泰晶科技丨实现精准时钟:晶体<span style='color:red'>谐振</span>器匹配电路设计指南
  在电子电路中,石英晶体谐振器作为核心频率控制元件,其性能直接影响系统的稳定性和可靠性。为了确保晶体谐振器与电路实现最佳匹配,设计工程师需重点关注以下几个核心要素:  01 负性阻抗:振荡稳定性的基石  负性阻抗(-R)是振荡电路起振的关键参数,其大小直接决定振荡的可靠性和稳定性。根据行业标准,负性阻抗应至少达到晶体谐振阻抗(Rr)的3倍,而实际设计中建议提升至5倍以上,以缩短起振时间并增强抗干扰能力。  设计要点:  →增益优化‌:通过调整振荡回路增益(gm)来提升负性阻抗,例如在皮尔斯振荡器中合理设置反馈电阻(RF)。  →稳定性测试‌:采用可变电阻串联法,逐步增大电阻直至振荡停止,以此验证负性阻抗是否满足设计要求。  02 激励功率:平衡驱动与保护的艺术  激励功率是驱动晶体谐振器机械振动的能量来源,其强度需精确控制以避免性能下降或器件损坏。  功率计算与调节:  →测量方法‌:使用高频电流探头检测流过晶体的电流(Ix),通过公式DL = I² × RL计算激励功率,其中RL = Rr × (1 + Co/CL)²。  调节策略‌:  →减小Cg(门极电容)或Cd(漏极电容)以降低驱动强度。  →增大Rd(阻尼电阻)抑制过驱动风险。  推荐范围‌:  MHz级晶体的激励功率控制在1~100μW,KHz级晶体则需低于1μW。  03 工作频率:负载电容的精准匹配  输出频率的准确性取决于电路负载电容(Cpcb)与晶体标称负载电容(CL)的一致性。两者匹配时,晶体工作在谐振频率(Fr),实现最佳频率稳定性。  负载电容计算‌:  公式:CL = C1 × C2 / (C1 + C2) + Cs  Cs为杂散电容,包括PCB分布电容和IC结电容,需通过近场探头实测优化。  频率微调‌:  根据Fpcb = Fr × (1 + C1 / (2 × (Co + CL)))调整C1、C2,使输出频率接近标称值。  示例:若Fr=12MHz,Co=3pF,CL=18pF,则Fpcb≈12.0003MHz,误差可忽略。  04 设计实践:从理论到落地的步骤  晶振选型‌:优先选择低ESR(等效串联电阻)的晶体,提升起振可靠性。  电路布局‌:  缩短晶振走线,减少寄生电感。  远离高频信号源,降低电磁干扰。  保护措施‌:串联小电阻(RS)限制过驱动电流,延长晶体寿命。  验证流程‌:  测试振荡安全系数(OSF),确保MHz级OSF>5,KHz级OSF>3。  校准驱动功率,避免超限运行。  05 常见问题与解决方案  不起振‌:检查负性阻抗是否达标,或激励功率是否过低。  频率偏移‌:验证负载电容匹配性,调整C1、C2补偿杂散电容。  间歇振荡‌:优化电路布局,减少外界干扰。  通过系统化设计,工程师可显著提升晶体谐振器的性能,为通信、计时等应用提供稳定可靠的频率基准。
关键词:
发布时间:2026-02-02 15:24 阅读量:210 继续阅读>>
英飞凌新品 | 碳化硅SiC 5.5kW三相交错并联LLC<span style='color:red'>谐振</span>变换器评估板
村田新品 | 车载应用2016尺寸高精度晶体<span style='color:red'>谐振</span>器
  株式会社村田制作所完成了2016尺寸小型的晶体谐振器「XRCGB_F_C」系列商品化。该产品符合AEC-Q200标准,非常适合汽车应用中的信息娱乐系统(IVI)、人机交互设备,但不推荐用于功能安全相关的应用。该新品现已开始批量生产。  IVI(In-Vehicle Infotainment)是通过搭载在车内的IT设备为驾驶员和乘客提供信息和娱乐的汽车功能。车载信息娱乐系统通常使用3225尺寸的晶体谐振器。然而,近年来随着设备(如与高级驾驶辅助系统ADAS的功能集成)的日益复杂化,搭载的电子元件数量也在增加,因此需要更小的电子元件。  此外,每个车载系统中搭载的通信标准越来越多,每个设备发出的多种无线电通信相互交织。