上海雷卯:制定<span style='color:red'>车载</span>广播系统国家标准,应对行业变革与未来挑战
  引言  2023 年 9 月 14 日,我国广播电视总局、工业和信息化部、国家市场监督管理总局联合发布《关于进一步加强车载音视频管理的通知》,明确指出车载广播系统的重要性,并部署推动无线广播接收系统在汽车领域的安装。  2024年9月18日,美国众议院能源与商务委员会通过了《2024车载调幅广播法案》,要求所有在美国制造和销售的车辆中保留AM(调幅广播)功能。  这些举措引发了我们对车载广播系统标准化必要性的深入思考。在行业不断变革、未来充满挑战的当下,制定车载广播系统国家标准究竟有着怎样的意义和价值?  一、提升车载广播质量,国家标准迫在眉睫  背景案例:2021年7月20日,河南郑州遭遇特大暴雨,导致城市内涝、交通中断、电力和网络瘫痪。在这种极端情况下,无线广播成为了唯一的通讯手段之一,车载广播系统发挥了重要作用,但部分车主反映车载广播信号不稳定。这一事件凸显了车载广播系统质量和可靠性的重要性。  重要性:车载广播系统不仅是驾乘人员获取信息的重要渠道,也是公共安全体系的关键组成部分。制定国家标准可以确保车载广播系统的技术指标达标,提升产品质量,确保其在紧急情况下能够可靠工作,有效传递信息,维护公共安全。  二、推动国际合作,增强国际竞争力  现状分析:2020年,中国汽车出口额首次突破千亿美元,但标准差异仍然是进入某些市场的障碍。建立与国际接轨的国家标准,有助于提升中国汽车产品的国际竞争力。  战略意义:通过参与国际标准的制定,中国不仅可以促进技术交流与合作,还能提高中国汽车工业在全球市场的认可度。  以下是主要国家和地区车载无线广播接收系统的标准制定进程:  中国:目前处于《车载无线广播接收系统》强制性国家标准制修订计划项目的公开征集意见阶段,技术内容包括终端和天线的功能、性能、车规环境可靠性、电磁兼容等。  欧盟:2014年发布2014/53/EU无线电设备指令,要求车载广播收音机等设备符合CE标志要求。2018年发布的《欧盟电子通信法规》要求新车集成数字音频广播(DAB)功能。  日本:由汽车工业协会制定ARIB-STD-B3标准,指导行业设计开发。  中东地区:阿联酋和沙特阿拉伯分别发布了各自的车载广播接收机技术标准。  美国:正在推进《AM每辆车法案》,要求新车强制安装AM广播接收模块。  三、顺应行业变革,迎接未来挑战  技术趋势:随着自动驾驶技术的发展,车载广播系统将集成更多智能互联功能。例如,2021年谷歌与沃尔沃合作开发的车载信息娱乐系统,集成了语音助手、地图导航等多项功能。国家标准的制定不仅能够确保这些新功能的顺利实现,还能促进不同品牌之间的互操作性,提升用户体验。  未来展望:车载无线广播接收系统国家标准的制定,对于提升产品质量、推动技术创新、加强安全保障以及促进国际合作具有深远的意义。这是对技术进步的认可,更是对公共安全重视的具体体现。  四、雷卯助力车载广播系统,为其保驾护航  上海雷卯将在车载广播系统的标准化工作中贡献专业技术,特别是在防护器件的设计、测试及应用方面可以提供专业的意见和支持,确保系统在复杂的电磁环境中依然能够稳定运行。  以下是雷卯针对汽车无线电调谐器不同接口提供典型保护案例。  汽车无线电调谐器原理图  上海雷卯针对汽车无线电调谐器所带有的USB、RS232,CAN、以太网、模拟音频、扬声器等接口提供了典型的保护案例,综合列表如下,可以直接应用于实际场景。  上海雷卯专业研发销售 ESD,TVS,TSS,GDT,MOV,MOSFET,Zener,电感等产品。雷卯致力于为客户提供高品质产品,以保护电路免受静电干扰和电压波动的影响。雷卯拥有一支经验丰富的研发团队,能够根据客户需求提供个性化定制服务,为客户提供最优质的解决方案。  结语:  在科技飞速发展的时代,车载广播系统看似有些 “复古”,但在关键时刻却能发挥不可替代的作用。制定车载广播系统国家标准,不仅是对传统广播技术的传承与发展,更是为了在未来的不确定中为人们筑牢一道信息安全的防线。它将引领汽车行业在创新与稳定之间找到平衡,为我们的出行生活增添一份可靠的保障。让我们共同期待这一标准的落地实施,为应对行业变革与未来挑战贡献力量。
关键词:
发布时间:2024-10-11 11:34 阅读量:464 继续阅读>>
芯动半导体与罗姆签署战略合作协议 ~通过开发<span style='color:red'>车载</span>功率模块,助力xEV技术创新~
