Fibocom Launches Global LTE Cat.1 bis Module LE271-GL
  January 14, 2026 – Fibocom (300638.SZ | 0638.HK), a global leader in wireless communication modules and edge AI solutions, today announced the launch of its global LTE Cat.1 bis module, LE271-GL, providing IoT devices with single-SKU global connectivity. With compact size, global frequency coverage, low power consumption, and high compatibility, the LE271-GL offers a cost-effective 4G solution for worldwide IoT applications such as asset tracking, IP cameras, new energy systems, and consumer electronics.  Compact Design and Global Coverage  Measuring 17.7mm × 15.8mm, the LE271-GL is pin-to-pin compatible with Fibocom’s MC661, LE270, and LE37X series, as well as other modules of similar packaging. Customers can migrate without changing PCB designs. Supporting both FDD-LTE and TDD-LTE bands, the module covers all major global frequencies under a single SKU, simplifying inventory management and reducing logistics costs for international deployment.  High Performance and Fast Network Access  The LE271-GL ensures quick and stable connections, achieving network registration in under 3.5 seconds. Optimized AT command response and USB enumeration improve device startup and connectivity efficiency. Its OpenCPU architecture provides flexibility for secondary development, lowering overall device costs.  Ultra-Low Power and Extended Battery Life  Optimized for battery-powered applications, the LE271-GL achieves microamp-level sleep current and supports DRX and other low-power modes. Interfaces including VDD_EXT and multiple GPIOs remain powered in standby, ensuring long battery life while maintaining critical functionality.  Rich Functionality and Strong Compatibility  LE271-GL supports LBS + Wi-Fi scan positioning (for indoor and international use), eSIM, and single/dual-SIM configurations. It integrates USB, UART, SPI, I2C, ADC, LCD, Camera, and GPIO interfaces, and supports TTS, MQTT, HTTP, and SSL protocols for versatile IoT applications.  Now in the engineering sample stage, Fibocom’s LE271-GL sets a new benchmark for global Cat.1 bis connectivity, enabling customers and partners worldwide to explore new opportunities in the IoT market.
Key word:
Release time:2026-01-30 15:28 reading:274 Continue reading>>
ROHM’s New LDO Regulators with 500mA Output Current Achieving Stable Operation Even with Ultra-small Capacitors to Expand Design Flexibility for High-current Applications
  ROHM has developed the “BD9xxN5 Series” of LDO regulator ICs with 500mA output current, featuring its proprietary ultra-stable control technology “Nano Cap™”. This series comprises 18 products designed for 12V/24V primary power supply applications used in automotive equipment, industrial equipment, and communication infrastructure.  In recent years, electronic devices have demanded higher density in smaller form factors at the same time. To meet this demand and achieve space savings and design flexibility, power supply ICs must be capable of stable operation even with small-capacity capacitors. However, achieving such performance with output capacitors of 1µF or less has been technically difficult.  To address this challenge, ROHM developed the “BD9xxN1 Series” LDO regulator (150mA output current) in 2022, incorporating its proprietary ultra-stable control technology, “Nano Cap™”. This innovation enables stable operation with output capacitors as small as 100nF, earning widespread adoption across numerous applications.  The newly developed BD9xxN5 Series builds on the success of the BD9xxN1 Series by increasing the output current to 500mA – more than three times higher than before – significantly broadening its suitability for applications requiring higher power. In addition, very low output voltage ripple of approximately 250mV (with load current variation of 1mA to 500mA within 1µs) is achieved with a small output capacitance of just 470nF (typical). Beyond standard small MLCCs (multi-layer ceramic capacitors) in the range of several µF and large-capacity electrolytic capacitors, it also supports ultra-small MLCCs, such as the 0603M size (0.6mm × 0.3mm), with capacities below 1µF – where stability was previously difficult to achieve. This contributes to space saving as well as greater flexibility in component selection.  Furthermore, high-precision SPICE models, “ROHM Real Model” are provided for accurate simulation and can be downloaded from the ROHM official website.  SPICE Models: BD900N5xxx-C BD933N5xxxx-C BD950N5xxxx-C  ROHM will continue to contribute to the high performance, miniaturization, and high reliability of electronic devices by further expanding its Nano Cap™ technology-equipped LDO series.  