪  N+P 沟道集成设计适配无刷电机驱动,快速开关响应支持精准 PWM 调速,实现多档位力度调节;紧凑封装与低功耗特性,助力产品小型化与长续航;  动感单车  稳定的功率控制性能适配电动磁控系统,实现 32 档以上精准调阻,让阻力变化均匀丝滑;低损耗设计延长设备使用寿命,适配智能阻力自动调节场景;  椭圆机  高效 DC-DC 转换能力助力能量回收系统,将运动产生的可变电压稳定转换,实现绿色能源再利用;  健身功率计  低栅极电荷与快速开关特性,提升功率检测的响应速度与精度,为运动数据监测提供可靠支持。
关键词:
发布时间:2026-01-20 11:49 阅读量:319 继续阅读>>
ARK (方舟微)丨DMB16C20A:对标IXTH16N20D2的高性能耗尽型<span style='color:red'>MOSFET</span>,80mΩ低电阻与高载流能力优异
  01 产品简介  DMB16C20A是ARK(方舟微)推出的一款高压、低导通电阻、大电流的耗尽型MOSFET,具有常通特性。该产品采用TO-263封装,具有高功率耗散,连续功耗可达230W。因产品的亚阈值特性及高载流能力,其广泛应用于大电流场景的过流保护及浪涌抑制。  02 产品特性  · 低导通电阻:导通电阻仅80mΩ  · 高载流能力:饱和电流达16A以上,适用于大电流应用  · 高功率耗散:连续功耗可达230W  · 完美替代:IXYS-IXTT16N20D2  03 应用领域  · 保护电路、抑制浪涌电流  · 音频放大器  · 恒流源  · 斜坡发生器  · 电流调节器  · 常闭开关  04 典型应用电路及原理  DMB16C20A可作为常通开关对电容电荷进行泄放,当需要断开时使用负电荷泵或者光MOS驱动器给栅极提供负电压,超过阈值电压即可关闭。  如图2所示为DMB16C20A的典型应用,仅使用2颗耗尽型MOSFET+电阻R构成双向保护电路,就能限制流过负载回路的电流大小,还可有效抑制电路浪涌,为负载回路提供过流保护。电路可通过的最大电流IOUT(Max.)与DMB16C20A的阈值电压VGS(OFF)及R的阻值相关,IOUT(Max.)≈|VGS(OFF)|/R。该系列MOSFET响应速度快,电路结构简单、成本低。  05 DMB16C20A的典型应用方案  Ø 电子雷管电容电荷泄放电路的应用  电子雷管控制电路由充电电路、起爆电路和放电电路组成,其工作原理如下:  充电电路:通过电容(C)储存能量,为电子雷管起爆提供瞬时大电流。通过控制器驱动PMOS管Q1实现电容充电开关控制,由电容C实现充电储能。  起爆电路:将电容储存的能量瞬间释放,引爆雷管。核心部件为NMOS管Q3,通过点火指令驱动NMOS管Q3导通。  泄电电路:泄放电容电荷,防止静电积累引发误触发。主要由光MOS驱动及耗尽型MOS管组成常闭继电器,断电时耗尽型MOS管开通,自动泄电,防止电容C静电积累。  Ø 半导体测试设备应用  在一些应用中,采用自恢复保险丝作为过流浪涌抑制保护,当后级电路出现损坏或短路,该保护电路不能立刻断开电源,需要等待自恢复保险丝升温,直到电阻足够大时才断开接触,起到保护作用。在此期间电路的过载电流还会持续对电路产生破坏。通过DMB16C20A构成的过流保护电路,其过流保护反应灵敏,反应时间短,能够快速过滤浪涌电压和电流以防止过载电流对电路的损坏。
关键词:
发布时间:2026-01-16 15:11 阅读量:371 继续阅读>>
火热报名中!罗姆车载应用端的低压<span style='color:red'>MOSFET</span>和高压IGBT
  罗姆的产品体系丰富全面,涵盖小信号、低压及高压MOSFET等多种类型,能够精准匹配并满足不同市场的多样化需求,其应用场景广泛,涉及工控、光伏以及车载等关键领域。  本次将重点为大家介绍罗姆专为汽车应用打造的低压MOSFET与高压IGBT产品。扫描海报二维码即可报名,参与还有机会赢取精美礼品!  一、研讨会概要  - MOSFET系列产品  1. 封装技术发展及介绍  2. 产品阵容及封装优势  3. 全球化生产及产能布局  - IGBT系列产品  1. 产品发展路线图  2. 产品阵容及封装优势  二、研讨会主题  车载应用端的低压MOSFET和高压IGBT  三、研讨会时间  2026年1月21日上午10点  四、研讨会讲师倪敏(高级经理)  2010年加入罗姆,现任罗姆半导体(上海)有限公司 中国技术中心高级经理。 统管中国华东区车载功率器件的技术支持团队。  多年来负责中国区大客户的技术支持和应用解决方案提供,并在车载市场,有着丰富经验。特别对功率器件相关行业有深入了解和独特见解,曾多次在各种电子行业大型展会以及专业技术研讨会上发表技术报告。2021年6月Bodo's功率系统封面故事中发表《Hybrid IGBT在图腾柱PFC中的应用》。  