  长城汽车旗下的无锡芯动半导体科技有限公司(Wuxi XinDong Semiconductor Technology Co., Ltd. ,以下简称“芯动半导体”)与全球知名半导体厂商罗姆(ROHM Co., Ltd. ,以下简称“罗姆”)签署了以SiC为核心的车载功率模块战略合作伙伴协议。  随着新能源汽车(xEV)市场的不断扩大,市场对于延长续航里程和提高充电速度的需求也日益高涨。SiC作为解决这些问题的关键器件被寄予厚望,并在核心驱动部件——牵引逆变器中逐渐得到广泛应用。  通过此次的合作,芯动半导体将致力于搭载罗姆SiC芯片的车载功率模块的创新和性能提升,长城汽车集团将开发高效率的牵引逆变器,以延长xEV的续航里程。未来,双方将会进一步加快以SiC为核心的创新型车载电源解决方案的开发速度,为汽车技术创新贡献力量。  芯动半导体 董事长 郑春来表示:  “随着xEV市场的扩大,对SiC芯片的需求也在持续增长。芯动半导体正在通过与优质供应商建立长期合作关系来加强SiC功率模块开发体系。与罗姆之间的战略合作伙伴关系将会进一步巩固长城汽车的垂直整合体系,并加快更高性能xEV的开发速度。”同时,长城汽车投资了河北同光半导体股份有限公司,将进一步发挥产业链上下游协同的作用。”  罗姆 董事兼常务执行官 伊野 和英表示:  “非常荣幸能够与芯动半导体建立战略合作伙伴关系。芯动半导体负责长城汽车xEV逆变器中使用的功率模块的开发和生产。罗姆经过多年的努力,建立了业界先进的SiC功率元器件开发和制造体系。通过双方的合作,我们将会提供更高性能和更高品质的先进车载电源解决方案,为xEV的技术创新做出贡献。”  关于芯动半导体  芯动半导体成立于2022年11月,位于江苏省无锡市,是长城汽车旗下公司。芯动半导体专注于自主研发,旨在开发SiC功率半导体模块和应用解决方案。  关于长城汽车  长城汽车股份有限公司(Great Wall Motor Company Limited,GWM)成立于1984年,是一家总部位于中国的国际多品牌汽车制造商。2020年,长城汽车在汽车管理中心(CAM)的企业创新指数评比中,被评为15家最具创新力的OEM企业之一。长城汽车拥有约100家子公司,员工超过70,000人,在60多个国家和地区布设了500个网点,在国外汽车市场的销售量超过700,000辆。目前,长城汽车的网点已经遍布全球各大洲。
关键词:
发布时间:2024-10-11 09:34 阅读量:285 继续阅读>>
新品 | 标称电阻1kΩ、0603M尺寸:移动设备与<span style='color:red'>车载</span>过热检测,就选这款村田无铅PTC热敏电阻!
  株式会社村田制作所扩充了移动设备专用与车载专用的0603M尺寸(0.6×0.3×0.3mm)过热检测用PTC热敏电阻的系列产品,追加了标称电阻1kΩ系列,感知温度105℃、115℃的产品。本产品预定从10月起开始批量生产。  PTC热敏电阻是Positive Temperature Coefficient Thermistor的缩写,PTC阻值在温度超过一定温度后剧烈上升,因此可在电路中起到过热保护的功能。  随着智能手机和平板终端等移动设备的高功能化和小型化,电子部件的安装数量也不断增加。此外,在通信速度得到飞跃性提高的5G环境下,每个部件需要在单位时间内处理的信息量显著增加,部件的高负载带来发热量的激增,因此对过热检测部件的需求越来越高。  此外,在符合AEC-Q200标准的车载用途中,随着LED插座的小型化需求增加,其内部用于过热检测的部件也有小型化趋势。  鉴于此,村田通过改进陶瓷原料的成分和烧制技术,成功研发了标称电阻1kΩ系列的超小型0603M尺寸(0.6×0.3×0.3mm)产品。与旧型号PRF15系列(1005M尺寸)相比体积缩小约80%,贴装面积缩小了约70%。  此外,这是村田PRF系列中首款使用无铅原料的无Pb产品,因此也有助于减少环境负荷。  主要特点  1.作为移动设备专用标称电阻1kΩ系列,实现超小型0603M尺寸,为高密度贴装和节省电路板空间做贡献;  2. PTC热敏电阻体积小,可高速响应;  3. 使用无铅原料的无Pb产品;  4. 无触点,不会发生开启/关闭时的干扰;  5. 使用无铅原料的无Pb产品;  6. 不需要复杂的电路结构,可削减部件数量;  7. 检测发热后,如果恢复正常温度便会自动返回原来的电阻值,可反复使用;  8. 室温(25℃)的电阻值1kΩ、感知温度105℃、115℃的电阻值10kΩ.  对于确保电子元件的最佳性能和防止电子元件因受热而损坏,热管理是一项十分重要的技术。有关村田PTC热敏电阻的应用说明和推荐IC,可参考:东芝的Thermoflagger™过温检测IC与PTC热敏电阻结合使用,提供过温保护解决方案的案例。  今后,村田将继续扩充温度传感产品系列,以满足市场对高密度贴装和小型化的需求,并为此做出贡献。
关键词:
发布时间:2024-10-10 13:01 阅读量:369 继续阅读>>
三星电子开发出其首款基于第八代V-NAND的<span style='color:red'>车载</span>SSD