Application Examples  Automotive Equipment  ● Powertrain system power supplies for fuel injection systems (FI) and tire pressure monitoring systems (TPMS)● Body system power supplies for body control modules (BCM)● Infotainment system power supplies for clusters ad head-up displays (HUD), etc.Industrial Equipment  ● Power supplies for controllers like Programmable Logic Controllers (PLC), Remote Terminal Units (RTU), and industrial gateways● High-precision LDOs for analog loads and sensors measuring temperature, pressure, flow rate, etc.● Power supplies for monitoring and control panels in disaster prevention systems, access control systems and building automation.● Standby power supplies for Human-Machine Interfaces (HMI) and panel equipment, etc.Consumer Electronics  ● Power supplies for control boards in refrigerators, dishwashers, air conditioners, etc.● Power supplies for home appliances like thermostats and doorbells● Power supplies for constant power applications in home security and network equipment, etc.  What is Nano Cap™ Technology?  Nano Cap™ refers to ultra-stable control technology achieved by combining advanced analog expertise covering circuit design, processes, and layout utilizing ROHM’s vertically integrated production system. Stable control eliminates the problem of unstable operation related to capacitors in analog circuits, contributing to a reduction in design resources for a wide range of applications in automotive, industrial equipment, consumer, and other fields.  Terminology  Primary  In a power supply circuit, the side in charge of 1st stage conversion from a power source such as a battery is called the primary and the side responsible for 2nd stage conversion is referred to as the secondary.  LDO Regulator (Low Drop Out Regulator / Low Saturation Regulator)  A type of power supply IC that converts between two different DC voltage levels. Falls under the category of linear regulator (where the input/output voltages operate linearly) characterized by a small input-output voltage difference. Compared to DC-DC converter ICs (switching regulators), LDOs feature a simpler circuit configuration and lower noise.  ROHM Real Model  A high-accuracy simulation model that make it possible to also achieve a perfect match between the actual IC and simulation values utilizing ROHM’s proprietary model-based technology.
Key word:
Release time:2026-01-27 13:47 reading:285 Continue reading>>
GigaDevice Successfully Lists in Hong Kong, Marking a New Phase of Global Expansion
  GigaDevice Semiconductor Inc. (stock codes: 3986.HK; 603986.SH) was officially listed on the Main Board of the Hong Kong Stock Exchange on January 13, 2026, marking a major milestone with its dual listing in Shanghai and Hong Kong. This achievement represents a significant step forward in strengthening the company's capital base and supporting its long-term global growth strategy.  The Hong Kong listing comes at a pivotal stage of GigaDevice’s development, as the company continues to expand its business scale and accelerate its presence in global markets. Leveraging Hong Kong’s role as an international financial hub, GigaDevice will further enhance its global capital support capabilities, strengthen connections with international customers and partners, and elevate its global brand profile.  Founded in 2005, GigaDevice is a global leading fabless supplier dedicated to integrated circuit design. The company has built a diversified product portfolio spanning Flash memory, specialty DRAM, MCUs, analog ICs, and sensor chips. Its products are widely applied across consumer electronics, automotive electronics, industrial control, energy storage, the Internet of Things (IoT), PCs and servers, and communications markets. GigaDevice is among the few Chinese semiconductor companies to achieve global competitiveness across multiple core storage and control chip segments.The successful listing in Hong Kong underscores GigaDevice’s commitment to making international development a strategic priority. Beyond being a major corporate milestone, this listing establishes a new platform to support the company’s global operations and growth. Looking ahead, GigaDevice will continue to expand its diversified semiconductor portfolio globally, focus on long-term growth opportunities in areas such as artificial intelligence, IoT, and intelligent vehicles, and strengthen its long-term competitiveness through technology innovation, ecosystem partnerships, and brand building.