相关产品页面:  · 安装可靠性高的10种型号、3种封装的车载Nch MOSFET:https://app.jingsocial.com/track/generalLink/linkcode/d55b1db91ee7385d739f4192ec1a0b1e/mid/858  · 实现业界超低损耗和超高短路耐受能力的1200V IGBT:https://app.jingsocial.com/track/generalLink/linkcode/6aa5e3445235ef744f85ce2c43ff6290/mid/858  · MOSFET产品列表:https://app.jingsocial.com/track/generalLink/linkcode/93367cfdb506c0187bbd05b16b1f2f69/mid/858  · IGBT产品列表:https://app.jingsocial.com/track/generalLink/linkcode/fb4747ae60a02064853d185b8304a15e/mid/858  相关产品资料  面向车载应用的产品目录:https://qiniu-static.geomatrixpr.com/rohmpointmall/public/static/uploads/log/20250317/3a8104a096ca6d2a3921557a3300518a.pdf  晶体管的种类和特征:https://qiniu-static.geomatrixpr.com/rohmpointmall/public/static/uploads/log/20240710/153c68e9e5a02025c88252f3c3516b00.pdf  罗姆功率半导体产品概要:https://qiniu-static.geomatrixpr.com/rohmpointmall/public/static/uploads/log/20250122/b6f2be0a6c2155a4e0d393fef33533cc.pdf
关键词:
发布时间:2026-01-08 15:35 阅读量:361 继续阅读>>
技术干货丨使用瑞萨REXFET <span style='color:red'>MOSFET</span>降低RDS(on)
  用于大电流应用的MOSFET的核心技术挑战在于,在保持优异开关性能的同时,实现低导通电阻。随着现代电源采用基于PWM的系统和更高的开关频率,最大限度地减少导通损耗和开关损耗变得至关重要。  为应对这一挑战,瑞萨电子的REXFET-1工艺采用分离栅结构,并在此前专注于P柱实现的ANM1/ANM2超结技术基础上进一步提升,以实现:  • RON指数改善至0.24(与前几代的0.36相比)  • 超低导通电阻,可降低导通损耗并降低散热  • 以小型封装实现高功率密度  • 降低栅极电荷(QG)和栅极电容,优化开关特性  结合多线键合(multi-wire)和夹片键合(clip bonding)等先进封装技术,REXFET-1器件在实现低导通电阻和高速开关的同时,满足严格的汽车可靠性标准。  此外,我们采用融合多年经验的坚固设计,确保产品具有高度可靠性和耐用性,使设计人员能够放心使用。我们专门为电池管理系统(BMS)和电机应用设计了80V至150V的REXFET-1系列产品。瑞萨电子MOSFET技术的发展  REXFET-1平台的开发是瑞萨电子在推进功率MOSFET技术方面悠久历史的一部分。从1979年日立推出首款垂直型MOSFET开始,瑞萨电子始终引领行业创新,包括在2003年推出首款用于英特尔芯片组的DrMOS。在接下来的几十年中,超结技术、用于智能手机的倒装芯片封装以及铜夹结构等创新进一步提升了效率和功率密度。瑞萨电子功率MOSFET的发展历程  REXFET-1系统级性能  BLDC电机控制在工业和汽车应用中都非常普遍。为了验证REXFET-1在实际应用中的性能,瑞萨电子在BLDC电机驱动系统中评估了采用TOLL封装的100V和150V产品。我们还将REXFET-1 100V RBA300N10EANS-3UA02(工规版RBE015N10R1SZQ4)和150V RBA190N15YANS-3UA04(工规版RBE039N15R1SZQ4)的性能与市场上的主要器件进行了性能对比。  REXFET-1与竞品器件在最高60A条件下进行了测试,并比较了平均结温。在10kHz和20kHz开关频率下,结温结果保持与最佳竞品器件相当的水平。  REXFET-1器件在相同系统条件下表现出较低的电压振荡和尖峰。在电机控制应用中,较高的振荡和电压尖峰可能导致系统可靠性问题,并产生较高的电磁干扰(EMI)。REXFET-1器件始终表现出具有竞争力的效率、热稳定性和抗EMI能力。100V REXFET-1导通波形比较  我们丰富的REXFET-1产品组合代表了功率MOSFET技术的重大进步。凭借分离栅晶圆工艺和先进的封装技术,REXFET-1器件能够实现:  •与前几代沟槽工艺相比,RSP降低30%  •卓越的导通损耗与开关损耗平衡  •丰富的封装选项(3x3、5x6、TOLL、TOLG、TOLT),以满足多样化的系统需求。  这些创新使设计人员能够在电机驱动、BMS以及其他要求苛刻的应用中实现更高的效率、更大的功率密度和更高的系统可靠性。
关键词:
发布时间:2025-12-31 17:01 阅读量:432 继续阅读>>

跳转至

/ 14

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
MC33074DR2G onsemi
CDZVT2R20B ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
TL431ACLPR Texas Instruments
BD71847AMWV-E2 ROHM Semiconductor
型号 品牌 抢购
ESR03EZPJ151 ROHM Semiconductor
BP3621 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BU33JA2MNVX-CTL ROHM Semiconductor
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。

请输入下方图片中的验证码:

验证码