  256GB AM9C1使用先进的V-NAND技术,  5nm制程控制器,  提供SLC模式选项,速度目前为三星最快  更高的性能和可靠性,  使此款SSD支持端侧AI功能,  更适配下一代车载解决方案  2024年9月24日,三星电子今日宣布成功开发其首款基于第八代V-NAND技术的PCIe 4.0车载SSD。三星新款AM9C1车载SSD凭借行业前沿的速度和更高的可靠性,成为适配车载应用端侧人工智能功能的解决方案。  三星新款256GB AM9C1车载SSD相比前代产品AM991,能效提高约50%,顺序读写速度分别高达4,400MB/s和400MB/s。  “三星电子副总裁兼存储器事业部  汽车业务负责人Hyunduk Cho表示:  我们正在与全球自动驾驶汽车厂商合作,为这些企业提供高性能、高容量的车载产品。三星将继续推动涵盖从自动驾驶到机器人技术的物理人工智能(Physic AI)¹ 存储器市场的发展。”  AM9C1基于三星的5纳米(nm)控制器,提供单层单元(SLC)命名空间²功能,其优异的性能让访问数据密集型文件更为轻松。用户将初始的三层单元(TLC)状态切换至SLC模式,即可体验大幅提升的读写速度,其中读取速度高达4,700MB/s,写入速度高达1,400MB/s,同时还能享有SLC SSD可靠性增强所带来的优势。  当前,三星的主要合作伙伴正在进行256GB版本AM9C1的样品测试,这款产品预计将于今年年底开始量产。为了满足对高容量车载SSD日益增长的需求,三星计划推出128GB到2TB等多种容量规格的AM9C1存储器产品阵容。其中最大的2TB SSD预计将在明年年初开始量产。  三星的新款车载SSD通过了更为严苛的板级测试,能够满足汽车半导体质量标准AEC-Q100³的2级温度测试标准,在-40°C至105°C宽幅的温度范围内能保持稳定运行。  为了进一步满足汽车行业在可靠性和稳定性方面的高标准,三星电子获得了基于ISO/SAE 21434标准的CSMS⁴(网络安全管理体系)认证。今年3月,三星的车载UFS 3.1产品通过了ASPICE⁵(汽车软件过程改进与能力评定)CL3认证。  “三星电子存储器事业部  执行副总裁Hwaseok Oh表示:  ASPICE和ISO/SAE 21434认证是证明三星技术可靠性和稳定性的里程碑。三星将继续提升产品的稳定性和品质,为关键合作伙伴提供优秀解决方案。”
关键词:
发布时间:2024-09-24 10:07 阅读量:465 继续阅读>>
纳芯微电子:CAN SIC知多少——新一代<span style='color:red'>车载</span>网络协议你用了没?
  日前,纳芯微宣布推出基于其自研创新型振铃抑制专利的车规级CAN SIC(信号改善功能,Signal Improvement Capability)NCA1462-Q1。  NCA1462-Q1在满足ISO 11898-2:2016标准的前提下,进一步兼容CiA 601-4标准,可实现8Mbps的传输速率,比当前主流的CAN FD车载通信方案有着显著优势。  此次,趁纳芯微新品发布之际,我们邀请到了纳芯微技术市场经理陈章杰,围绕CAN SIC的相关话题进行了探讨。  为什么要开发CAN SIC?  随着自动驾驶和区域控制概念的兴起,ECU彼此间进行了大量的整合与集成,这意味着更高的集成度,更多的节点数,更复杂的星型拓扑,以及更高的传输速率。  这给CAN FD总线带来了巨大挑战——即在更复杂的星型拓扑网络中,由于高传输率及复杂的拓扑的转变下,会出现严重的振铃,从而带来误码率的提高,影响信号传输。  目前CAN FD标准号称定义到5Mbps,但在实际应用中很难达到2Mbps以上。尽管客户希望提速,但是为了信号完整性,往往要牺牲速率,缩小节点规模,以减少振铃带来的影响。  CAN SIC则可轻松解决这一矛盾。  CAN SIC如何降低振铃?  要看CAN SIC的原理,首先要看振铃的形成原因。  振铃是指在CAN总线的通信过程中,由于阻抗不匹配导致的信号反射等原因,使得信号在传输线上多次反射,进而产生的一种振荡现象。更高的通讯速率意味着更窄的位宽时间,当前CAN FD的2Mbps相比以前HS CAN的500kbps位宽时间由2000ns缩短为500ns。同样强度的振铃干扰,在更高的通讯速率下,由于位宽时间过短不足以使其衰减到隐性差分电压的判定阈值以下,从而更容易导致通讯错误。  为了解决这一问题,2019年,CAN FD SIC (Signal Improvement Capability)信号增强版标准CiA (CAN in Automation) 601-4发布,通过抑制振铃,从而匹配现代域控和高速通信系统的要求。  与CAN FD相比,CAN SIC的优化主要体现在驱动电路上,其增加了一个强驱电路。如上所述振铃往往发生在从显性到隐形状态,因此,可以在该转换过程中增加一个额外的强驱电路,以控制总线电平的切换斜率,从而确保数据不出错。  CAN SIC或将成为主流标准之一  “无论哪项标准的制定,都是为了符合当时的需求,每一代都有自己的使命,也都会在演进过程中不断完善。”陈章杰说道。  CAN总线经历了多个标准。