Key word:
Release time:2026-01-22 11:22 reading:1281 Continue reading>>
GigaDevice Partners With Melchioni Electronics to Expand Business in France, Italy and the Iberian Peninsula
  GigaDevice, a leading semiconductor company specializing in Flash memory, 32-bit microcontrollers (MCUs), sensors, and analog products, has entered into a distribution agreement with Milan-based Melchioni Electronics.  The partnership extends GigaDevice's reach into several major European markets, with Melchioni Electronics supplying not only GigaDevice's leading Flash and MCU lines but also delivering dedicated field application engineering support. The deal covers distribution in France, Italy, Spain and Portugal, with on-the-ground presence in each of these countries.  GigaDevice delivers world-class SPI NOR Flash, SLC NAND Flash, 32-bit microcontrollers, analog, and sensor products. These technologies play a pivotal role across applications including industrial automation, automotive, consumer electronics, IoT, network communications, mobile, and PCs.  "The establishment of this partnership and the accelerated entry into the European markets are significant steps in our strategy," said Dr. Reiner Jumpertz, GigaDevice VP and General Manager in the EMEA region. "Melchioni has an exceptional reputation and is well-known for its deep engineering expertise. Their regional FAE and marketing teams perfectly support our successful growth plans in Europe.”  “This strategic agreement with GigaDevice delivers substantial value to our customer base,” stated Elisabetta Dell’Olio, Head of Technology & Suppliers Platform at Melchioni Electronics. “Our core mission is to empower enterprises with the most effective and cutting-edge technologies. By adding GigaDevice’s world-class Flash memory solutions and GD32 microcontrollers (MCUs) to our services, we are significantly elevating our offering across the automotive, industrial automation, and consumer electronics sectors.”  About Melchioni Electronics  Melchioni Electronics is a prominent company specializing in the distribution and integration of high-quality electronic solutions. With a strong reputation in the industry, Melchioni Electronics serves a diverse range of industrial sectors. The company is known for its expertise in providing electronic components and its ability to tailor customized solutions to meet the unique needs of its clients. Melchioni Electronics is committed to innovation and excellence, continually pushing the boundaries of technology to deliver cutting-edge electronic solutions to its customers. With a focus on quality, reliability, and customer satisfaction, Melchioni Electronics is a trusted partner for businesses seeking advanced electronic solutions and integration services.  About GigaDevice  GigaDevice Semiconductor Inc. is a global leading fabless supplier. Founded in April 2005, the company has continuously expanded its international footprint and established its global headquarters in Singapore in 2025. Today, GigaDevice operates branch offices across numerous countries and regions, providing localized support at customers' fingertips. Committed to building a complete ecosystem with major product lines – Flash memory, MCU, sensor and analog – as the core driving force, GigaDevice can provide a wide range of solutions and services in the fields of industrial, automotive, computing, consumer electronics, IoT, mobile, networking and communications. GigaDevice has received the ISO26262:2018 automotive functional safety ASIL D certification, IEC 61508 functional safety product certification, as well as ISO9001, ISO14001, ISO45001, and Duns certifications. In a constant quest to expand our technology offering to customers, GigaDevice has also formed strategic alliances with leading foundries, assembly, and test plants to streamline supply chain management.