在这种环境下,搭载设备的集成电路之间需要正确同步信号传输时间,以便正确接收各通信标准使用的电信号频率,避免集成电路之间出现通信错误。这就需要能产生稳定的时钟信号的高精度时钟元件。  为此,村田通过特有的封装技术、设计优化和工艺优化,为汽车应用开发了这款既小型又高精度的2016尺寸的产品。与3225尺寸相比,安装空间减少约60%,有助于搭载设备本身的小型化和高性能化。本产品还具有较高的抗焊接裂纹性能,已被许多客户用于汽车应用领域。  主要产品特征  小型2016尺寸  高精度  保证工作温度105°C  较高的抗焊接裂纹性能  高可靠性、低故障率(无微粒)  稳定供应  无铅  今后,村田将致力于扩充高性能、高可靠性的晶体谐振器应用范围,为客户提供安心、安全的产品。
关键词:
发布时间:2025-08-07 11:49 阅读量:667 继续阅读>>
村田:车载用2016尺寸晶体<span style='color:red'>谐振</span>器XRCGB_F_C系列实现商品化
  株式会社村田制作所(以下简称「村田」)完成了2016尺寸小型晶体谐振器「XRCGB_F_C」系列(以下简称「本产品」)的商品化,该产品适用于车载信息娱乐系统(IVI(1))等车载应用,现已开始批量生产。  (1)IVI(In-Vehicle Infotainment)通过搭载在车内的IT设备为驾驶员和乘客提供信息和娱乐的汽车功能。  车载信息娱乐系统通常使用3225尺寸的晶体谐振器。然而,近年来随着设备(如与ADAS(2)的功能集成)的日益复杂化,搭载的电子元件数量也在增加,因此需要更小的电子元件。此外,每个车载系统中搭载的通信标准越来越多,每个设备发出的多种无线电通信相互交织。在这种环境下,搭载设备的集成电路之间需要正确同步信号传输时间,以便正确接收各通信标准使用的电信号频率,避免集成电路之间出现通信错误。这就需要能产生稳定时钟信号(3)的高精度时钟元件。  (2)ADAS(Advanced Driver Assistance System):高级驾驶辅助系统。  (3)时钟信号:周期稳定、有规律的信号。  为此,村田通过特有的封装技术、设计优化和工艺优化,为汽车应用开发了这款既小型又高精度的2016尺寸的产品。与3225尺寸相比,安装空间减少约60%,有助于搭载设备本身的小型化和高性能化。本产品还具有较高的抗焊接裂纹性能,已被许多客户用于汽车应用领域。  今后,村田将致力于扩充高性能、高可靠性的晶体谐振器应用范围,为客户提供安心、安全的产品。  产品特征  小型2016尺寸  高精度  保证工作温度105°C  较高的抗焊接裂纹性能  高可靠性、低故障率(无微粒)  稳定供应  无铅
关键词:
发布时间:2025-07-25 13:43 阅读量:759 继续阅读>>
村田:高功率<span style='color:red'>谐振</span>电路中,MLCC的选择标准和注意事项
  本文介绍适用于汽车OBC、无线电力传输和服务器中的谐振电路的高压低损耗多层陶瓷电容器(MLCC),详细阐述近年来在高功率LC和LLC谐振电路中使用这些电容器的特性和选择标准。  1.高功率电源系统市场趋势  近年来,在高功率电源系统中,谐振电路的应用越来越多。  LLC谐振电路大范围用于100W及以上的高效率电源中,例如EV和PHV(电动汽车和插电式混合动力汽车)的车载OBC、服务器电源和用于大型设备的电源中,采用率预计超过90%。  此外,在无线功率传输(WPT)中,LC谐振电路用于传输和接收大量电力。配备WPT的产品不仅用于智能手机和平板电脑等小型设备,还用于汽车和制造过程中的运输机器人等大型产品中。  高功率电源系统中谐振电路越来越普遍,需要用到容量更大、损耗更低的谐振电容器。  虽然多种类型的谐振电路(如LC和LLC谐振电路)变得越来越普遍,但处理大量功率的谐振电容器(谐振电路中使用的电容器)需要具有10nF或更大的稳定电容和低损耗性能。  过去,薄膜电容器是唯一可用的选择,如今多层陶瓷电容器因其多样化的优点而成为主流。尤其对于需要高功率密度的谐振电路来说,多层陶瓷器是其首选。  