最早由德国博世于1980年代发明,第一个使用CAN总线通讯协议的量产车型是1991年的奔驰S级轿车,至今CAN总线依旧是车内主要的通讯总线。随着汽车电子智能化加速,CAN总线也进一步升级,2003年CAN总线升级为HS CAN,但还是基于第一代技术。2011年第二代CAN总线CAN FD开始研发,2015年CAN FD标准即ISO11898发布,2019年,CAN FD SIC (Signal Improvement Capability)信号增强版标准CiA (CAN in Automation)601-4发布,2021年CAN FD的轻量级版本CAN FD Light 标准CiA 604-1发布。2021年12月,第三代CAN总线即CAN XL标准CiA 610-1发布,但还未完全落地。  陈章杰表示:“在当年情况下,对于CAN总线的需求是提速,并没有太多的复杂拓扑需求,因此并不存在振铃问题。而随着复杂拓扑与高速率的需求增长,CAN FD无法满足,因此CiA 601-4孕育而生。”  另外,对于下一代CAN XL而言,依然需要解决振铃问题,CAN SIC也可以为提速和多节点复杂通信做好提前铺垫。  CAN SIC除了要解决CAN FD目前的问题之外,还有一大使命,就是要应对以太网的竞争。如今车载骨干网络已经以太网化,但是控制端目前还没有落地,考虑到其成本和厂商在软件或其他方面的适配,CAN依然是未来的主导之一。  陈章杰强调,CAN SIC的演变比预想的还要快,“随着域控和区域架构概念的普及,CAN SIC的认可度不断提升,越来越多的主机厂开始逐渐接纳这一技术。相信在未来,CAN SIC将大有可为。”  纳芯微如何开发的CAN SIC  纳芯微的CAN SIC实测传输速率可达10Mbps,已经完全满足CiA 8Mbps的规范要求。  陈章杰表示,CAN SIC开发最大的挑战其实是驱动架构和EMI架构的兼容,单纯做好驱动电路并不难,但是会牺牲其他方面的性能,尤其是EMI这种非线性关系的处理。  “芯片设计本身就是一个权衡取舍的问题。”陈章杰补充道,除了要关注EMI之外,成本也是一大考量。纳芯微的产品性能不输于国外厂商,同时还要更有性价比,因此还需要在设计上不断优化,从而用更小的面积(更低的成本)实现更高的性能。“另外,产品本身是一方面,更重要的是应该从系统角度出发开发产品。”包括EMI、ESD等约束,以及成本的优化等等方方面面。  陈章杰还强调,纳芯微一直以来深耕IP的开发,在CAN SIC开发过程中诞生了诸多发明专利,并将其IP化,与其他产品组合共享,打通了底层研发的平台。“对于芯片而言,核心竞争力之一就是IP,纳芯微也正围绕这些核心IP进行持续开发与优化打磨,形成一套完整的路线图。”陈章杰补充道。  详解纳芯微的CAN SIC新品  纳芯微NCA1462-Q1基于创新的专利架构对EMI进行了优化设计,依照IEC62228-3标准进行测试,完全符合要求。  NCA1462-Q1通过优化电路结构及版图面积实现了超±8kV ESD性能,既能从容应对在汽车行驶过程中突发的静电放电威胁,提供更可靠的电路保护,又能实现器件成本的优化。凭借超高的EMC/ESD性能,NCA1462-Q1还可在部分设计中帮助工程师省去外围电路中的共模电感或TVS管。此外,更加灵活、低至1.8V的VIO设计可进一步节省系统中LDO或者电平转换的使用,帮助工程师降低整体成本。  NCA1462-Q1的总线故障保护电压在CAN Low和CAN High中都可以达到±58V,真正做到了高耐压,从而帮助客户降低击穿风险。  另外,值得一提的是,在CAN SIC中,EMI可以细分为显性EMI和隐性EMI,比如某些产品显性EMI做得好,某些产品的隐性EMI好,纳芯微则是通过取长补短的手段,实现了显性和隐性EMI的全面优化。  提前布局,做市场的引领者  CAN SIC市场前景相对明朗,但截止目前,无论是国际还是国内厂商,能够提供CAN SIC芯片的供应商都不多。  “就目前时间点而言,虽然CAN SIC的需求比较明确,但产品也不可能突然遍地开花,需要一个循序渐进的过程。”陈章杰说道。  陈章杰同时表示,无论是CAN收发器还是CAN SIC,纳芯微一直都是根据市场需求与预判进行提前布局,定义完整的产品及路线图。也正因此,纳芯微成为了最早一批量产CAN SIC的厂商。  另一方面,尽管CAN SIC还处于“蓝海”市场,但是前一代CAN收发器的市场竞争已经相当激烈,纳芯微为何还要杀入这一市场呢?陈章杰表示,作为汽车主要的总线技术,其市场容量非常之大,每辆车上就需要数十颗之多,市场始终处于高需求状态。而且,陈章杰说道:“CAN接口貌似简单,但是要做好确实有一定的门槛,作为通用物料而言,最能考验公司的能力,这其中会包括成本控制,市场覆盖,研发实力,供应链等等。”  也正因此,CAN接口是非常适合切入汽车市场的产品之一。“所以我们看到越来越多的友商进入这一市场,但是说实话如果要做到各方面性能指标都高标准,还是有一定门槛的。”陈章杰表示。  