Key word:
Release time:2026-01-20 15:00 reading:1234 Continue reading>>
TAIYO丨Multilayer Metal Power Inductor Rated at 165°C for Automobiles 1608 Size Added to the Lineup
  TAIYO YUDEN CO., LTD. has commercialized 14 items, including the multilayer metal power inductor MCOIL™ "LACNF1608KKT1R0MAB" (1.6 x 0.8 x 1.0 mm, maximum height shown), which complies with the "AEC-Q200" certification reliability test standard for passive automotive components.  The new product is approximately 49% smaller than our previous product, the "LACNF2012KKT1R0MAB" (2.0 x 1.25 x 1.0 mm), and can contribute to the miniaturization and higher performance of power supply circuits installed in automobiles.  These products are used as choke coils in DC-DC converters used in automotive engine control systems such as ECUs, safety systems such as ABS, body-related systems such as ADAS, and information systems such as instrument clusters.  Mass production of this products began at our subsidiary, WAKAYAMA TAIYO YUDEN CO., LTD. (Inami-cho, Hidaka-gun, Wakayama Prefecture), in December 2025. Samples are available for 50 yen per unit.  Background  The advancements that we have seen in recent years in electronic controls in production vehicles, as typified by ADAS units, has led to a greater number of power supply circuits on vehicles, which in turn has led to growth in the demand for power inductors that are used in these circuits. Furthermore, performance also continues to improve through functional integration, such as in integrated cockpits that combine instrument clusters and infotainment devices. While the throughput of IC chips continues to grow as these devices become increasingly multifunctional and high-performance, there is also a growing need to make on-board electronic components smaller in order to arrange devices in highly dense configurations and integrate them into single modules. Furthermore, since ECUs are increasingly being installed in engine compartments--a high temperature environment--on-board electronic components must be able to withstand high temperatures.  In response, TAIYO YUDEN has added a new 1608 size to its MCOIL™ LACN series of multilayer metal power inductors, which boast the advantages of being smaller and thinner, and having an operating temperature range of -55°C to +165°C. Our proprietary metal materials are bonded to each other by an oxide film using heat treatment, ensuring insulation and providing high heat resistance and thermal conductivity. Thanks to these features, the product exhibits stable characteristics, is able to withstand high temperatures, and achieves high reliability, even in devices used in harsh temperature environments such as automotive applications.  TAIYO YUDEN focuses on the development of products that meet market needs, and will continue to expand its power inductor product lineup.  ■Application  Choke coils in DC-DC converters used in automotive engine control systems such as ECUs, safety systems such as ABS, body-related systems such as ADAS, and information systems such as instrument clusters  * Derating of rated current is necessary depending on the ambient temperature.  Please see our website below for detailed specifications.  LACN series  https://ds.yuden.co.jp/TYCOMPAS/ut/specificationSearcher?cid=L&u=M&Seri=LACN_A&SR2=LM%2CMP  LCCN series  https://ds.yuden.co.jp/TYCOMPAS/ut/specificationSearcher?SR6-L=AP2&Ind=1000.0%3A1500.0&Current_Srch=%3A1.9&pg=1&pn=L*CNF&cid=L&u=M  * "MCOIL" is a registered trademark or a trademark of TAIYO YUDEN CO., LTD. in Japan and other countries.  * The names of series noted in the text are excerpted from part numbers that indicate the types and characteristics of the products, and therefore are neither product names nor trademarks.