这篇技术文章中,我们解释使用多层陶瓷电容作为谐振电容器的好处,并介绍其特性、使用时的注意事项、选择时的考虑因素和村田产品阵容。  2.大功率谐振电路中的谐振电容器  这里,我们分三种情况来讨论。  2.1 高电压谐振电路  在处理高电流的产品(如车载WPT)中使用的谐振电路中,施加到电容器的电压V(p-p)可能非常高,范围从数百伏(p-p)到1万伏(p-p),在某些情况下可达1万伏(p-p)。由于多层陶瓷电容器的额定电压为630Vdc或1000Vdc,因此需要串联电容器以确保在高电压下工作时,使该V(p-p)保持在额定电压范围内。  由于电容器串联时组合电容会减小,因此须通过并联来确保所需的电容。  因此,谐振电容器越来越多地用于多串联和多并联连接,并且需要具有更小安装面积的产品。  2.2高谐振频率的谐振电路  在汽车市场,根据国际标准,汽车WPT的谐振频率固定为85kHz,但用于EV和PHV OBC,谐振频率因制造商而异,范围从60kHz到400kHz。在这些应用中,高频高压被施加到电容器上,容易增加其自热。  因此,谐振电容器需要具有更低的损耗,并抑制长期使用过程中自发热的增加。  2. 3MLCC .vs. 薄膜电容器  与薄膜电容器相比,多层陶瓷电容器具有更高的最高工作温度和更低的发热,因此具有优异的长期可靠性。  此外,对于具有相同电容的产品,它们的特点是体积更小,ESL更低。  由于这些特点,多层陶瓷电容器在大功率谐振电路中被大范围用作谐振电容器。  多层陶瓷电容器的特性  安装面积(体积)小  低发热(低ESR)  低ESL  出色的长期可靠性  最高工作温度高  3. 中高压、低损耗MLCC方案  如上所述,高功率谐振电路(如汽车用WPT和电动汽车和PHV用OBC)需要具有低损耗和不易产生自热的谐振电容器。为了满足对谐振电容器的需求,Murata提供了一系列额定电压为630Vdc和1000Vdc且使用低损耗材料的中高压多层陶瓷电容器。  产品分为两种类型:标准型片式和带金属端子型片式陶瓷电容(见上表)。  金属端子类型可以通过连接金属端子将大型芯片(5750M 尺寸)堆叠成两层,这不仅减少了安装面积,还有助于降低汽车市场中令人担忧的“焊料开裂”风险。由于电容器串联时组合电容会减小,因此须通过并联来确保所需的电容。  内置谐振电路的车载OBC、服务器电源和大型设施电源等大型产品由于使用时间长,因此需要电容器的长期可靠性。对于这些多层陶瓷电容器,在连续使用的情况下,目标寿命为10年。  4. 选择谐振电容器要注意什么?  包括上述介绍的产品在内,在选择谐振电路中使用的电容器(谐振电容器)时,需要注意一些事项。在大功率应用中,谐振电容器的选择不正确可能导致设备冒烟或起火。这也适用于多层陶瓷电容器,它们具备低发热量和长期可靠性;因此,必须在充分考虑其特性后进行选择。  我们将解释两个我们认为特别重要的项目:“电容器的自加热”和“电压偏离曲线”。  4.1自热限制  在高功率应用中使用的谐振电容器在施加电压后立即产生初始热量后,自发热增加。即使在多层陶瓷电容器中,自发热的增加也是不可避免的,但在目标使用寿命(例如10年)内,应避免电压和频率条件超过125°C的最高工作温度(下图)。  电容器表面温度的变化  Murata的多层陶瓷电容器将允许电压Vdc定义为电容器表面温度在其目标寿命期间达到最高工作温度125°C的电压。在选择电容器时,施加的电压V(p-p)必须保持在该允许电压内。  对于每个项目,我们设置了根据频率显示允许电压的“电压偏离曲线”(见下图),并在网站上的产品规格和规格表中提供了详细说明。  基于自加热评估的允许电压曲线设置  4.1 允许电压的限制  这里是我们对允许电压和频率之间关系的看法。上图所示的“电压折损曲线”概括了为每个项目设置的允许电压图,根据频率范围可分为三个区域。  区域1:  频率范围―低于几十kHz:受额定电压限制。  由于几个10kHz或更低的低频,电容器的自加热是最小的,额定电压成为允许电压。然而,为中、高压低损耗设计的多层陶瓷电容器在该低频范围内作为谐振电容器使用的情况很少见。  