陈章杰表示,纳芯微既立足本土,同时也是面向全球的芯片供应商,随着国产芯片实力的加强,很多海外客户也在看中国的供应商,纳芯微的产品无论在性能、性价比、技术支持等方面都已经获得了全球主要客户的认可和采用。“我们既然面向全球市场,就必须要以更高的标准定义产品。”  面对激烈的市场竞争,“短期而言,价格决定一切,而从长远来看,客户更在乎的是合作伙伴持续降本,以及持续优化运营的能力,并不能单纯靠价格战取胜。”陈章杰强调道。  面向未来的CAN XL  作为CAN CiA的成员之一,纳芯微也在积极评估CAN XL的发展。但陈章杰也坦言,CAN XL还在规划中,尚无明确的时间节点,并且也依赖于目前CAN SIC的市场普及和认可度。  “一旦客户和市场完全认可CAN SIC的价值,并逐步应用于复杂星型拓扑与高速率场景中,一定会打消客户升级换代的顾虑。”陈章杰乐观地表示。
关键词:
发布时间:2024-09-19 09:24 阅读量:642 继续阅读>>
上海贝岭800V<span style='color:red'>车载</span>PTC加热器驱动解决方案
  一、概述  随着新能源汽车对800V平台技术的大量应用,汽车各高压部件就随之提出了由400V向800V切换的需求。高压PTC (Positive Temperature Coefficient)加热器作为汽车热管理系统中重要的一环,对电池、电机、电控等部件进行温度控制和管理,从而确保其能适应多样化的外部条件,使各部件能工作在最佳温度区间,提高新能源汽车的性能与安全性。  二、车载PTC工作原理及拓扑结构  PTC热敏电阻是一种基于正温度系数的特殊半导体陶瓷材料的电阻,其温度-阻值曲线如图1所示:在室温下,器件电阻值相对较低;当电流流经PTC电阻时,其产生的能量会使PTC电阻升温;当器件温度超过居里温度时,PTC阻值会迅速增大,回路电流会相应减小。从而可实现PTC温度维持在一定范围内。  图1 PTC 电阻值-温度曲线  图片来源:汽车热管理研发  高压PTC模块的常用典型拓扑如图2所示:输入高压电由电池包取电,通过滤波后为PTC组件供电,低压部分由反激电路实现高低压隔离,功率回路通常采用并联分离驱动的方案。以图2为例,4路PTC组件代表四种工作模式,根据不同的功率需求选择开启通道数。霍尔电流传感器检测母线电流,水温传感器用以检测换热液温度以调节PTC加热器占空比实现恒温控制。  三、贝岭BLG40T120FDL5产品介绍  针对高压PTC应用,上海贝岭推出1200V 40A IGBT产品BLG40T120FDL5-F。采用第二代微沟槽多层场截止技术,优化了导通压降和开关损耗,实现了更好的输出特性。  图3工艺特点  BLG40T120FDL5合封全电流FRD,减少了电路设计时的元器件数量,提高了整体可靠性。  图4 封装内部示意图  为高压PTC应用提供更优的散热性能与绝缘性能,上海贝岭BLG40T120FDL5采用TO247封装。  图5 BLG40T120FDL5-F封装外观  四、贝岭BLG40T120FDL5性能优势  1、通态压降Vce(sat)  对于PTC应用而言,其较低的频率导致了器件的通态损耗在总损耗中的占比提高,为了降低损耗带来的温升,确保器件可工作在安全的温度范围,低通态压降Vce(sat)是评估IGBT器件的一个重要指标。上海贝岭BLG40T120FDL5拥有较低的导通压降,在该类应用中展现出更出色的性能。  2、漏电流 Ices  PTC应用中IGBT工作环境会高达125℃左右,上海贝岭BLG40T120FDL5有助于在高温环境中降低漏电流,在PTC复杂的应用场景下,在阻断状态具更低的自热,更低的结温,因而可靠性更高。  3、向偏置安全工作区RBSOA  RBSOA反映了IGBT器件在关断过程中CE在承受反向电压时能够安全关断的安全工作区域。在实际应用中,由于PTC的温度特性,会在居里温度附近开启时产生较大的电流,为保证PTC加热器的可靠运行,需要器件有3~4倍额定电流的安全工作区域。  图8中CH1通道为栅极波形,CH2为CE间电压波形,CH4为Ic电流波形,室温下BLG40T120FDL5关断电流可达236.6A。  图8 BLG40T120FDL5室温下的最大关断电流波形  4、短路时间SCWT  在车载高压PTC应用中,设置短路保护时同样需要考虑PTC的温度特性,为避免居里温度开启时低电阻导致的大电流触发保护机制,因此保护电流设定会偏大,并且短路保护时间达到6us以上。  图9为BLG40T120FDL5在800V高压下的短路波形,CH1通道为栅极波形,CH2为CE间电压波形,CH4为Ic电流波形。在800V母线电压下,BLG40T120FDL5短路耐受时间达12us。  图9 BLG40T120FDL5在800V高压下的短路波形  五、贝岭器件选型方案  表1 功率器件选型列表  贝岭功率器件产品线齐全,包含MOSFET、IGBT等系列产品,为高压PTC加热器设计提供助力!