Key word:
Release time:2026-01-08 15:22 reading:637 Continue reading>>
A Comprehensive Guide to Choosing Between LDO (Low Dropout Linear Regulators) and DC-DC (Switching Regulators)
  Selecting the appropriate voltage regulator is critical for the stability and efficiency of various circuit systems. Among the numerous types available, LDO (Low Dropout Linear Regulators) and DC-DC (Switching Regulators) are two common voltage stabilizers. This article will thoroughly explore the selection methods for LDO and DC-DC regulators, covering concepts, operating principles, characteristics, and application scenarios.  A Comprehensive Guide to Selecting LDO (Low Dropout Linear Regulators) and DC-DC (Switching Regulators)  1. LDO (Low Dropout Linear Regulator)  1.1 Concept  LDO stands for Low Dropout Regulator, typically used to regulate high input voltages to lower output voltages. It achieves stable output voltage by adjusting the conduction resistance of its internal transistor.  1.2 Working Principle  When the input voltage exceeds the output voltage, the internal transistor enters an amplified state. It dissipates excess power to regulate the output voltage, maintaining it at the set value.  1.3 Characteristics  Simple design, low noise, relatively low cost, suitable for applications requiring high precision. However, it has low efficiency and significant thermal distortion.  2. DC-DC (Switching Regulator)  2.1 Concept  DC-DC refers to a switching regulator (DC-to-DC Converter) that converts input voltage to the desired output voltage by switching the state of a switching element (e.g., MOSFET).  2.2 Working Principle  DC-DC operates by periodically turning the switching element on and off to control the output voltage magnitude, while a filter removes high-frequency noise from the output waveform.  2.3 Features  High efficiency, capable of delivering substantial output power, suitable for applications requiring large voltage drops or enhanced efficiency, but involves complex design and relatively higher cost.  3. How to Select?  3.1 Output Voltage Range  For lower output voltages, an LDO is more suitable; whereas for large voltage drops or higher output power requirements, a DC-DC converter is more appropriate.  3.2 Efficiency Requirements  When prioritizing power efficiency, especially under large voltage drops, DC-DC converters typically outperform LDOs.  3.3 System Complexity  LDOs may be preferable for simplified design and cost reduction; DC-DC converters are necessary when higher output power and efficiency are required.  3.4 Ripple and Noise  In applications sensitive to output ripple and noise, LDOs are generally more suitable than DC-DC converters because they produce lower ripple and noise.  4. Application Scenarios  4.1 LDO Application Scenarios  Applications requiring high output voltage accuracy, low output current, and strict ripple/noise specifications.  4.2 DC-DC Applications  Applications requiring large voltage drops, high output power, and high efficiency, such as mobile devices, power amplifiers, and communication equipment.  4.3 Comprehensive Considerations  In practical applications, the optimal regulator type must be selected by comprehensively evaluating system power consumption, output load conditions, stability requirements, and cost factors.  As common voltage regulators, LDOs and DC-DC converters play vital roles in electronic product design. Selecting the appropriate regulator type depends on specific application requirements, including output voltage range, efficiency demands, system complexity, and ripple noise. During the selection process, a comprehensive evaluation of all factors is necessary to ensure the circuit system operates stably, reliably, and efficiently.
Key word:
Release time:2025-12-31 17:31 reading:841 Continue reading>>
Renesas Fast-Tracks SDV Innovation with R-Car Gen 5 SoC-Based End-to-End Multi-Domain Solution Platform
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, is expanding its software-defined vehicle (SDV) solution offerings centered around the fifth-generation (Gen 5) R-Car family. The latest device in the Gen 5 family, the R-Car X5H is the industry’s first multi-domain automotive system-on-chip (SoC) manufactured with advanced 3nm process technology. It is capable of simultaneously running vehicle functions across advanced driver assistance systems (ADAS), in-vehicle infotainment (IVI), and gateway systems.  Renesas has begun sampling Gen 5 silicon and now offers full evaluation boards and the R-Car Open Access (RoX) Whitebox Software Development Kit (SDK) as part of the next phase of development. Renesas is also driving deeper collaboration with customers and partners to accelerate adoption. At CES 2026, Renesas will showcase AI-powered multi-domain demonstrations of the R-Car X5H in action.  