区域2:  频率范围―几十kHz到几百kHz:由于连续温度升高受到限制。  施加电压后的立即自热在ΔT20度以内,但由于施加几十kHz~几百kHz的高电压,该区域的自热增加。无论是低损耗还是高介电常数片式电容器,我们都要求工作条件确保电容器的自加热保持在20度ΔT内。  在该区域,允许电压定义为电容器表面温度达到最高工作温度125°C之前的目标寿命(在这里介绍的产品中,目标寿命为10年)的电压。使用中高压、低损耗多层陶瓷电容器作为谐振电容器的情况大多属于这一区域。  区域3:  频率范围―几百kHz或更高:由于施加电压后立即产生初始热量而受到限制。  当频率进一步增加时,施加电压后电容器的自发热会立即超过ΔT20度。如前所述,我们要求,无论低损耗或高介电常数贴片电容器,工作条件都应确保电容器的自加热保持在ΔT20度以内。即使在中、高压低损耗多层陶瓷电容器中,允许电压定义也是自加热达到20度ΔT的电压。因此,应选择温度低于此阈值的产品。  5.谐振电路MLCC选型工具  如上所述,选择谐振电容器需要考虑多种特性,这增加了元件选择的难度。这可能是使快速增长领域的技术进步复杂化的一个因素,例如汽车OBC、服务器电源和大型设备电源。特别需要强调以下两点:  由于施加的电压有升高的趋势,经常会使用多个串联和并联连接,因此需要计算等效电容。  有必要将单个电容器的施加电压V(p-p)保持在“额定电压”以下。  村田制作所开发了一款名为“SimSurfing”的工具,该工具支持根据客户的使用环境选择最佳谐振电容器。只需输入谐振电容器的工作电压、温度和所需静电容量,该工具就能显示最佳产品以及推荐的串联和并联连接数。该工具有助于减轻客户在零件选择和设计过程中的负担。
关键词:
发布时间:2025-07-02 15:57 阅读量:981 继续阅读>>
村田新品 | 高精度汽车用晶体<span style='color:red'>谐振</span>器,宽工作温度范围内实现±40ppm频率偏差
  株式会社村田制作所开发了村田首款“HCR/XRCGE_M_F系列”汽车用晶体谐振器,在-40~125°C的宽工作温度范围内实现了±40ppm频率偏差的较高精度(频率偏差是包括了频率公差、频率温度特性、频率老化的综合偏差)。本产品已开始批量生产。  随着汽车的电气化和高功能化发展,在车载TPMS、RKE和wBMS等系统中配备了许多使用Bluetooth® Low Energy (BLE)和ZigBee™等通信标准的设备,因此,从多个设备发出多个无线通信信号相互交织的情况越来越多。  在这样的环境中,需要让各设备的IC之间的信号发送时间准确地实现同步,以便正确接收每个通信标准所使用的电信号的频率,避免IC之间的通信错误。因此,需要能够生成稳定的时钟信号(即具有固定间隔的稳定周期信号)的高精度时钟元件。  另一方面,在现有的时钟元件中,所使用的各个晶体振荡器的频率精度存在个体差异,而且,安装后,一旦车载设备达到了使用温度,晶体振荡器的频率就会发生变化,存在偏离通信标准要求的频率精度的问题。因此,在车载设备的生产工序中,为了保持频率精度在要求的范围内,需要将校正系数写入无线控制IC的校准工序。该校准工序所花费的时间和成本是一个问题。  而且,随着车载设备小型化发展,所配备元件的高密度安装,采用高性能IC等,也导致了电路板电路的温度上升问题。因此,需要具有高精度且能够承受高温的电子元件。  因此,村田利用特有的晶体原石和对谐振器的设计进行优化,开发出了村田首款在-40〜125°C的宽工作温度范围内实现±40ppm频率偏差的高精度产品。由此,在车载设备生产过程中,可以省去过去必不可缺的校准操作,为车载设备的稳定运行做出了贡献。  主要特点  兼具高精度和宽工作温度范围  在-40~125°C的宽工作温度范围内实现了±40ppm频率偏差的村田首款高精度汽车用晶体谐振器。  实现了高可靠性和低故障率  通过村田特有的树脂密封包装,除了有机异物之外,还能筛选无机异物,因此确保村田供应高质量的产品。  确立了稳定的供应体制  通过村田特有的封装结构,从多个供应商采购零件,由此实现稳定生产。  主要规格  该产品主要用于像TPMS、RKE、wBMS那样配备了车载BLE的车载设备等。其中:  TPMS(Tire Pressure Monitoring System):无线传输轮胎气压等信息并实时监控的系统。  RKE(Remote Keyless Entry):利用无线技术、无需使用钥匙即可解锁车门的系统。  wBMS(Wireless Battery Management System):无线化的电池管理系统。  今后,村田将继续致力于开发满足市场需求的晶体谐振器,助力汽车的高功能化发展。