关键词:
发布时间:2024-09-09 13:25 阅读量:434 继续阅读>>
三星宣布携手高通,助力高级<span style='color:red'>车载</span>信息娱乐与高级驾驶员辅助系统
  三星LPDDR4X车载内存通过高通汽车模组验证  强大的车载存储解决方案产品阵容  将确保供应链长久、稳定、可靠。  2024年8月27日,三星电子今日宣布,其用于高级车载信息娱乐(IVI)和高级驾驶辅助系统(ADAS)的LPDDR4X车载内存,已通过高通最新的骁龙® 数字底盘™平台验证。这不仅证明了三星LPDDR4X车载存储器的卓越性能,也体现了三星在汽车应用领域的深厚技术实力和长期支持客户的坚实承诺。  ▲三星和高通携手共同助力高级车载信息娱乐(IVI)  和高级驾驶员辅助系统(ADAS)  “三星电子副总裁兼存储器事业部  汽车业务负责人Hyunduk Cho表示:  三星丰富的DRAM和NAND车规产品组合,且均通过了AEC-Q100¹ 验证。因此,三星是高通技术公司携手共进、为客户打造长期解决方案的理想伙伴,三星凭借在存储器解决方案领域的设计、生产和封装能力的领先优势,不仅能够提供快速的开发周期,同时能够保障可靠性、验证和卓越的产品控制,满足汽车行业的严格要求。  AEC-Q100标准是针对车载封装集成电路产品的应力测试标准。  三星正在开发下一代LPDDR5车规芯片,预计今年第四季度可以提供样品。LPDDR5将能够支持三星车轨内存能达到的最高数据传输速度,即每秒9.6千兆位(Gbps),即使在极端温度条件下,依旧保持卓越性能。
关键词:
发布时间:2024-08-27 11:02 阅读量:475 继续阅读>>
ROHM开发出安装可靠性高的10种型号、3种封装的<span style='color:red'>车载</span>Nch MOSFET, 非常适用于汽车车门、座椅等所用的各种电机以及LED前照灯等应用!
  全球知名半导体制造商ROHM(总部位于日本京都市)开发出具有低导通电阻*1优势的车载NchMOSFET*2“RF9x120BKFRA”、“RQ3xxx0BxFRA”和“RD3x0xxBKHRB”。新产品非常适用于汽车门锁和座椅调节装置等所用的各种电机以及LED前照灯等应用。目前,3种封装10种型号的新产品已经开始销售,未来会继续扩大产品阵容。  在汽车领域,随着安全性和便捷性的提高,电子产品逐渐增加,使得所安装的电子元器件数量也与日俱增,而且,为了提高燃油效率和降低电耗,还要求降低这些产品的功耗。其中,尤其是在对于车载开关应用不可或缺的MOSFET市场,对导通电阻低、损耗低且发热量低的产品需求高涨。  ROHM一直在为消费电子和工业设备领域提供采用中等耐压新工艺的低导通电阻MOSFET。此次通过将这种新工艺应用于对可靠性要求高的车载产品,又开发出具有低导通电阻优势的10款车载Nch MOSFET新产品。不仅有近年来需求高涨的2.0mm×2.0mm和3.3mm×3.3mm尺寸的小型封装产品,还有传统的TO-252封装产品,未来将会继续扩大产品阵容并持续供应。  新产品的耐压分别为40V、60V和100V,均通过采用split gate*3实现了低导通电阻,有助于车载应用的高效运行。所有型号的新产品均符合汽车电子产品可靠性标准AEC-Q101,并确保高可靠性。  封装有适用于不同应用的3种形式。小型封装DFN2020Y7LSAA(2.0mm×2.0mm)和HSMT8AG(3.3mm×3.3mm)非常适用于高级驾驶辅助系统(ADAS)等安装面积较小的应用。另外还有已被广泛用于车载电源等应用的TO-252(DPAK)封装(6.6mm×10.0mm)。DFN2020Y7LSAA封装的引脚采用的是可润湿侧翼(Wettable Flank)成型技术*4,TO-252封装的引脚采用的是鸥翼型结构*5,安装可靠性都非常高。  目前,新产品暂以月产1,000万个(10种型号合计)的规模量产(样品价格500日元/个,不含税)。前道工序的生产基地为ROHM Co., Ltd.(日本滋贺工厂),后道工序的生产基地为ROHM Apollo Co., Ltd.(日本福冈县)和ROHM Integrated Systems (Thailand) Co., Ltd.(泰国)。另外,新产品已经开始通过电商进行销售,通过Ameya360电商平台可购买。  未来,ROHM将致力于扩大车载用中等耐压Nch MOSFET的产品阵容。计划于2024年10月开始量产DFN3333封装(3.3mm×3.3mm)和HPLF5060封装(5.0mm×6.0mm)的产品,于2025年开始量产80V耐压的产品。另外还计划增加Pch产品。ROHM将继续扩大产品阵容,为车载应用的高效运行和小型化贡献力量。  <产品阵容>  <应用示例>各种车载电机(汽车门锁、座椅调节器、电动车窗等)LED前照灯信息娱乐系统、车载显示器高级驾驶辅助系统(ADAS)  <电商销售信息>  电商平台:Ameya360  (开始销售时间:2024年6月)  <术语解说>  01. 导通电阻(Ron)  MOSFET启动(ON)时漏极与源极之间的电阻值。该值越小,运行时的损耗(电力损耗)越少。  02. Nch MOSFET  通过向栅极施加相对于源极为正的电压而导通的MOSFET。与Pch MOSFET相比,由于Nch MOSFET具有更低的导通电阻,并且在各种电路中具有更出色的易用性,因而目前在市场上更受欢迎。  03. split gate  一种将MOSFET的栅极分为多段以有效调整电子流动的技术。利用该技术可实现高速且高可靠性的运行。  04. 可润湿侧翼(Wettable Flank)成型技术  一种在底部电极封装的引线框架侧面进行电镀加工的技术。利用该技术可提高安装可靠性。  05. 鸥翼型结构  引脚从封装两侧向外伸出的封装形状。散热性优异,可提高安装可靠性。