The R-Car X5H leverages one of the most advanced process nodes in the industry to offer the highest level of integration, performance and power efficiency, with up to 35 percent lower power consumption than previous 5nm solutions. As AI becomes integral to next-generation SDVs, the SoC delivers powerful central compute targeting multiple automotive domains, with the flexibility to scale AI performance using chiplet extensions. It delivers up to 400 TOPS of AI performance, with chiplets boosting acceleration by four times or more. It also features 4 TFLOPS equivalent* of GPU power for high-end graphics and over 1,000k DMIPS powered by 32 Arm® Cortex®-A720AE CPU cores and six Cortex-R52 lockstep cores with ASIL D support. Leveraging mixed criticality technology, the SoC executes advanced features in multiple domains without compromising safety.  As hardware and software become more tightly integrated early in development to support complex E/E architectures, Renesas is adding new capabilities to the RoX development platform. RoX dramatically simplifies development by combining all essential hardware, operating systems, software and tools required to rapidly develop next-generation vehicles with seamless software updates.  Accelerating Automotive Innovation with an Open, Scalable RoX Whitebox SDK  To accelerate time-to-market, Renesas now offers the RoX Whitebox Software Development Kit (SDK) for the R-Car X5H, an open platform built on Linux, Android, and XEN hypervisor. Additional support for partner OS and solutions is available, including AUTOSAR, EB corbos Linux, QNX, Red Hat and SafeRTOS. Developers can jumpstart development out of the box using the SDK to build ADAS, L3/L4 autonomy, intelligent cockpit, and gateway systems. An integrated stack of AI and ADAS software enables real-time perception and sensor fusion while generative AI and Large Language Models (LLMs) enable intelligent human-machine interaction for next-generation AI cockpits. The SDK integrates production-grade application software stacks from leading partners such as Candera, DSP Concepts, Nullmax, Smart Eye, STRADVISION and ThunderSoft, supporting end-to-end development of modern automotive software architectures and faster time to market.  “Since introducing our most advanced R-Car device last year, we have been steadfast in developing market-ready solutions, including delivering silicon samples to customers earlier this year,” Vivek Bhan, Senior Vice President and General Manager of High Performance Computing at Renesas. “In collaboration with OEMs, Tier-1s and partners, we are rapidly rolling out a complete development system that powers the next generation of software-defined vehicles. These intelligent compute platforms deliver a smarter, safer and more connected driving experience and are built to scale with future AI mobility demands.”  “Integrating Renesas’ R-Car X5 generation series into our high-performance compute portfolio is a natural next step that builds on our existing collaboration,” said Christian Koepp, Senior Vice President Compute Performance at Bosch’s Cross-Domain Computing Solutions Division. “At CES 2026, we look forward to showcasing this powerful solution with Renesas X5H SoC, demonstrating its fusion capabilities across multiple vehicle domains, including video perception for advanced driver assistance systems."  “Innovative system-on-chip technology, such as Renesas’ R-Car X5H, is paving the way for ZF’s software-defined vehicle strategy,” said Dr. Christian Brenneke, Head of ZF’s Electronics & ADAS division. “Combining Renesas’ R-Car X5H with our ADAS software solutions enables us to offer full-stack ADAS capabilities with high computing power and scalability. The joint platform combines radar localization and HD mapping to provide accurate perception and positioning for reliable ADAS performance. At CES 2026, we’ll showcase our joint ADAS solution.”  First Fusion Demo on R-Car X5H with Partner Solutions at CES 2026  Renesas will showcase the capabilities of the R-Car X5H for the first time through a series of invitation-only demos at CES 2026. For more information about how to attend this event, contact sales at: CES26_Info@lm.renesas.com.  The new multi-domain demo upscales from R-Car Gen 4 to the next-generation R-Car X5H on the RoX platform, integrating ADAS and IVI stacks, RTOS, and edge AI functionality on Linux and Android with XEN hypervisor virtualization. Supporting input from eight high-resolution cameras and up to eight displays with resolutions reaching 8K2K, the platform delivers immersive visualization and robust sensor integration for next-generation SDVs. Combined with the RoX Whitebox SDK and production-grade partner software stacks, the platform is engineered for real-world deployment covering multiple automotive domains.  Availability  Renesas is shipping R-Car X5H silicon samples and evaluation boards, along with the RoX Whitebox SDK, to select customers and partners.