关键词:
发布时间:2025-04-23 13:04 阅读量:888 继续阅读>>
石英<span style='color:red'>谐振</span>器和陶瓷<span style='color:red'>谐振</span>器的区别
  石英谐振器和陶瓷谐振器是两种常见的频率控制元件,它们在材料、性能、应用场景等方面存在显著差异。本文将对这两种谐振器进行对比分析,帮助读者更好地理解它们的区别。  一、材料与工作原理  1. 石英谐振器  石英谐振器是利用石英晶体的压电效应来产生稳定的振荡频率。石英晶体具有高度稳定的物理和化学特性,其晶格结构能够在外加电场作用下产生机械振动,从而实现频率的稳定输出。  2. 陶瓷谐振器  陶瓷谐振器则是利用压电陶瓷(如锆钛酸铅,PZT)的压电效应来产生振荡频率。陶瓷材料在施加电压时会发生机械变形,反之亦然。这种特性使得陶瓷谐振器能够通过机械振动产生稳定的频率。  二、性能对比  1. 频率精度与稳定性  石英谐振器:具有更高的频率精度和稳定性,通常用于对频率要求极高的场合,如无线通信、计算机系统等。  陶瓷谐振器:频率精度和稳定性相对较低,但已能满足一些对频率要求不苛刻的应用。  2. 温度特性  石英谐振器:在较宽的温度范围内表现出良好的频率稳定性。  陶瓷谐振器:温度特性较差,频率受温度变化影响较大。  3. 成本与尺寸  石英谐振器:制造工艺复杂,成本较高。  陶瓷谐振器:成本低,尺寸小,重量轻,抗震性能好,适合小型化设计。  4. 应用场景  石英谐振器:适用于高精度、高稳定性的应用场景,如通信设备、医疗设备、航空航天等。  陶瓷谐振器:适用于成本敏感且对频率要求不高的场合,如消费电子、工业控制、汽车电子等。  石英谐振器和陶瓷谐振器各有优缺点,选择时需根据具体应用需求进行权衡。如果应用场景对频率精度和稳定性要求极高,石英谐振器是更好的选择;而在成本敏感且对频率要求不高的场合,陶瓷谐振器则更具优势。
关键词:
发布时间:2025-02-26 14:47 阅读量:747 继续阅读>>
杭晶电子 | 陶瓷<span style='color:red'>谐振</span>器在产品中的应用。
  陶瓷谐振器是一种基于压电陶瓷材料的振荡元件,具有成本低、结构简单、频率稳定性良好的特点,广泛应用于以下领域:  消费电子产品  1、电视机、音响设备:作为时钟振荡器,为系统提供稳定的频率基准。  2、遥控器:用于无线传输信号的频率控制,确保设备精确响应指令。  02.计算机与外设设备  微处理器时钟:提供标准时钟频率,支撑主控芯片运行。  03、家用电器  微波炉、洗衣机:作为时序控制单元,保证操作的准确性和稳定性。  04.、汽车电子  车载控制系统:陶瓷谐振器在车载传感器和自动化控制系统中应用广泛,提供可靠的频率参考。  05.通信设备  无线传输模块:如对讲机、蓝牙模块中,用于提供频率稳定的振荡信号,确保数据传输无误。  陶瓷谐振器凭借其成本优势、良好的稳定性及可靠性,成为电子产品中常见的时钟元件,广泛应用于消费电子、汽车电子、家电及通信设备中,推动了电子技术的发展与普及。  陶瓷谐振器主要工作在低频段,常见的频率包括:  1.3.58 MHz 和 4.00 MHz:常用于遥控器、玩具及低速通信设备。  2. 6.00 MHz - 8.00 MHz:适合微控制器和消费电子设备。  3. 10.00 MHz - 16.00 MHz:广泛用于微处理器时钟、电器控制系统等。  4. 20.00 MHz - 30.00 MHz:适用于通信模块、时序控制等高频需求设备。  这些频率段满足不同电子设备对稳定频率控制的需求,具有成本低、性能可靠的优势。