关键词:
发布时间:2024-08-07 10:11 阅读量:348 继续阅读>>
纳芯微:电源“芯”世界,<span style='color:red'>车载</span>LDO一站式解决方案手册
  欢迎来到纳芯微电源“芯”世界!作为基础和桥梁,电源芯片存在于汽车电子电气架构的每个功能执行单元,其重要性不言而喻。在这个全新的系列中,我们就将带您深入探索最新、最前沿的电源管理技术,为您带来专业的解决方案和实用的干货知识解读。  聚焦车载LDO,为您呈现一站式解决方案的独特魅力!  车载LDO的五大分类  在汽车电子系统中,LDO的稳定性和可靠性至关重要。我们的车载LDO一站式解决方案涵盖以下五大分类,确保满足各种应用需求。  一级LDO  功能:一级电压调节,提供稳定的中间电压。  应用:电池供电系统的初级稳压等  二级LDO  功能:进一步精确调节电压,提供低噪声、高精度输出。  应用:微处理器和精密模拟电路等  天线LDO  功能:为天线和无线通信模块提供低噪声、高稳定性的电源。  应用:车载无线通信设备、GPS模块等  电压跟随器LDO  功能:稳定电压传输,缓冲和隔离不同电路。  应用:减少电路干扰和噪声的应用场景等  看门狗LDO  功能:集成看门狗定时器,监控系统运行状态。  应用:提高系统可靠性和安全性,防止系统失灵等  纳芯微在以上不同品类LDO的设计和性能上都具备独特优势,如低静态功耗、高电源抑制比(PSRR)、低噪声、优异的瞬态性能等,能够全面提升汽车电子系统的可靠性和效率,确保系统在各种环境下的稳定性和性能。
关键词:
发布时间:2024-08-06 09:47 阅读量:587 继续阅读>>
纳芯微高集成单芯片SoC如何高效智能控制<span style='color:red'>车载</span>步进电机?
  随着现代汽车电子技术的快速发展,步进电机作为一种精确且可靠的执行元件,在汽车电子系统中的应用日益广泛。为了实现车载步进电机应用的精确控制,纳芯微推出了集成LIN和MOSFET功率级的单芯片车用小电机驱动SoC——NSUC1610,可以帮助客户实现安全可靠的车载电机控制。  本文将结合步进电机的结构与驱动方法,重点介绍基于NSUC1610的步进电机控制原理及其实际应用  步进电机结构及其驱动方法  与人们熟知的大部分电机一样,步进电机的结构也是由定子和转子组成。转子由轴承、铁芯、磁钢等构成。转子铁芯带有齿轮,是步进电机单部步距的行程;定子是由铁芯、定子绕组和支撑结构构成。  步进电机结构  根据绕组方式,步进电机主要分为两大类:一类是单极性步进电机,它是由带中心抽头(公共线)的单绕组组成,其电流均由1、2、3、4四根线的相线流入中心抽头公共线,因此电流方向是单向的。另一类是双极性步进电机,由没有中心抽头的绕组构成,其电流方向是双向的。  步进电机的分类  单极性步进全步运转示意图  单极性步进电机和双极性步进电机的驱动方式不尽相同,上图中单极性步进电机的A、B、C、D分别是两相四线,5为抽头的公共线。在驱动电机全步运行时,步骤如下:  第一步:  A相通电,B、C、D相不通电,A相产生磁场,且磁极是S极,吸引转子的N极;  第二步:  A、B相全部通电且电流相同,产生相同的磁极,两个S极磁场矢量合成,吸引转子向A、B相之间旋转;  第三步:  B相通电,A相断电,B相产生磁场,且磁极是S极,吸引转子的N极;  第四步:  B、C相通电且电流相等产生相同的磁性,两个S极磁场矢量合成,即可吸引转子向BC相之间旋转。  依次类推五六七八步,使整个步进电机旋转起来。  双极性步进全步运转示意图  双极性步进电机的驱动是直接驱动A+、A-、B+、B-两相四根线来实现运转的。步骤如下:  第一步:  A相通电,B相不通电,A相产生磁场且A+磁极是S极,A-磁极是N极,吸引转子的N极至A+,S极至A-;  第二步:  A、B相全部通电且电流相同,产生相同的磁极,两个S极的N极磁场矢量合成,吸引转子N极向A+、B+相之间旋转;  第三步:  B相通电,A相断电,B相产生磁场且磁极是S极,吸引转子的N极至B+;  第四步:  B相通电,A相断电且电流相等,产生相同磁性,两个S极磁场矢量合成,吸引转子N极,向B+、A-相之间旋转。  依此类推五六七八步,整个步进电机便旋转起来。  基于NSUC1610的步进电机控制  纳芯微NSUC1610采用数字恒流控制技术,由PWM 100%控制每个周期的电流输出,实现对输出电流的精确调节。