Key word:
Release time:2025-12-24 16:06 reading:1098 Continue reading>>
Murata Launches World’s First Inner Cavity-Structure Ultra-Low-Loss LCP Flexible Substrate, Achieving Dk below 2.0, Contributing to 6G Realization
  Murata Manufacturing Co., Ltd announces the World’s First LCP (liquid crystal polymer) flexible substrate with an Inner Cavity structure, ULTICIRC, and has already begun mass production*. Murata’s proprietary design incorporates an Inner Cavity within the substrate to achieve a dielectric constant (Dk) below 2.0, dramatically reducing transmission loss.Cross-Section Image  With 6G expected to leverage the FR3 (Frequency Range 3) band—roughly 7–24 GHz—substrates with minimal transmission loss are essential to enable high-speed, high-capacity communications at high frequencies. At the same time, demand is growing for thin, space-saving flexible substrates that support free-form mechanical design to meet the ongoing miniaturization of smartphones and communication equipment. Murata has provided LCP flexible substrates with excellent high-frequency characteristics, featuring a proprietary high-performance resin that eliminates spring-back and an adhesive-free, one-shot press multilayer lamination process; building on this expertise for 6G readiness, Murata has developed and launched ULTICIRC. Conventional flexible substrates faced the challenge that making them thinner resulted in increased transmission loss, but this product incorporates an Inner Cavity structure within the substrate, achieving a dielectric constant (Dk) below 2.0, which is significantly lower than Murata's conventional products, enabling both thin profiles and ultra-low transmission loss simultaneously.  Furthermore, thanks to an adhesive-free proprietary manufacturing method and the excellent barrier properties of LCP, the Inner Cavity structure maintains high moisture resistance.  For inquiries regarding this product, please contact us.
Key word:
Release time:2025-12-18 16:00 reading:518 Continue reading>>
TAIYO YUDEN Commercializes 1005M-Size Embeddable Multilayer Ceramic Capacitor with 22-μF Capacitance for AI Servers
  TAIYO YUDEN CO., LTD. has commercialized and begun mass production of embeddable multilayer ceramic capacitor (MLCC) that achieves a capacitance of 22-μF in a 1005M size (1.0 x 0.5 mm).  This ceramic capacitor is an MLCC designed for decoupling applications on IC power lines used in AI servers and other types of information devices.  Components embedded in a board require high precision in terms of flatness of the external electrodes for connection to the circuit. With respect to this requirement, TAIYO YUDEN has commercialized an embeddable MLCC that achieves a 22-μF capacitance in a 1005M size by enhancing external electrode formation technology and other elemental technologies.  Mass production of the capacitor began at our Tamamura Plant (Sawa District, Gunma Prefecture) in August 2025. Samples are available for 20 yen per unit.  Technology Background  AI servers and other types of devices with advanced information processing capabilities are equipped with ICs that consume extremely large amounts of power. For decoupling purposes in such power supply circuits, small, high-capacity MLCCs are required to handle large currents.  Additionally, to minimize circuit loss and noise, it is important to route the power supply circuit close to the ICs. Traditional power supply circuits are routed around ICs. But, technological developments are progressing, allowing them to be placed closer, such as on the back of the board or directly under the ICs. Thus, embeddable MLCCs need to be equipped with high-precision external electrodes to connect to the lines.  To satisfy this need, TAIYO YUDEN has improved its external electrode formation technology and commercialized 1005M-size embeddable MLCC with a capacitance of 22 μF.  TAIYO YUDEN is continuing to develop new MLCCs with higher capacitance and other distinguishing features.  ■ Application  Decoupling applications on IC power lines used in AI servers and other types of information devices
Key word:
Release time:2025-10-20 16:40 reading:555 Continue reading>>
NOVOSENSE launches NSUC1612: Fully Integrated Embedded Motor Drive SoC for Smarter, Cost-Efficient Automotive Actuators
