DSP芯片,即数字信号处理器(Digital Signal Processing)。是一种特别适合于进行数字信号处理运算的微处理器具。
其工作原理是接收模拟信号,转换为0或1的数字信号,再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。
1.哈佛结构;2.流水线操作;3.专用的硬件乘法器;4.特殊的DSP指令;5.快速的指令周期。
哈佛结构
哈佛结构的主要特点是将程序和数据存储在不同的存储空间中,即程序存储器和数据存储器是两个相互独立的存储器,每个存储器独立编址,独立访问。与两个存储器相对应的是系统中设置了程序总线和数据总线,从而使数据的吞吐率提高了一倍。由于程序和存储器在两个分开的空间中,因此取指和执行能完全重叠。
流水线与哈佛结构相关,DSP芯片广泛采用流水线以减少指令执行的时间,从而增强了处理器的处理能力。处理器可以并行处理二到四条指令,每条指令处于流水线的不同阶段。
CLLOUT1,取指 N N-1 N-2,译码 N-1 N N-2,执行 N-2 N-1 N,专用的硬件乘法器,乘法速度越快,DSP处理器的性能越高。由于具有专用的应用乘法器,乘法可在一个指令周期内完成。
特殊的DSP指令DSP芯片是采用特殊的指令。快速的指令周期哈佛结构、流水线操作、专用的硬件乘法器、特殊的DSP指令再加上集成电路的优化设计可使DSP芯片的指令周期在200ns以下。
DSP的运算速度比其它处理器要高得多,以FFT、相关为例,高性能DSP不仅处理速度是MPU的 4~10倍,而且可以连续不断地完成数据的实时输入/输出。DSP结构相对单一,普遍采用汇编语言编程,其任务完成时间的可预测性相对于结构和指令复杂(超标量指令)、严重依赖于编译系统的MPU强得多。
以一个FIR滤波器实现为例,每输入一个数据,对应每阶滤波器系数需要一次乘、一次加、一次取指、二次取数,还需要专门的数据移动操作,DSP可以单周期完成乘加并行操作以及3~4次数据存取操作,而普通MPU完成同样的操作至少需要4个指令周期。因此,在相同的指令周期和片内指令缓存条件下,DSP的运算送到可以超过MPU运算速度的4倍以上。
正是基于 DSP的这些优势,在新推出的高性能通用微处理器(如Pentium、Power PC 604e等)片内已经融入了 DSP的功能,而以这种通用微处理器构成的计算机在网络通信、语音图像处理、实时数据分析等方面的效率大大提高。
(1) 信号处理--如,数字滤波、自适应滤波、快速傅里叶变换、相关运算、频谱分析、卷积等。
(2) 通信--如,调制解调器、自适应均衡、数据加密、数据压缩、回坡抵消、多路复用、传真、扩频通信、纠错编码、波形产生等。
(3) 语音--如语音编码、语音合成、语音识别、语音增强、说话人辨认、说话人确认、语音邮件、语音储存等。
(4) 图像/图形--如二维和三维图形处理、图像压缩与传输、图像增强、动画、机器人视觉等。
(5) 军事--如保密通信、雷达处理、声纳处理、导航等。
(6) 仪器仪表--如频谱分析、函数发生、锁相环、地震处理等。
(7) 自动控制--如引擎控制、深空、自动驾驶、机器人控制、磁盘控制。
(8) 医疗--如助听、超声设备、诊断工具、病人监护等。
(9) 家用电器--如高保真音响、音乐合成、音调控制、玩具与游戏、数字电话/电视等
在线留言询价
型号 | 品牌 | 询价 |
---|---|---|
CDZVT2R20B | ROHM Semiconductor | |
BD71847AMWV-E2 | ROHM Semiconductor | |
RB751G-40T2R | ROHM Semiconductor | |
MC33074DR2G | onsemi | |
TL431ACLPR | Texas Instruments |
型号 | 品牌 | 抢购 |
---|---|---|
TPS63050YFFR | Texas Instruments | |
ESR03EZPJ151 | ROHM Semiconductor | |
BU33JA2MNVX-CTL | ROHM Semiconductor | |
IPZ40N04S5L4R8ATMA1 | Infineon Technologies | |
BP3621 | ROHM Semiconductor | |
STM32F429IGT6 | STMicroelectronics |
AMEYA360公众号二维码
识别二维码,即可关注