关键词:
发布时间:2024-12-19 10:17 阅读量:921 继续阅读>>
<span style='color:red'>谐振</span>是什么 <span style='color:red'>谐振</span>有哪些特性
  谐振是指一个物理系统在受到外部激励时,在某个特定频率下产生极大响应的现象。当外部激励频率等于系统的固有频率时,系统将表现出最大的振幅或能量传输效率,这种现象称为共振。谐振是自然界和工程领域中普遍存在的现象,在电路、机械系统、声学系统等各个领域都有广泛的应用。  1. 谐振的特性  共振频率:谐振的最显著特征是共振频率,即系统的固有频率。当外部激励频率等于共振频率时,系统会表现出最大的振幅或能量传输效率。  频率选择性:谐振系统对于共振频率附近的信号有较强的选择性,对其他频率信号的响应相对较小。这种频率选择性使得谐振系统可以被用作滤波器或共振器来选择特定频率的信号。  振幅增益:在共振频率附近,谐振系统会表现出振幅增益的特性,即系统的输出振幅将会比输入信号更大。这种振幅增益可以应用于信号放大、天线增益调节等方面。  相位变化:在共振频率附近,谐振系统的相位响应也会发生突变,通常呈现出0度或180度的相位变化。这种相位变化在控制系统设计和滤波器设计中起着重要作用。  能量交换:在谐振状态下,系统内部的能量转移达到最大效率,能量在系统内部不断交换并积累。这种能量交换现象使得谐振系统在振动、声学和电路等领域具有重要应用。  响应速度:谐振系统在共振频率附近响应速度非常快,这意味着系统在接收到共振频率的信号后能够迅速做出响应,对于实时控制和调节具有重要意义。  2. 谐振的应用  电路谐振:在电路中,谐振可以用于调谐电路、滤波器设计、天线设计等方面。LC谐振电路和RLC谐振电路是常见的谐振应用,用于选择性地放大或抑制特定频率信号。  机械谐振:在机械系统中,谐振可以用于改善振动系统的性能,例如提高机械结构的稳定性、减少振动噪音等。振动台、共振箱等设备利用谐振现象进行振动测试和模拟。  声学谐振:声学系统中的共振现象被广泛应用于音响设备、乐器设计、声学隔离等领域。共振箱、共振膜等设备利用声学谐振现象产生特定频率的声音。  光学谐振:在光学领域,谐振现象被应用于激光器、光学滤波器、光学谐振腔等设备中。通过光学谐振,可以实现光的放大、选择性反射、波长调节等功能,对光学通信、光谱分析等领域具有重要作用。  磁学谐振:磁学系统中的谐振现象被应用于磁共振成像、磁学传感器设计、电子磁谐振等领域。利用磁学谐振特性,可以实现对磁场的精确控制和检测,广泛应用于医学成像、材料研究等方面。  控制系统谐振:在控制系统中,谐振可以用于调谐PID控制器、振动补偿系统、自适应控制系统等。通过利用系统谐振特性,可以提高控制系统的稳定性、响应速度和抗干扰能力。
关键词:
发布时间:2024-04-07 14:53 阅读量:3285 继续阅读>>
村田将可在150℃下运行的汽车专用晶体<span style='color:red'>谐振</span>器XRCGA-F-A系列实现商品化

跳转至

/ 2

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
型号 品牌 抢购
TPS63050YFFR Texas Instruments
ESR03EZPJ151 ROHM Semiconductor
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BP3621 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
STM32F429IGT6 STMicroelectronics
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。

请输入下方图片中的验证码:

验证码