  NOVOSENSE has released the NSUC1612, a next-generation motor driver SoC designed to address the limitations of traditional discrete solutions in automotive smart actuators, such as system complexity, high cost, and limited reliability.  With its fully integrated single-chip architecture, the NSUC1612 can simplify design, reduce cost, and enhance stability. It supports a wide range of applications, including automotive water valves, automotive air-conditioning vent, active grille shutters, as well as stepper motors, DC brushed motors, and DC brushless motors—delivering an efficient and scalable solution for automotive electronics.  1.Fully Integrated Architecture: Simplified Design, Reduced Complexity  Conventional actuator control systems often require multiple components, including MCU, motor drivers, communication interfaces, and protection circuits, leading to complex PCB layout, increased solder joints, and compatibility issues.The NSUC1612 integrates a 32-bit ARM® Cortex®-M3 MCU with 4- or 3-channel half-bridge drivers, LIN/CAN controller communication interfaces, a 12-bit ADC, temperature sensors, and other essential modules, all in a single-chip. This eliminates the need for additional companion ICs while covering the full motor control, communication, and protection process.By reducing external components and simplifying hardware design, the NSUC1612 shortens development cycles and minimizes EMI risk through optimized internal signal routing.  2.Excellent EMC Performance: Reliable Operation in Harsh Environments  Automotive electronics operate in complex electromagnetic conditions where EMC performance directly impacts actuator precision and system stability. The NSUC1612 provides simplified reference circuits and optimized PCB layout. In compliance with CISPR 25:2021 Class 5, it passes stringent automotive EMC/EMI tests, compliant with the automotive standardsSelected Test Results Based on CISPR 25:2021  This ensures stable motor control signals and helps prevent malfunctions such as actuator stalls or misoperation caused by electromagnetic interference.  3.Strong Performance: Balanced Drive Capability and Processing Power  The NSUC1612 is designed to deliver both reliable motor driving capability and efficient computation: NSUC1612B: 4 half-bridge outputs, peak current up to 500 mA NSUC1612E: 3 half-bridge outputs, peak current up to 2.1 AThese options support brushed DC, BLDC, and stepper motors across diverse applications, from HVAC air vent adjustment to seat ventilation.  The ARM® Cortex®-M3 core with Harvard architecture integrates 32 KB Flash, 2 KB SRAM, and 15 KB ROM with Bootloader, supporting OTA upgrades. A 32 MHz high-precision oscillator with PLL ensures stable computation, while low-power sleep mode consumes less than 50 μA across the full operation temperature range, balancing performance with energy efficiency.  4.Automotive-Grade Reliability: Built for Demanding Conditions  The NSUC1612 is designed with comprehensive reliability features to withstand harsh operating environments. It is compliant with AEC-Q100 Grade 1, supporting junction temperatures up to 150°C and ensuring stable operation across a wide temperature range from -40°C to +125°C. The device’s LIN port can tolerate up to ±40 V, while the BVDD pin supports -0.3 V to 40 V, enabling direct connection to 12V automotive batteries. In addition, integrated protection mechanisms such as over-voltage and over-temperature safeguards provide robust defense against voltage fluctuations and transient surges, delivering system-level reliability under real-world automotive conditions.  The NSUC1612 extends its value through broad application compatibility, making it suitable for automotive actuator systems. It supports brushed DC, BLDC, and stepper motors, while integrated communication interfaces—including LIN PHY (compliant with LIN 2.x, ISO 17987, and SAE J2602), FlexCAN, and SPI—allow seamless integration into existing automotive network architectures.  The NSUC1612 is ideal for a wide range of applications, including thermal management components (e.g., automotive water valves and expansion valves), cabin comfort modules (automotive air-conditioning vent), and smart body systems (active grille shutters and charging port actuators). By integrating these functions into a single device, it helps reduce design costs and simplify development.
Key word:
Release time:2025-09-23 13:12 reading:1621 Continue reading>>

Turn to

/ 23

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
RB751G-40T2R ROHM Semiconductor
BD71847AMWV-E2 ROHM Semiconductor
MC33074DR2G onsemi
TL431ACLPR Texas Instruments
CDZVT2R20B ROHM Semiconductor
model brand To snap up
TPS63050YFFR Texas Instruments
BU33JA2MNVX-CTL ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
STM32F429IGT6 STMicroelectronics
ESR03EZPJ151 ROHM Semiconductor
BP3621 ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code