晶体管(transistor)是一种固体半导体器件(包括二极管、三极管、场效应管、晶闸管等,有时特指双极型器件),具有检波、整流、放大、开关、稳压、信号调制等多种功能。晶体管作为一种可变电流开关,能够基于输入电压控制输出电流。与普通机械开关(如Relay、switch)不同,晶体管利用电信号来控制自身的开合,所以开关速度可以非常快,实验室中的切换速度可达100GHz以上。
严格意义上讲,晶体管泛指一切以半导体材料为基础的单一元件,包括各种半导体材料制成的二极管(二端子)、三极管、场效应管、晶闸管(后三者均为三端子)等。晶体管有时多指晶体三极管。
三端子晶体管主要分为两大类:双极性晶体管(BJT)和场效应晶体管(FET,单极性)。晶体管有三个极(端子);双极性晶体管的三个极(端子),分别是由N型、P型半导体组成的发射极(Emitter)、基极(Base) 和集电极(Collector);场效应晶体管的三个极(端子),分别是源极(Source)、栅极(Gate)和漏极(Drain)。
晶体管因为有三个电极,所以也有三种的使用方式,分别是发射极接地(又称共射放大、CE组态)、基极接地(又称共基放大、CB组态)和集电极接地(又称共集放大、CC组态、发射极随耦器)。
1)真空三极管
1939年2月,Bell实验室有一个伟大的发现,硅p_n结的诞生。1942年,普渡大学Lark_Horovitz领导的课题组中一个名叫Seymour Benzer的学生,发现锗单晶具有其它半导体所不具有的优异的整流性能。这两个发现满足了美国政府的要求,也为随后晶体管的发明打下了伏笔。
2)点接触晶体管
1945年二战结束,Shockley等发明的点接触晶体管成为人类微电子革命的先声。为此,Shockley为Bell递交了第一个晶体管的专利申请。最终还是获得了第一个晶体管专利的授权。
3)双极型与单极型晶体管
Shockley在双极型晶体管的基础上,于1952年进一步提出了单极结型晶体管的概念,即今天所说的结型晶体管。其结构与pnp或npn双极型晶体管类似,但在p_n材料的界面存在一个耗尽层,以使栅极与源漏导电沟道之间形成一个整流接触。同时两端的半导体作为栅极。通过栅极调节源漏之间电流的大小。
4)硅晶体管
仙童半导体由一个几人的公司成长为一个拥有12000个职工的大企业。
5)集成电路
在1954年硅晶体管发明之后,晶体管的巨大应用前景已经越来越明显。科学家的下一个目标便是如何进一步把晶体管、导线及其它器件高效地连接起来。
6)场效应晶体管与MOS管
1961年,MOS管的诞生。1962年,在RCA器件集成研究组工作的Stanley, Heiman和Hofstein等发现,可以通过扩散与热氧化在Si基板上形成的导电带、高阻沟道区以及氧化层绝缘层来构筑晶体管,即MOS管。
7)微处理器(CPU)
英特尔公司在创立之初,目光仍然集中在内存条上。Hoff把中央处理器的全部功能集成在一块芯片上,再加上存储器;这就是世界上的第一片微处理器—4004(1971年)。4004的诞生标志着一个时代的开始,随后英特尔在微处理器的研究中一发不可收拾,独领风骚。
1989年,英特尔推出了80486处理器。1993年,英特尔研制成功新一代处理器,本来按照惯常的命名规律是80586。1995年英特尔推出Pentium_Pro。1997年英特尔发布了PentiumII处理器。1999年英特尔发布了Pentium III处理器。2000年发布了Pentium 4处理器。
晶体管的主要参数有电流放大系数、耗散功率、频率特性、集电极最大电流、最大反向电压、反向电流等。
放大系数
直流电流放大系数也称静态电流放大系数或直流放大倍数,是指在静态无变化信号输入时,晶体管集电极电流IC与基极电流IB的比值,一般用hFE或β表示。
交流放大倍数
交流放大倍数,也即交流电流放大系数、动态电流放大系数,是指在交流状态下,晶体管集电极电流变化量△IC与基极电流变化量△IB的比值,一般用hfe或β表示。
hFE或β既有区别又关系密切,两个参数值在低频时较接近,在高频时有一些差异。
耗散功率
耗散功率也称集电极最大允许耗散功率PCM,是指晶体管参数变化不超过规定允许值时的最大集电极耗散功率。
耗散功率与晶体管的最高允许结温和集电极最大电流有密切关系。晶体管在使用时,其实际功耗不允许超过PCM值,否则会造成晶体管因过载而损坏。
通常将耗散功率PCM小于1W的晶体管称为小功率晶体管,PCM等于或大于1W、小于5W的晶体管被称为中功率晶体管,将PCM等于或大于5W的晶体管称为大功率晶体管。
特征频率fT 晶体管的工作频率超过截止频率fβ或fα时,其电流放大系数β值将随着频率的升高而下降。特征频率是指β值降为1时晶体管的工作频率。
通常将特征频率fT小于或等于3MHZ的晶体管称为低频管,将fT大于或等于30MHZ的晶体管称为高频管,将fT大于3MHZ、小于30MHZ的晶体管称为中频管。
最高频率fM
最高振荡频率是指晶体管的功率增益降为1时所对应的频率。
通常,高频晶体管的最高振荡频率低于共基极截止频率fα,而特征频率fT则高于共基极截止频率fα、低于共集电极截止频率fβ。
最大电流
集电极最大电流(ICM)是指晶体管集电极所允许通过的最大电流。当晶体管的集电极电流IC超过ICM时,晶体管的β值等参数将发生明显变化,影响其正常工作,甚至还会损坏。
最大反向电压
最大反向电压是指晶体管在工作时所允许施加的最高工作电压。它包括集电极—发射极反向击穿电压、集电极—基极反向击穿电压和发射极—基极反向击穿电压。
集电极——集电极反向击穿电压
该电压是指当晶体管基极开路时,其集电极与发射极之间的最大允许反向电压,一般用VCEO或BVCEO表示。
基极—— 基极反向击穿电压
该电压是指当晶体管发射极开路时,其集电极与基极之间的最大允许反向电压,用VCBO或BVCBO表示。
发射极——发射极反向击穿电压
该电压是指当晶体管的集电极开路时,其发射极与基极与之间的最大允许反向电压,用VEBO或BVEBO表示。
集电极——基极之间的反向电流ICBO
ICBO也称集电结反向漏电电流,是指当晶体管的发射极开路时,集电极与基极之间的反向电流。ICBO对温度较敏感,该值越小,说明晶体管的温度特性越好。
集电极——发射极之间的反向击穿电流ICEO ICEO是指当晶体管的基极开路时,其集电极与发射极之间的反向漏电电流,也称穿透电流。此电流值越小,说明晶体管的性能越好。
在线留言询价
型号 | 品牌 | 询价 |
---|---|---|
TL431ACLPR | Texas Instruments | |
CDZVT2R20B | ROHM Semiconductor | |
BD71847AMWV-E2 | ROHM Semiconductor | |
MC33074DR2G | onsemi | |
RB751G-40T2R | ROHM Semiconductor |
型号 | 品牌 | 抢购 |
---|---|---|
TPS63050YFFR | Texas Instruments | |
BP3621 | ROHM Semiconductor | |
BU33JA2MNVX-CTL | ROHM Semiconductor | |
STM32F429IGT6 | STMicroelectronics | |
IPZ40N04S5L4R8ATMA1 | Infineon Technologies | |
ESR03EZPJ151 | ROHM Semiconductor |
AMEYA360公众号二维码
识别二维码,即可关注