这意味着,在输出电流未达到设定电流值之前,PWM输出on,一旦达到设定电流值便输出off;如果在输出off之后的输出电流低于设定值,就会在下一个周期重新输出高电平,继续增加输出电流,以便在PWM输出off时使电流及时衰减至设定值。  硬件电流控制  NSUC1610的电流控制采用三种衰减方式,以适应不同类型和需求的步进电机。第一种是慢衰减(slow decay)方式,打开电流输出时,上桥臂输出PWM波,下桥臂输出常高;关闭电流时,关闭上桥臂,下桥臂保持常高,通过MOSFET的体二极管实现泄放。这种方式是将电流的电能转化为热能,但泄放能力有限。  异步慢衰减  第二种是快衰减(fast decay)方式,打开电流输出时,上下桥臂均输出PWM波;关闭电流输出时,通过打开反向的上下桥臂,直接将能量泄放至电源充电,此时泄放能力较大。  同步快速衰减  第三种是混合衰减(mix decay)方式,它结合了前两种方式,一段时间采用慢衰减方式,一段时间采用快衰减方式,并调控两者的时间比例。  至于具体采用哪一种衰减方式来衰减电流,需要根据电机的电感参数及电机的转速等合理选择。  混合衰减  在采用NSUC1610驱动双极性步进电机时,只需将电机的A+、A-、B+、B-四根线直接与MOUT0、MOUT1、MOUT2、MOUT3相连,VSS、ISNS管脚直接接地,外围电路只需加一些必要的电容、电阻及二极管等被动元件,即可实现用单芯片控制双极性步进电机,同时还可以实现与LIN主机的通信,大大地提高系统的集成度和可靠性。  基于NSUC1610的步进电机图  从步进电机的驱动原理来看,通过给电机的两相通上交流电流即可使电机旋转。实际上,这是比较粗糙的步进电机控制方式,这种控制方式产生的电流突变点较多,转距不恒定,旋转也就不太平顺。  为了让电机较为平顺丝滑地旋转,通常采用微步驱动方式。微步驱动方式不同于全步驱动方式,它是在8步全步中去掉了4步,插入了中间点临界电流,即0电流。通过不断类推,不断插入中间电流,即可减小电流突变,细化电机的电流变化,使之接近正弦,从而实现微步。微步的目标是产生A、B相位差90°的正弦电流。  微步原理  NSUC1610利用数字恒流控制实现了微步正弦电流控制,具体实现原理是采用比较器恒流控制。方法是在正端接入一个桥臂电流采样信号,负端接入一个DAC输出电压信号,在每一个微步控制期间触发固定的DAC输出。  如果桥臂电流信号大于DAC,则打开相应的桥臂输出;如果桥臂电流小于DAC值,则关闭相应的桥臂输出,这样即可实现每一个微步期间的闭环恒流控制。在整个步进区间中,根据正弦公式改变DAC输出,即可实现电流信号的正弦输出,从而实现步进电机的微步控制。  步进电机微步电流控制  在电机旋转过程中,会出现一定概率的堵转而导致电机失步。为了检测电机是否出现堵转失步,可以通过测量电机的反电动势来判定。由于电机的反电动势与其转速成正比,因此需要为测量到的反电动势设定一个合理的阈值,小于设定阈值即可认为电机出现了失步。  在整个电流控制区间,电机的反电动势大部分是不可测量的。只有当电流为0,桥臂没有导通驱动电机时,测量的两个桥臂电压才是真实反电动势。  步进电机失速检测  电机的启动和停止时速度为0,如果直接满速启动或停止,那么电机的启停就会很突然,出现不平顺。为了实现较为平缓的速度控制,可以采用梯形加减速的方式实现位置控制。由于速度控制的曲线是梯形,位移曲线就是S型。从图中可以看到,电流波形在加速减速阶段较为稀疏,而在匀速阶段较为密集。一般步进电机停止前,会有一段大的稳定电流,旨在防止电机转到目标位置时出现过冲;接着进入hold状态,利用一个小的hold电流可使扭矩保持不变。  步进电机位置控制  更高效智能的车载步进电机控制  通过采用数字恒流控制技术,NSUC1610实现了对步进电机电流的精确调节,以适应不同类型和需求的步进电机。NSUC1610还支持微步驱动方式,使步进电机的旋转更加平顺丝滑。
关键词:
发布时间:2024-08-01 09:05 阅读量:463 继续阅读>>

跳转至

/ 8

  • 一周热料
  • 紧缺物料秒杀
型号 品牌 询价
BD71847AMWV-E2 ROHM Semiconductor
TL431ACLPR Texas Instruments
RB751G-40T2R ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
MC33074DR2G onsemi
型号 品牌 抢购
ESR03EZPJ151 ROHM Semiconductor
TPS63050YFFR Texas Instruments
STM32F429IGT6 STMicroelectronics
IPZ40N04S5L4R8ATMA1 Infineon Technologies
BP3621 ROHM Semiconductor
BU33JA2MNVX-CTL ROHM Semiconductor
热门标签
ROHM
Aavid
Averlogic
开发板
SUSUMU
NXP
PCB
传感器
半导体
关于我们
AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯 片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。